Skip to main content

Dielectric Relaxation in Biocomposites Based on Olive Pomace Grains

  • Conference paper
  • First Online:
  • 784 Accesses

Abstract

A polyester polymer matrix filled with olive-pomace grains was investigated using impedance spectroscopy in the frequency range 100 Hz to 1 MHz and temperatures from 300 to 360 K. Two relaxations processes were identified. One could be attributed to the α relaxation associated with the glass transition and observed in the neat matrix, while the second was attributed to the accumulation of charges at the pomace grains/polyester interfaces. The relaxation parameters were evaluated from isothermal dielectric spectra by applying the empirical Havriliak-Negami function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hodzic A, Shanks R (2014) Natural fibre composites, materials, processes, and properties, 1st edn. Woodhead Publishing Series in Composites Science and Engineering, Cambridge

    Google Scholar 

  2. Belgacem MN, Gandini A (2005) Physical, chemical and physico-chemical modification of cellulose fibers. Compos Interfaces 12:41–75

    Google Scholar 

  3. Marcovich NE, Aranguren MI, Reboredo MM (2001) Polym J 42(2):815–825

    Article  Google Scholar 

  4. Nunez AJ, Kenny JM, Reboredo MM (2002) Polym Eng Sci 42:733–742

    Article  Google Scholar 

  5. Marcovich NE, Reboredo MM, Aranguren MI (2005) Compos Interfaces 12:3–24

    Article  Google Scholar 

  6. Belgacem MN, Gandini A (2005) Surface modification of cellulose fibres. Polím Ciência e Tecnol 15:114–121

    Google Scholar 

  7. Mohanty AK, Misra M, Drzal LT (eds) (2005) Natural fibers, biopolymers and biocomposites. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  8. Joseph S, Jacob M, Thomas S (2005) Natural fibers, biopolymers and biocomposites. CRC Press, Taylor & Francis Group, Boca Raton, pp 435–472

    Google Scholar 

  9. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibers. Prog Polym Sci 24:221–274

    Google Scholar 

  10. Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) J Mater Sci 36:2107–2131

    Article  ADS  Google Scholar 

  11. Bledzki AK, Mamun AA, Jaszkiewicz A, Erdmann K (2010) Compos Sci Technol 70(5):854–860

    Article  Google Scholar 

  12. El Hasnaoui M, Triki A, Graça MPF, Achour ME, Costa LC, Arous M (2012) J Non-Cryst Solids 358:2810–2815

    Article  ADS  Google Scholar 

  13. Ben Amor I, Rekik H, Kaddami H, Raihane M, Arous M, Kallel A (2009) Studies of dielectric relaxation in natural fiber- polymer composites. J Electrost 67:717–722

    Google Scholar 

  14. McCrum NG, Read BE, Williams G (1967) Anelastic and dielectric effects. J Appl Polym Sci 13:617

    Google Scholar 

  15. Tsangaris GM, Psarras GC, Kontopoulos AJ (1991) Dielectric permittivity and loss of an aluminum- filled epoxy resin. J Non-Cryst Solids 131–133(2):1164–1168

    Google Scholar 

  16. Chand N, Jain D (2005) Compos Part A Appl Sci Manuf 36:594–602

    Article  Google Scholar 

  17. Tsangaris GM, Psarras GC, Kouloumbi N (1998) J Mater Sci 33:2027–2037

    Article  ADS  Google Scholar 

  18. Moynihan CT (1994) J Non-Cryst Solids 172–174:1395–1407

    Article  ADS  Google Scholar 

  19. Moynihan CT, Boesch LP, Laberge NL (1973) Phys Chem Glasses 14:122–125

    Google Scholar 

  20. Hodge LM, Ingram MD, West AR (1976) J Electroanal Chem 74:125

    Article  Google Scholar 

  21. Mohamed K, Moussi F, Harmon JP (2006) Polym J 47:3856–3865

    Article  Google Scholar 

  22. Ghallabi Z, Rekik H, Boufi S, Arous M, Kallel A (2010) J Non-Cryst Solids 356:684–687

    Article  ADS  Google Scholar 

  23. Arous M, Ben Amor I, Boufi S, Kallel A (2007) J Appl Polym Sci 106:3631–3640

    Article  Google Scholar 

  24. Hammami H, Arous M, Lagche M, Kallel A (2006) Experimental study of relaxations in unidirectional piezoelectric composites. Compos Part A Appl Sci Manuf 37(1):150

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from CNRST-Maroc (Centre National de la Recherche Scientifique et Technique) and the FCT-CNRST bilateral cooperation, and FEDER by funds through the COMPETE 2020 Program and National Funds through FCT – Portuguese Foundation for Science and Technology under the project UID/CTM/50025/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Achour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kreit, L. et al. (2018). Dielectric Relaxation in Biocomposites Based on Olive Pomace Grains. In: Petkov, P., Tsiulyanu, D., Popov, C., Kulisch, W. (eds) Advanced Nanotechnologies for Detection and Defence against CBRN Agents. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1298-7_27

Download citation

Publish with us

Policies and ethics