Skip to main content

Heterogeneous Systems with Ag Nanoparticles

  • Conference paper
  • First Online:
Nanostructured Materials for the Detection of CBRN

Abstract

Optical properties of hybrid nanosystem consisting of silver nanoparticles (Ag NPs) with a methylene blue dye (MB) investigated. The first detected the effect of Ag NPs on the structuring of the molecule MB and the effect of the dye structure on its optical and luminescent properties. This effect explained by the formation of nonluminescent aggregates of dye in the nanosystems with Ag NPs. Molecular aggregates are not involved in the radiative processes of the dye, resulting in reduced intensity of its luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32–41. https://doi.org/10.1186/2228-5326-2-32

    Article  Google Scholar 

  2. Sharma A, Tapadia K (2017) Simple and rapid quantitative determination of thiol-containing toxicants using silver nanoparticles as an affinity probe. J Appl Spectrosc 83(6):1068–1075. https://doi.org/10.1007/s10812-017-0409-3

    Article  ADS  Google Scholar 

  3. Zhang F, Wu X, Chen Y, Lin H (2009) Application of silver nanoparticles to cotton fabric as an antibacterial textile finish. Fibers Polym 10(4):496–501. https://doi.org/10.1007/s12221-009-0496-8

    Article  Google Scholar 

  4. Li Y, Guo M, Lin Z, Zhao M, Xiao M, Wang C, Xu T, Chen T, Zhu B (2016) Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis. Inter J Nanomedicine 11:6693–6702. https://doi.org/10.2147/IJN.S122666

    Article  Google Scholar 

  5. Kim SC, Kim SM, Yoon GJ, Nam SW, Lee SY, Kim JW (2014) Gelatin-based sponge with Ag nanoparticles prepared by solution plasma: fabrication, characteristics, and their bactericidal effect. Curr Appl Phys 14(2):S172–S179

    Article  ADS  Google Scholar 

  6. Ermakov V, Kruchinin S, Fujiwara A (2008) Electronic nanosensors based on nanotransistor with bistability behaviour. In: Bonca J, Kruchinin S (eds) Proceedings of the NATO ARW “Electron transport in nanosystems”. Springer, pp 341–349

    Google Scholar 

  7. Ermakov V, Kruchinin S, Hori H, Fujiwara A (2007) Phenomena in resonant tunneling through degenerated energy states with electron correlation. Int J Mod Phys B 21(11):1827–1836

    Article  ADS  Google Scholar 

  8. Jockusch S, Lee D, Turro NJ, Leonard EF (1996) Photo-induced inactivation of viruses: adsorption of methyleneblue, thionine, and thiopyronine on Qf3 bacteriophage. Proc Natl Acad Sci USA 93:7446–7451

    Article  ADS  Google Scholar 

  9. Gabrielli D, Belisle E, Severino D, Kowaltowski AJ, Baptista MS (2004) Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions. Photochem Photobiol 79(3):227–232. https://doi.org/10.1111/j.1751-1097.2004.tb00389.x

    Article  Google Scholar 

  10. Tardivo J, Giglio A, Oliveira C, Gabrielli D, Junqueira H, Tada D, Severino D, Turchiello R, Baptista M (2005) Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagn Photodyn Ther 2(3):175–191. https://doi.org/10.1016/S1572-1000(05)00097-9

    Article  Google Scholar 

  11. Tuite EM, Kelly JM (1993) Photochemical interactions of methylene blue and analogues with DNA and other biological substrates. J Photochem Photobiol B21(2–3):103–124. PMID: 8301408

    Article  Google Scholar 

  12. Klochkov VK, Egorova AV, Sedykh OO, Efimova LE (2014) Aggregation of methylene blue and nile blue in the presence of nanoparticles ReEuVO4 (Re = Cd, Y, La) with different form–factor. Quest Chem Chem Technol 1:106–109

    Google Scholar 

  13. Bujdak J, Janek M, Madejova J, Komadel P (2001) Methylene blue interaction with reduced-charge smectites. Clay Clay Miner 49(3):244–254

    Article  ADS  Google Scholar 

  14. McArthur EA, Godbe JM, Tice DB, Weiss EA (2012) A study of the binding of cyanine dyes to colloidal quantum dots using spectral signatures of dye aggregation. J Phys Chem C 116(10):6136–6142. https://doi.org/10.1021/jp300478g

    Article  Google Scholar 

  15. Rodionov VE, Shnidko IN, Zolotovsky A, Kruchinin SP (2013) Electroluminescence of Y2O3:Eu and Y2O3:Sm films. Mater Sci 31:232–239

    Google Scholar 

  16. Vlaskina S, Kruchinin S, Kuznetsova E, Rodionov V et al (2016) Nanostructures in silicon carbide crystals and films. Inter J Mod Phys B 30(13):1042015

    Article  ADS  Google Scholar 

  17. Suvorov T, Balbekova A, Klyuev V, Latyshev A, Ovchinnikov O, Smirnov M, Rybalko A (2012) Magnification of luminescence of dye molecules in the presence of silver nanoparticles. Opt J 79:79–82

    Google Scholar 

  18. Martynenko I, Orlova A, Maslov V, Fedorov A, Berwick K, Baranov A (2016) The influence of phthalocyanine aggregation in complexes with CdSe/ZnS quantum dots on the photophysical properties of the complexes. Beilstein J Nanotechnol 7:1018–1027

    Article  Google Scholar 

  19. Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96(11):113002. https://doi.org/10.1103/PhysRevLett.96.113002

    Article  ADS  Google Scholar 

  20. Ritchie G, Burstein E (1981) Luminescence of dye molecules adsorbed at a Ag surface. Phys Rev B 24(8):4843. https://doi.org/10.1103/PhysRevB.24.4843

    Article  ADS  Google Scholar 

  21. Smyntyn VA, Skobeeva VM (2012) Synthesis and optical properties of nanoparticles of silver, technical digest frontiers in optics (FiO) 2012 and laser science (LS) XXVIII meetings, FW3A.15. https://doi.org/10.1364/FIO.2012.FW3A.15

  22. Smyntyna VA, Skobeeva VM, Vorobyov NK, Struz DA, Kogut IS, Sviridova OI (2012) The influence of external factors on the stability of the optical properties of silver nanoparticles. Sens Electron Microsyst Technol 3(9):34–38

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Smyntyna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smyntyna, V., Skobeeva, V. (2018). Heterogeneous Systems with Ag Nanoparticles. In: Bonča, J., Kruchinin, S. (eds) Nanostructured Materials for the Detection of CBRN. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1304-5_22

Download citation

Publish with us

Policies and ethics