Skip to main content

Nanostructured SnO2 as CBRN Safety Material

  • Conference paper
  • First Online:
Nanostructured Materials for the Detection of CBRN

Abstract

The present review briefly reflects tin dioxide applications for safety devices for the last 2 years as convenient, cheap, widespread material with suitable physical and chemical properties. The usage of nanoscale SnO2 forms are considered for several types of devices such as: gas sensors of conductometric type, electrochemical sensors, sensors on the SPR effect, material for electrodes of lithium-ion batteries and solar cells, together with catalytic applications for decomposition of pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jarzebski ZM, Marton JP (1976) Physical properties of SnO2 materials. I. Preparation and defect structure. J Electrochem Soc 123(7):199–205. https://doi.org/10.1149/1.2133010

  2. Comini E (2006) Metal oxide nano-crystals for gas sensing. Anal Chim Acta 568:28–40

    Google Scholar 

  3. Hwang I-S, Lee J-H (2011) Gas sensors using oxide nanowire networks: an overview. J Nanoeng Nanomanuf 1:4–17. https://doi.org/10.1166/jnan.2011.1002

  4. Sun Y-F, Liu S-B, Meng F-L, Liu J-Y, Jin Z, Kong L-T, Liu J-H (2012) Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12:2610–2631. https://doi.org/10.3390/s120302610

  5. Woo HS, Na CW, JH Lee (2016) Design of highly selective gas sensors via physicochemical modification of oxide nanowires: overview. Sensors 16:1531–23. https://doi.org/10.3390/s16091531, www.mdpi.com/journal/sensors.

  6. Granqvist CG (2007) Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mat Sol Cells 91:1529–1598.

    Google Scholar 

  7. Ginley D, Hosono H, Paine DC (eds) (2011) Handbook of transparent conductors. Springer, New York

    Google Scholar 

  8. Papargyri S, Tsipas DN, Papargyris DA, Botis AI, Papargyris AD (2005) Review on the production and synthesis of nanosized SnO2. Solid State Phenom 106:57–62

    Google Scholar 

  9. Batzill M, Diebold U (2005) Review: the surface and materials science of tin oxide. Prog Surf Sci 79:47–154

    Google Scholar 

  10. Pan J, Shen H, Mathur S (2012) One-dimensional SnO2 nanostructures: synthesis and applications. J Nanotechnol 2012. Article ID 917320. https://doi.org/10.1155/2012/917320, www.hindawi.com/journals/jnt/2012/917320/

  11. Das S, Jayaraman V (2014) SnO2: a comprehensive review on structures and gas sensors. Prog Mat Sci 66:112–255. https://doi.org/10.1016/j.pmatsci.2014.06.003

  12. Nazarov DV, Bobrysheva NP, Osmolovskaya OM, Osmolovsky MG, Smirnov VM (2015) Atomic layer deposition of tin dioxide nanofilms: a review. Rev Adv Mater Sci 40:262–275

    Google Scholar 

  13. Mohanta D, Ahmaruzzaman M (2016) Tin oxide nanostructured materials: an overview of recent developments in synthesis, modifications and potential applications. RSC Adv 6:110996–111015. https://doi.org/10.1039/C6RA21444D

  14. Dastkhoon M, Ghaedi M, Asfaram A, Arabi M, Ostovan A, Goudarzi A (2017) CuSnS/SnO2 nanoparticles as novel sorbent for dispersive micro solid phase extraction of atorvastatin in human plasma and urine samples by high-performance liquid chromatography with UV detection: application of central composite design (CCD). Ultrason Sonochem 36:42–49. https://doi.org/10.1016/j.ultsonch.2016.10.030

  15. Kwon YJ, Kang SY, Wu P, Peng Y, Kim SS, Kim HW (2016) Selective improvement of NO2 gas sensing behavior in SnO2 nanowires by ion-beam irradiation. ACS Appl Mater Interfaces 8(21):13646–13658. https://doi.org/10.1021/acsami.6b01619

  16. Hong SN, Kye YH, Yu C-J, Jong UG, Ri G-C, Choe C-S, Kim KH, Han JM (2016) Ab initio thermodynamic study of the SnO2(110) surface in an O2 and NO environment: a fundamental understanding of the gas sensing mechanism for NO and NO2. Phys Chem Chem Phys 18:31566–31578. https://doi.org/10.1039/C6CP05433A

  17. Dang TV, Hoa ND, Duy NV, Hieu NV (2016) Chlorine gas sensing performance of on-chip grown ZnO, WO3, and SnO2 nanowire sensors. ACS Appl Mater Interfaces 8(7):4828–4837. https://doi.org/10.1021/acsami.5b08638

  18. Li YX, Guo Z, Su Y, Jin XB, Tang XH, Huang JR, Huang XJ, Li MQ, Liu JH (2017) Hierarchical morphology-dependent gas-sensing performances of three-dimensional SnO2 nanostructures. ACS Sens 2(1):102–110. https://doi.org/10.1021/acssensors.6b00597

  19. Johari A, Johari A, Bhatnagar MC, Sharma M (2014) Structural, optical and sensing properties of pure and Cu-doped SnO2 nanowires. J Nanosci Nanotechnol 14(7):5288–922014

    Google Scholar 

  20. Bhardwaj N, Pandey A, Satpati B, Tomar M, Gupta V, Mohapatra S (2016) Enhanced CO gas sensing properties of Cu doped SnO2 nanostructures prepared by a facile wet chemical method. Phys Chem Chem Phys 18(28):18846–54. https://doi.org/10.1039/c6cp01758d

  21. Yang F, Guo Z (2015) Comparison of the enhanced gas sensing properties of tin dioxide samples doped with different catalytic transition elements. J Colloid Interface Sci 448:265–74. https://doi.org/10.1016/j.jcis.2015.02.045

  22. Degler D, Rank S, Müller S, de Carvalho HWP, Grunwaldt JD, Weimar U, Barsan N (2016) Gold-loaded tin dioxide gas sensing materials: mechanistic insights and the role of gold dispersion. ACS Sens 1(11):1322–1329. https://doi.org/10.1021/acssensors.6b00477

  23. Teterycz H, Licznerski BW (2006) Properties of selective gas-sensitive SnO2/RuO2/Pt composition and detection mechanism. J Electrochem Soc 153(5):H94–H104

    Google Scholar 

  24. Lyson-Sypien B, Kusior A, Rekas M, Zukrowski J, Gajewska M, Michalow-Mauke K, Graule T, Radecka M, Zakrzewska K (2017) Nanocrystalline TiO2/SnO2 heterostructures for gas sensing. Beilstein J Nanotechnol 8:108–122. https://doi.org/10.3762/bjnano.8.12

  25. Chen W, Li Q, Xu L, Zeng W (2015) Gas sensing properties of ZnO-SnO2 nanostructures. J Nanosci Nanotechnol 15(2):1245–1252

    Google Scholar 

  26. Chesler P, Hornoiu C, Mihaiu S, Vladut C, Calderon Moreno JM, Anastasescu M, Moldovan C, Firtat B, Brasoveanu C, Muscalu G, Stan I, Gartner M (2016) Nanostructured SnO2-ZnO composite gas sensors for selective detection of carbon monoxide. Beilstein J Nanotechnol 7:2045–2056. https://doi.org/10.3762/bjnano.7.195

  27. Wang L, Li J, Wang Y, Yu K, Tang X, Zhang Y, Wang S, Wei C (2016) Construction of 1D SnO2-coated ZnO nanowire heterojunction for their improved n-butylamine sensing performances. Sci Rep 6:35079. https://doi.org/10.1038/srep35079

  28. Jin Z, Yang M, Chen SH, Liu JH, Li QX, Huang XJ (2017) Tin oxide crystals exposed by low-energy {110} facets for enhanced electrochemical heavy metal ions sensing: X-ray absorption fine structure experimental combined with density-functional theory evidence. Anal Chem 89(4):2613–2621. https://doi.org/10.1021/acs.analchem.6b04977

  29. Bhanjana G, Dilbaghi N, Kumar R, Umar A, Kumar S (2015) SnO2 quantum dots as novel platform for electrochemical sensing of cadmium. Electrochim Acta 169:97–102. https://doi.org/10.1016/j.electacta.2015.04.045

  30. Khan N, Athar T, Fouad H, Umar A, Ansari ZA, Ansari SG (2017) Application of pristine and doped SnO2 nanoparticles as a matrix for agro-hazardous material (organophosphate) detection. Sci Rep 7:42510. https://doi.org/10.1038/srep42510

  31. Grinevich VS, Filevska LM, Matyash IE, Maximenko LS, Mischuk ON, Rudenko SP, Serdega BK, Smyntyna VA, Ulug B (2012) Surface plasmon resonance investigation procedure as a structure sensitive method for SnO2 nanofilms. Thin Solid Films 522:452–456

    Google Scholar 

  32. Yang D, Lu H-H, Chen B, Lin C-W (2010) Surface plasmon resonance of SnO2/Au bi-layer films for gas sensing applications. Sensors and Actuators B Chem 145(2):832–838

    Google Scholar 

  33. Pathak A, Mishra SK, Gupta BD (2015) Fiber-optic ammonia sensor using Ag/SnO2 thin films: optimization of thickness of SnO2 film using electric field distribution and reaction factor. Appl Opt 54(29):8712–8721. https://doi.org/10.1364/AO.54.008712

  34. Kaur D, Madaan D, Sharma VK, Kapoor A (2016) High angular sensitivity thin film tin oxide sensor. In: Proceeding of international conference on condensed matter and applied physics (ICC 2015). AIP conference proceedings, vol 1728, p 020210. http://dx.doi.org/10.1063/1.4946261

  35. Paek SM, Yoo EJ, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible, structure. Nano Lett 9(1):72–75. https://doi.org/10.1021/nl802484w

  36. Lin J, Peng Z, Xiang C, Ruan G, Yan Z, Natelson D, Tour JM (2013) Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7(7):6001–6006. https://doi.org/10.1021/nn4016899

  37. Xia G, Li N, Li D, Liu R, Wang C, Li Q, Lü X, Spendelow JS, Wu J, Zhang G (2013) Graphene/Fe2O3/SnO2 ternary nanocomposites as a high-performance anode for lithium ion batteries. ACS Appl Mater Interfaces 5(17):8607–8614. https://doi.org/10.1021/am402124r

  38. Zhou D, Song WL, Li X, Fan LZ Confined porous graphene/SnOx frameworks within polyaniline-derived carbon as highly stable lithium-ion battery anodes. ACS Appl Mater Interfaces 8(21):13410–72016. https://doi.org/10.1021/acsami.6b01875

  39. Li Y, Zhang H, Chen Y, Shi Z, Cao X, Guo Z, Shen PK (2016) Nitrogen-doped carbon-encapsulated SnO2Sn nanoparticles uniformly grafted on three-dimensional graphene-like networks as anode for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 8(1):197–207. https://doi.org/10.1021/acsami.5b08340

  40. Wu J, Chen H, Byrd I, Lovelace S, Jin C (2016) Fabrication of SnO2 asymmetric membranes for high performance lithium battery anode. ACS Appl. Mater. Interfaces 8(22):13946–13956. https://doi.org/10.1021/acsami.6b03310

  41. Jiang B, He Y, Li B, Zhao S, Wang S, He Y, Lin Z (2017) Polymer-templated formation of polydopamine-coated SnO2 nanocrystals: anodes for cyclable lithium-ion batteries. Angew Chem Int Ed Engl 56(7):1869–1872. https://doi.org/10.1002/anie.201611160

  42. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

  43. Repetsky SP, Vyshyvana IG, Kruchinin SP, Molodkin VB, Lizunov VV (2017) Influence of the adsorbed atoms of potassium on an energy spectrum of grapheme. Metallofiz Noveishie Tekhnol 39:1017–1022

    Google Scholar 

  44. Wei H, Xia Z, Xia D (2017) One step synthesis of uniform SnO2 electrode by UV curing technology toward enhanced lithium-ion storage. ACS Appl Mater Interfaces 9(8):7169–7176. https://doi.org/10.1021/acsami.6b15820

  45. Kim C, Jung JW, Yoon KR, Youn DY, Park S, Kim ID (2016) A high-capacity and long-cycle-life lithium-ion battery anode architecture: silver nanoparticle-decorated SnO2/NiO nanotubes. ACS Nano 10(12):11317–11326. https://doi.org/10.1021/acsnano.6b06512

  46. Singh T, Singh J, Miyasaka T (2016) Role of metal oxide electron-transport layer modification on the stability of high performing perovskite solar cells. Chem Sus Chem 9(18):2559–2566. https://doi.org/10.1002/cssc.201601004

  47. Barbe J, Tietze ML, Neophytou M, Murali B, Alarousu E, Labban A, Abulikemu M, Yue W, Mohammed OF, McCulloch I, Amassian A, Del Gobbo S (2017) Amorphous tin oxide as low temperature-processed electron transport layer for organic and hybrid perovskite solar cell. ACS Appl Mater Interfaces 9(13):11828–11836. https://doi.org/10.1021/acsami.6b13675

  48. Lee Y, Paek S, Cho KT, Oveisi E, Gao P, Lee S, Park J-S, Zhang Y, Humphry-Baker R, Asiri AM, Nazeeruddin MK (2017) Enhanced charge collection with passivation of the tin oxide layer in planar perovskite solar cells. J Mater Chem A 5(25):12729–12734

    Google Scholar 

  49. Yang G, Lei H, Tao H, Zheng X, Ma J, Liu Q, Ke W, Chen Z, Xiong L, Qin P, Chen Z, Qin M, Lu X, Yan Y, Fang G (2017) Reducing hysteresis and enhancing performance of perovskite solar cells using low-temperature processed Y-doped SnO2 nanosheets as electron selective layers. Small 13(2):1601769–1601769. https://doi.org/10.1002/smll.201601769

  50. Rodionov VE, Shnidko IN, Zolotovsky A, Kruchinin SP (2013) Electroluminescence of Y2O3:Eu and Y2O3:Sm films. Mater Sci 31:232–239

    Google Scholar 

  51. Ermakov V, Kruchinin S, Fujiwara A (2008) Electronic nanosensors based on nanotransistor with bistability behaviour. In: Bonca J, Kruchinin S (eds) Proceedings of NATO ARW “Electron transport in nanosystems”. Springer, pp 341–349

    Google Scholar 

  52. Kavan L, Steier L, Grätzel M (2017) Ultrathin buffer layers of SnO2 by atomic layer deposition: perfect blocking function and thermal stability. J Phys Chem C 121(1):342–350. https://doi.org/10.1021/acs.jpcc.6b09965

  53. Bai H, He P, Chen J, Liu K, Lei H, Zhang X, Dong F, Li H (2017) Electrocatalytic degradation of bromocresol green wastewater on Ti/SnO2-RuO2 electrode. Water Sci Technol 75(1):220–227. https://doi.org/10.2166/wst.2016.509

  54. Loloi M, Rezaee A, Aliofkhazraei M, Rouhaghdam AS (2016) Electrocatalytic oxidation of phenol from wastewater using Ti/SnO2-Sb2O4 electrode: chemical reaction pathway study. Environ Sci Pollut Res Int 23(19):19735–43. https://doi.org/10.1007/s11356-016-7110-6

  55. Li D, Tang J, Zhou X, Li J, Sun X, Shen J, Wang L, Han W (2016) Electrochemical degradation of pyridine by Ti/SnO2-Sb tubular porous electrode. Chemosphere 149:49–56. https://doi.org/10.1016/j.chemosphere.2016.01.078

  56. Asim S, Zhu Y, Rana M, Yin J, Shah MW, Li Y, Wang C (2017) Nanostructured 3D-porous graphene hydrogel based Ti/Sb-SnO2-Gr electrode with enhanced electrocatalytic activity. Chemosphere 169:651–659. https://doi.org/10.1016/j.chemosphere.2016.11.119

  57. Hu M, Zhang Z, Luo C, Qiao X (2017) One-pot green synthesis of Ag-decorated SnO2 microsphere: an efficient and reusable catalyst for reduction of 4-nitrophenol. Nanoscale Res Lett 12:435. https://doi.org/10.1186/s11671-017-2204-8

  58. Seo K, Lim T, Mills EM, Kim S, Ju S (2016) Hydrogen generation enhanced by nano-forest structures. RSC Adv 6:12953–12958. https://doi.org/10.1039/C5RA26226G

  59. Gibson G, Wang Z, Hardacre C, Lin WF (2017) Insights into the mechanism of electrochemical ozone production via water splitting on the Ni and Sb doped SnO2 catalyst. Phys Chem Chem Phys 19(5):3800–3806. https://doi.org/10.1039/c6cp06906a

  60. Filevska LM, Chebanenko AP, Grinevych VS, Simanovych NS (2016) The electrical characteristics of nanoscale SnO2 films, structured by polymers. Photoelectronics 25:62–67

    Google Scholar 

  61. Grinevich VS, Filevska LM, Rudenko SP, Stetsenko MA, Maximenko LS, Serdega BK, Smyntyna VA (2016) Radiation modes of surface plasmons in SnO2 thin films (in Ukrainian). In: 7th international scientific and technical conference on “Sensor Electronics and Microsystem Technologies” (SEMST-7), Book of Abstract, 30 May–3 June 2016, Odessa (Astroprint Odessa), p 181

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Grinevych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grinevych, V., Smyntyna, V., Filevska, L. (2018). Nanostructured SnO2 as CBRN Safety Material. In: Bonča, J., Kruchinin, S. (eds) Nanostructured Materials for the Detection of CBRN. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1304-5_9

Download citation

Publish with us

Policies and ethics