Skip to main content

Mesoscopic Models of Polymers: Semi-flexible Chains and Polyelectrolytes

  • Chapter
  • First Online:
Statistical Physics for Biological Matter

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2226 Accesses

Abstract

Most biopolymers are semi-flexible: they can bend and undulate. Mechanically they are characterized by finite values of their persistence lengths \( l_{p} \), the scales below which the chains can be regarded as straight (Fig. 11.1). For example, the persistence length of double-stranded DNA is about 50 nm, while that of actin filament is about 20 μm. For the length scale much longer than the persistence length, the chain appears to be flexible, to which the models presented earlier can be applied. This chapter covers basic mesoscopic conformations, their fluctuations, and elastic behaviors of semi-flexible chains and polyelectrolytes that are either free or subject to external forces and constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading and References

  • A.R. Khokhlov, A. Grosberg, V.S. Pande, Statistical Physics of Macromolecules (American Institute of Physics, 2002)

    Google Scholar 

  • W.M. Gelbart, R.F. Bruinsma, P.A. Pincus, V.A. Parsegian, DNA-inspired electrostatics. Phys. Today (2000)

    Google Scholar 

  • K. Sneppen, G. Zocchi, Physics in Molecular Biology (Cambridge University Press, 2006)

    Google Scholar 

  • A.A. Kornyshev, Physics of DNA: unravelling hidden abilities encoded in the structure of ‘the most important molecule’. Phys. Chem. Chem. Phys. 12, 39 (2010)

    Article  Google Scholar 

  • J.F. Marko, E.D. Siggia, Stretching DNA. Macromolecules 28, 26 (1995)

    Article  Google Scholar 

  • C. Bustamante et al., Entropic elasticity of lambda-phage DNA. Science 265, 5178 (1994)

    Article  Google Scholar 

  • G.S. Manning, Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J. Chem. Phys. 51, 924 (1969)

    Article  ADS  Google Scholar 

  • F. Oosawa, Polyelectrolytes (Marcel Dekker, New York, 1971)

    Google Scholar 

  • T. Odijk, Polyelectrolytes near the rod limit. J. Polym. Sci. 15, 477 (1977)

    Google Scholar 

  • J. Skolnick, M. Fixman, Electrostatic persistence length of a wormlike polyelectrolyte. Macromolecules 10, 944 (1977)

    Article  ADS  Google Scholar 

  • J.-L. Barrat, J.F. Joanny, Advances in Chemical Physics: Polymeric Systems, vol. 94 (Wiley, 2007)

    Google Scholar 

  • R. Podgornik, V.A. Parsegian, Charge-fluctuation forces between rodlike polyelectrolytes: pairwise summability reexamined. Phys. Rev. Lett. 80, 1560 (1998)

    Article  ADS  Google Scholar 

  • V.A. Bloomfield, DNA condensation by multivalent cations. Biopolymers 44, 3, 269 (1997)

    Article  Google Scholar 

  • B.Y. Ha, A.J. Liu, Counterion-mediated attraction between two like-charged rods. Phys. Rev. Lett. 79, 1289 (1997)

    Article  ADS  Google Scholar 

  • N.V. Hud, K.H. Downing, Cryoelectron microscopy of λ phage DNA condensates in vitreous ice: the fine structure of DNA toroids. Proc. Natl. Acad. Sci. U.S.A. 98, 14925 (2001)

    Article  ADS  Google Scholar 

  • H.G. Garcia, P. Grayson, L. Han, M. Inamdar, J. Kondev, P.C. Nelson, R. Phillips, J. Widom, P.A. Wiggins, Biological consequences of tightly bent DNA: the other life of a macromolecular celebrity. Biopolymers 85, 2 (2006)

    Google Scholar 

  • W.K. Kim, W. Sung, Charge density coordination and dynamics in a rodlike polyelectrolyte. Phys. Rev. E 78, 021904 (2008)

    Article  ADS  Google Scholar 

  • W.K. Kim, W. Sung, Charge density and bending rigidity of a rodlike polyelectrolyte: effects of multivalent counterions. Phys. Rev. E 83, 051926 (2011)

    Google Scholar 

  • G. Ariel, D. Andelman, Persistence length of a strongly charged rodlike polyelectrolyte in the presence of salt. Phys. Rev. E 67, 011805 (2003)

    Article  ADS  Google Scholar 

  • A. Caspi et al., Semiflexible polymer network: a view from inside. Phys. Rev. Lett. 80, 1106 (1998)

    Article  ADS  Google Scholar 

  • T. Baba et al., Force-fluctuation relation of a single DNA molecule. Macromolecules 45, 2857 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wokyung Sung .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sung, W. (2018). Mesoscopic Models of Polymers: Semi-flexible Chains and Polyelectrolytes. In: Statistical Physics for Biological Matter. Graduate Texts in Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1584-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-1584-1_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-1583-4

  • Online ISBN: 978-94-024-1584-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics