Skip to main content

Macro- and Secondary Elements and Their Role in Human Health

  • Chapter
  • First Online:

Abstract

Sixteen elements are known to be essential for plants and animals. Based on their concentration in various plant tissues required for adequate growth, nine elements are categorized as macronutrients (>0.1% of dry plant tissue) and the rest as micronutrients. The human body cannot biosynthesize these essential elements and acquire them from food. Except for carbon (C), hydrogen (H) and oxygen (O), which are obtained from air and water, plants take up other essential nutrients from soil. Nutrient input to soil occurs from minerals in the parent material, soil organic matter, fertilization and in some cases (e.g. nitrogen and sulphur) through atmospheric deposition. Soils are most often deficient in nitrogen (N), phosphorus (P) and potassium (K) and, therefore, require their regular input for optimum plant production. In recent times, deficiencies of sulphur (S) are increasing world-wide. The nutrients from soil are taken up in ionic form by the plant and abundance of ionic forms determines the nutrient availability, which besides depending on total quantity of a nutrient is governed by a number of physical, chemical and biological processes and transformations in soil. Nutrient availability and utilization by plant influences human health by providing food and nutritional security in terms of quantity and quality of food consumed to meet dietary requirements and food preferences of people. Essential nutrients play varied roles in the human body ranging from being constituent of structural components (e.g. bones, teeth, cell wall) and biomolecules (amino acids, proteins, enzymes, vitamins, hormones etc.) to performing a variety of physiological functions such as enzyme activation, protein synthesis, energy transfer, transport of sugars, secretion of insulin, creatinine phosphorylation, carbohydrate metabolism, electrical activity of heart, maintenance of acid-base balance etc. Excessive and inadequate nutrient intake and accumulation can disturb key body functions which may lead to severe human health problems. In this chapter, a brief description of sources and transformation of macronutrients in soil as a background to subsequent discussion on their functions in plants and humans and the impact of excessive or inadequate intake on human health are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal R, Afzalpurkar R, Fordtran JS (1994) Pathophysiology of potassium absorption and secretion by the human intestine. Gastroenterology 107:548–571

    Article  CAS  Google Scholar 

  • Aitken RL, Scott BJ (1999) Magnesium. In: Peverill KI, Sparrow LA, Reuter DI (eds) Soil analysis: an interpretation manual. CSIRO Publishing, Collingwood, pp 255–262

    Google Scholar 

  • Arai Y, Sparks DL (2007) Phosphate reaction dynamics in soils and soil components: a multiscale approach. Adv Agron 94:135–179

    Article  CAS  Google Scholar 

  • Augustin S, Mindrup M, Meiwes KJ (1997) Soil chemistry. In: Huttl RF, Schaaf W (eds) Magnesium deficiency in forest ecosystem. Kluwer Academic Publishers, London, pp 255–273

    Chapter  Google Scholar 

  • Ayaz A, Topcu A, Yurttagul M (2007) Survey of nitrate and nitrite level of fresh vegetables in Turkey. J Food Tech 5:177–179

    CAS  Google Scholar 

  • Bailey J, Sands J, Franch H (2014) Water, electrolytes, and acid-base metabolism. In: Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR (eds) Modern nutrition in health and disease. Lippincott Williams & Wilkins, Philadelphia, pp 102–132

    Google Scholar 

  • Baker DH (1986) Utilization of isomers and analogs of amino acids and other sulfur- containing compounds. Prog Food Nutr Sc 10:133–178

    CAS  Google Scholar 

  • Baldock JA, Nelson PN (2000) Soil organic matter. In: Sumner ME (ed) Handbook of soil science. CRC, Boca Raton, pp B-25–B-84

    Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability. A mechanistic approach. Wiley, New York

    Google Scholar 

  • Bateman EJ, Baggs EM (2005) Contribution of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soils 41:379–388

    Article  CAS  Google Scholar 

  • Batjes NH (1997) World soil carbon stocks and global change. In: Squires VR, Glenn EP, Ayoub AT (eds) Proceedings of the workshop combating global climate change by combating land degradation. International Soil Reference and Information Centre (ISRIC), Wageningen, pp 51–78

    Google Scholar 

  • Benbi DK, Richter J (1996) Nitrogen mineralization kinetics in sewage water irrigated and heavy metal treated sandy soils. In: Van Cleemput O, Hofmann G, Vermoesen A (eds) Progress in nitrogen cycling studies. Kluwer Academic Publishers, Dordrecht, pp 17–22

    Chapter  Google Scholar 

  • Benbi DK, Richter J (2003) Nitrogen dynamics. In: Benbi DK, Nieder R (eds) Handbook of processes and modeling in the soil-plant system. Haworth, New York, pp 409–481

    Google Scholar 

  • Bird M, Santruckova H, Lloyd J, Veenendahl E (2001) The soil carbon pool and global change. In: Schulze ED, Heimann M, Harrison S, Holland E, Lloyd J, Prentice I, Schimel D (eds) Global biogeochemical cycles in the climate system. Academic, San Diego

    Google Scholar 

  • Bishop N (1989) Bone disease in preterm infants. Arch Dis Child 64:1403–1409

    Article  CAS  Google Scholar 

  • Black CA (1968) Soil-plant relationships. Wiley, New York

    Google Scholar 

  • Bohn HL, Mc Neal BL, O’Connor GA (1979) Soil chemistry. Wiley

    Google Scholar 

  • Bouwman AF, Beusen AHW, Billen G (2009) Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Global Biogeochem Cycles 23:GB0A04. https://doi.org/10.1029/2009GB003576

    Article  CAS  Google Scholar 

  • Brady NC (1990) The nature and properties of soils. Macmillan Publishers, New York

    Google Scholar 

  • Brady NC, Weil RR (2015) The Nature and properties of soils, 14th edn. Pearson Education Inc., Pearson India Education services Pvt. Ltd, Noida, p 1046

    Google Scholar 

  • Brink JW (1977) World resources of phosphorus. Ciba Found Symp 57:23–48

    Google Scholar 

  • Bruce RC (1999) Calcium. In: Peverill KI, Sparrow LA, Reuter DJ (eds) Soil analysis: an interpretation manual. CSIRO Publishing, Collingwood, pp 247–254

    Google Scholar 

  • Brune M, Rossander L, Hallberg L, Gleerup A, Sandberg AS (1992) Iron absorption from bread in humans: inhibiting effects of cereal fibre, phytate and inositol phosphates with different numbers of phosphate groups. J Nutr 122:442–449

    Article  CAS  Google Scholar 

  • Burel C, Boujard T, Kaushik SJ, Boeuf G, Mol KA, Geyten SV, Darras VM, Kuhn ER, Pradet-Balade B, Querat B, Quinsac A, Krouti M, Ribaillier D (2001) Effects of rapeseed meal-glucosinolates on thyroid metabolism and feed utilization in rainbow trout. Gen Comp Endocrinol 124:343–358

    Article  CAS  Google Scholar 

  • Burns RC, Hardy RWF (1975) Nitrogen fixation in bacteria and higher plants. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Burris RH (1980) The global nitrogen budget – science or séance? In: Newton WE, Orme-Johnson WH (eds) Nitrogen fixation, vol I. University Park Press, Baltimore, pp 7–16

    Google Scholar 

  • Butte NF, Hopkinson JM, Wong WW, Smith EO, Ellis KJ (2000) Body composition during the 1682 first 2 years of life: an updated reference. Pediatr Res 47:578–585

    Article  CAS  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530

    Article  CAS  Google Scholar 

  • Calvo MS, Park YK (1996) Changing phosphorus content of the U.S. diet: potential for adverse effects on bone. J Nutr 126:1168S–1180S

    CAS  Google Scholar 

  • Calvo MS, Uribarri J (2013) Contributions to total phosphorus intake: all sources considered. Semin Dial 26:54–61

    Article  Google Scholar 

  • Calvo MS, Moshfegh AJ, Tucker KL (2014) Assessing the health impact of phosphorus in the food supply: issues and considerations. Adv Nutr 5:104–113

    Article  CAS  Google Scholar 

  • Cartea ME, Velasco P (2008) Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochem Rev 7:213–229

    Article  CAS  Google Scholar 

  • Cathcart JB (1980) World phosphate reserve and resources. In: Khasawneh FE, Sample EC, Kamprat EJ (eds) The role of phosphorus in agriculture. Soil Science Society of America, Madison, pp 1–18

    Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, Defries R, Galloway J, Heimann M, Jones C, Le Quere C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Cicero AF, Borghi C (2013) Evidence of clinically relevant efficacy for dietary supplements and nutraceuticals. Curr Hypertens Rep 15:260–267

    Article  CAS  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fischer JC, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cycles 13:623–645

    Article  CAS  Google Scholar 

  • Cordell D, White S (2011) Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3:2027–2049

    Article  Google Scholar 

  • Cordell D, Jan-Olof D, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292–305

    Article  Google Scholar 

  • Crook MA (2012) Potassium. In: Koster J, Arnold WJH (eds) Clinical biochemistry and metabolic medicine. University of Greenwich, London, pp 86–94

    Google Scholar 

  • Dalal RC (1977) Soil organic phosphorus. In: Brady NC (ed) Advances in agronomy 29:83–117

    Google Scholar 

  • Davidson EA (1994) Climate change and soil microbial processes: secondary effects are hypothesised from better known interacting effects. In: MDA R, Lovelend PJ (eds) Soil responses to climate change, NATO ASI Series, vol 23. Springer, Heidelberg

    Google Scholar 

  • De Pascale S, Maggio A, Pernice R, Fogliano V, Barbieri G (2007) Sulphur fertilization may improve the nutritional value of Brassica rapa L. subsp sylvestris. Eur J Agron 26:418–424

    Article  CAS  Google Scholar 

  • Delwiche CC (1970) The nitrogen cycle. Sci Am 223:136–146

    Article  Google Scholar 

  • Drecht GV, Bouwman AF, Knoop JM, Beusen AHW, Meinardi CR (2003) Global modeling of the fate of nitrogen from point and nonpoint sources in soils, groundwater and surface water. Global Biochem Cycles 17:1115

    Google Scholar 

  • Du ST, Zhang YS, Lin XY (2007) Accumulation of nitrate in vegetables and its possible implications to human health. Agric Sci China 6:1246–1255

    Article  CAS  Google Scholar 

  • EcoSanRes (2003) Closing the loop on phosphorus. Stockholm Environment Institute (SEI) funded by SIDA Stockholm

    Google Scholar 

  • EFMA (European Fertilizer Manufacturers Association) (2000) Phosphorus: essential element for food production. EFMA, Brussels

    Google Scholar 

  • EFSA (European Food Safety Authority) (2006) Tolerable upper intake levels for vitamins and minerals: scientific committee on food and scientific panel on dietetic products, nutrition and allergies. European Food Safety Authority, p 480

    Google Scholar 

  • EFSA (European Food Safety Authority) (2008a) Nitrate in vegetables. Scientific opinion of the panel on contaminants in the food chain. EFSA J 689:1–79

    Google Scholar 

  • EFSA (European Food Safety Authority) (2008b) Glucosinolates as undesirable substances in animal feed: scientific panel on contaminants in the food chain. EFSA J 590:1–76

    Google Scholar 

  • EFSA (European Food Safety Authority) (2015a) Scientific opinion on dietary reference values for phosphorus. EFSA J 13:4185

    Article  CAS  Google Scholar 

  • EFSA (European Food Safety Authority) (2015b) EFSA panel on dietetic products, nutrition and allergies (NDA). Scientific opinion on dietary reference values for magnesium. EFSA J 13:4186

    Article  CAS  Google Scholar 

  • EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies) (2016) Scientific opinion on dietary reference values for potassium. EFSA J 14(10):4592

    Google Scholar 

  • EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergy) (2005) Opinion of the scientific panel on dietetic products, nutrition and allergies on a request from the commission related to the tolerable upper intake level of potassium. EFSA J 193:1–19

    Google Scholar 

  • Elmore JS, Mottram DS, Muttucumaru N, Dodson AT, Parry MAJ, Halford NG (2007) Changes in free amino acids and sugars in potatoes due to sulfate fertilization and the effect on acrylamide formation. J Agric Food Chem 55:5363–5366

    Article  CAS  Google Scholar 

  • Eriksen J (2008) Soil sulphur cycling in temperate agricultural systems. In: Sulfur: a missing link between soils, crops and nutrition. Agron Monograph 50

    Google Scholar 

  • Fahey JW, Zalcman AT, Talalay P (2001) The chemical diversity and distribution of gluocosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  CAS  Google Scholar 

  • Fairhurst T, Lefroy R, Mutert E, Batjes N (1999) The importance, distribution and causes of phosphorus deficiency as a constraint to crop production in the tropics. Agrofor Forum 9:2–8

    Google Scholar 

  • Falkowski P, Scholes RJ, Boyle E, Canadell J, Canadell D, Canfield D (2000) The global C cycle: a test of our knowledge of earth as a system. Science 290:291–296

    Article  CAS  Google Scholar 

  • FAO/WHO (2001) Expert consultation on human vitamin and mineral requirements. Food and Agriculture Organization of the United Nations; World Health Organization; Food and Nutrition Division, FAO, Rome

    Google Scholar 

  • FAO/WHO (Food and Agriculture Organization/World Health Organization) (1973) Energy and protein requirements. Report of a joint FAO/WHO ad hoc Expert committee. FAO nutrition meeting report series no. 52. FAO, Rome

    Google Scholar 

  • FAOSTAT Database (n.d.) Food and Agriculture organization (FAO), Rome

    Google Scholar 

  • Flagg EW, Coates RJ, Eley JW (1994) Dietary glutathione intake in humans and the relationship between intake and plasma total glutathione level. Nutr Cancer 21:33–46

    Article  CAS  Google Scholar 

  • Fomon SJ, Haschke F, Ziegler EE, Nelson SE (1982) Body composition of reference children from 1795 birth to age 10 years. Am J Clin Nutr 35:1169–1175

    CAS  Google Scholar 

  • Fox RL, Kamprath EJ (1970) Phosphorus sorption isotherms for evaluating the phosphate requirements of soils. Soil Sci Soc Am Proc 34:902–907

    Article  CAS  Google Scholar 

  • Fraiture CD (2007) Future water requirements for food-three scenarios, International Water Management Institute (IWMI), SIWI Seminar: water for food, bio-fuels or ecosystems? World water week 2007, August 12th–18th 2007, Stockholm

    Google Scholar 

  • Frossard E, Bucher M, Mächler F, Mozafar A, Hurrell R (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agric 80:861–879

    Article  CAS  Google Scholar 

  • Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31:64–71

    Article  Google Scholar 

  • Galloway JN, Schlesinger WH, Levy H II, Michaels A, Schnoor JL (1995) Nitrogen fixation: atmospheric enhancement- environmental response. Global Biogeochem Cycles 9:235–252

    Article  CAS  Google Scholar 

  • Galloway JN, Cowling EB, Seitzinger SP, Socolow RH (2002) Reactive nitrogen: too much of a good thing? Ambio 31:60–63

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP (2004) Nitrogen cycles: past, present and future. Biogeochemical 70:153–226

    Article  CAS  Google Scholar 

  • Gangolli SD, Van den Brandt PA, Feron VJ, Janzowsky C, Koeman JH, Speijers GJA, Spiegelhalder B, Walker R, Wishnok JS (1994) Assessment of nitrate, nitrite and N-nitroso compounds. Eur J Pharmacol Environ Toxicol Pharmacol 292:1–38

    Article  CAS  Google Scholar 

  • Garrison RH, Somer E (1995) The nutrition desk reference. Keats, New Canaan

    Google Scholar 

  • Gerendás J, Breuning S, Stahl T, Mersch-Sundermann V, Mühling KH (2008) Isothiocyanate concentration in Kohlrabi (Brassica oleracea L., Var. gongylodes) plants as influnenced by sulphur and nitrogen supply. J Agric Food Chem 56:8334–8342

    Article  CAS  Google Scholar 

  • Gilbert N (2009) The disappearing nutrient. Nature 461:716–718

    Article  CAS  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  Google Scholar 

  • Gorenjak AH, Cencič A (2013) Nitrate in vegetables and their impact on human health. Acta Aliment 42:158–172

    Article  CAS  Google Scholar 

  • Graham RD, Welch RM (2000) Plant food micronutrient composition and human nutrition. Commun Soil Sci Plant Anal 31:1627–1640

    Article  CAS  Google Scholar 

  • Griffiths DW, Birch ANE, Hillman JR (1998) Antinutritional compounds in the Brassicaceae. Analysis, biosynthesis, chemistry and dietary effects. J Hort Sci Biotech 73:1–18

    Article  CAS  Google Scholar 

  • Griffiths G, Trueman I, Crowther T, Thomas B, Smith B (2002) Onions-a global benefit to health. Phytother Res 16:603–615

    Article  CAS  Google Scholar 

  • Gumz ML, Rabinowitz L, Wingo CS (2015) An integrated view of potassium homeostasis. N Engl J Med 373:1787–1788

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliott GN, Bontemps C, Estrada-de Los Santos P, Gross E, Dos Reis FB, Sprent JI, Young JP, James EK (2011) Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant-Microbe Interact 24:1276–1288

    Article  CAS  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  Google Scholar 

  • Herridge DF, Bergersen FJ (1988) Symbiotic nitrogen fixation. In: Wilson JR (ed) Advances in nitrogen cycling. CAB International, Wallingford, pp 46–65

    Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Hofstra N, Bouwman AF (2005) Denitrification in agricultural soils: summarizing published data and estimating global annual rates. Nutr Cycl Agroecosys 72:267–278

    Article  Google Scholar 

  • Hord NG, Tang Y, Bryan NS (2009) Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr 90:1–10

    Article  CAS  Google Scholar 

  • IFA (International Fertilizer Association) (n.d.) Statistics. Available online http://www.fertilizer.org/Statistics?

  • IOM (Institute of Medicine) (1997) Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Prepared by the standing committee on the scientific evaluation of dietary reference intakes, food and nutrition board. Institute of Medicine. National Academy Press, Washington, DC, p 454

    Google Scholar 

  • IOM (Institute of Medicine) (2005) Dietary reference intakes for water, potassium, sodium, chloride, and sulfate. National Academies Press, Washington, DC, p 617

    Google Scholar 

  • Jackson AA (1983) Amino acids: essential and non-essential. Lancet:1034–1037

    Google Scholar 

  • Jansson SL, Persson J (1982) Mineralization and immobilization of soil nitrogen. In: Stevenson FJ (ed) Nitrogen in agricultural soils. American Society of Agronomy, Madison, pp 229–252

    Google Scholar 

  • Joffres MR, Reed DM, Yano K (1987) Relation of magnesium intake and other dietary factors to blood pressure: the Honolulu Heart Study. Am J Clin Nutr 45:469–475

    Article  CAS  Google Scholar 

  • Justine JK, Smith RL (1962) Nitrification of ammonium sulphate in a calcareous soil as influenced by combination of moisture, temperature and levels of added N. Soil Sci Soc Am Proc 26:246–250

    Article  Google Scholar 

  • Kennedy IR (1992) Acid soil and acid rain. Wiley, New York

    Google Scholar 

  • Keyzer MA, Merbis M, Pavel I, Van Wesenbeeck C (2005) Diet shifts towards meat and the effects on cereal use: can we feed the animals in 2030? Ecol Econ 55:187–202

    Article  Google Scholar 

  • Khan NA, McAlister FA, Lewanczuk RZ, Touyz RM, Padwal R, Rabkin SW, Leiter LA, Lebel M, Herbert C, Schiffrin EL, Herman RJ, Hamet P, Fodor G, Carruthers G, Culleton B, DeChamplain J, Pylypchuk G, Logan AG, Gledhill N, Petrella R, Campbell NR, Arnold M, Moe G, Hill MD, Jones C, Larochelle P, Ogilvie RI, Tobe S, Houlden R, Burgess E, Feldman RD, Canadian Hypertension Education Program (2005) The 2005 Canadian Hypertension Education Program recommendations for the management of hypertension: part II – therapy. Can J Cardiol 21(8):657–672

    Google Scholar 

  • Kirkman JH, Basker A, Surapaneni A, MacGregor AN (1994) Potassium in the soils of New Zealand-a review. New Zeal J Agric Res 37:207–227

    Article  CAS  Google Scholar 

  • Kliebenstein DJ, Kroymann J, Mitchell-Olds T (2005) The glucosinolate-myrosinase system in an ecological and evolutionary context. Curr Opin Plant Biol 8:264–271

    Article  CAS  Google Scholar 

  • Krijthe BP, Heeringa J, Kors JA, Hofman A, Franco OH, Witteman JC, Stricker BH (2013) Serum potassium levels and the risk of atrial fibrillation: the Rotterdam Study. Int J Cardiol 168:5411–5415

    Article  Google Scholar 

  • Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Van Aardenne J, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, van Vuuren DP (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10:7017–7039

    Article  CAS  Google Scholar 

  • LaRue TA, Patterson TG (1981) How much nitrogen do legumes fix? Adv Agron 34:15–38

    Article  CAS  Google Scholar 

  • Laurant P, Touyz RM (2000) Physiological and pathophysiological role of magnesium in the cardiovascular system: implications in hypertension. J Hypertens 18(9):1177–1191

    Article  CAS  Google Scholar 

  • Lawton K (1955) Chemical composition of soils. In: Bear FE (ed) Chemistry of the soil. Reinhold Publishing, New York, pp 53–84

    Google Scholar 

  • Lehnhardt A, Kemper MJ (2011) Pathogenesis, diagnosis and management of hyperkalemia. Pediatr Nephrol 26:377–384

    Article  Google Scholar 

  • Lei S, Liu S (1989) Phytic acid intake and its effect on the bioavailability of zinc in preschool children. Acta Nutr Sin 11:211

    Google Scholar 

  • Lindh U (2005) Biological functions of the elements. In: Selinus O (ed) Essentials of medical geology: impacts of the natural environment on public health. Elsevier Academic Press, Burlington, pp 115–160

    Google Scholar 

  • Losak T, Hlusek J, Kra S, Varga L (2008) The effect of nitrogen and sulphur fertilization on yield and quality of kohlrabi (Brassica oleracea). R Bras Ci Solo 32:697–703

    Article  CAS  Google Scholar 

  • Lott JNA, Ockenden I, Raboy V, Batten GD (2000) Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Sci Res 10:11–33

    CAS  Google Scholar 

  • Lotz M, Zisman E, Bartter FC (1968) Evidence for a phosphorus-depletion syndrome in man. N Engl J Med 278:409–415

    Article  CAS  Google Scholar 

  • Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7:156–167

    Article  CAS  Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    Article  CAS  Google Scholar 

  • Mackenzie FT, Ver LM, Lerman A (1998) Coupled biogeochemical cycles of carbon, nitrogen, phosphorus, and sulfur in the land-ocean-atmosphere system. In: Galloway JN, Melillo JM (eds) Asian change in the context of global change. Cambridge University Press, New York, pp 42–100

    Google Scholar 

  • Mackenzie IJ, Ver LM, Lennan A (2002) Century scale nitrogen and phosphorus controls of the C cycle. Chem Geol 190:13–32

    Article  CAS  Google Scholar 

  • Maga JA (1982) Phytate: its chemistry, occurrence, food interactions, nutritional significance and methods of analysis. J Agric Food Chem 30:1

    Article  CAS  Google Scholar 

  • Marieb EN (1998) Human anatomy and physiology. Benjamin/Cummings, Menlo Park

    Google Scholar 

  • Marier JR, Neri LC (1985) Quantifying the role of magnesium in the interrelationship between human mortality. Magnesium 4:53–59

    CAS  Google Scholar 

  • Mawson R, Heaney RK, Zdunczyk Z, Kozlowska H (1994) Rapeseed mealglucosinolates and their antinutritional effects Part 3. Anim Growth Perform Nahrung 38:167–177

    CAS  Google Scholar 

  • McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, sulphur and P through soil organic matter. Geoderma 26:267–286

    Article  CAS  Google Scholar 

  • McKnight GM, Duncan CW, Leifert C, Golden MH (1999) Dietary nitrate in man: friend or foe? Br J Nutr 81:349–358

    Article  CAS  Google Scholar 

  • McNaught KJ, Dorofaeff FD (1965) Magnesium deficiency in pastures. New Zeal J Agric Res 8:555–572

    Article  CAS  Google Scholar 

  • Michel A, Martin-Perez M, Ruigomez A, Garcia Rodriguez LA (2015) Risk factors for hyperkalaemia in a cohort of patients with newly diagnosed heart failure: a nested case-control study in UK general practice. Eur J Heart Fail 17:205–213

    Article  CAS  Google Scholar 

  • Millward DJ (1999) Optimal intakes of protein in the human diet. Proc Nutr Soc 58:403–413

    Article  CAS  Google Scholar 

  • Mithen R (2001) Glucosinolates and their degradation products. Adv Bot Res 35:213–262

    Article  CAS  Google Scholar 

  • Mithen R, Faulkner K, Magrath R, Rose P, Williamson G, Marquez J (2003) Development of isothiocyanate-enriched broccoli and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells. Theor Appl Genet 106:727–734

    Article  CAS  Google Scholar 

  • Moe SM (2008) Disorders involving calcium, phosphorus, and magnesium. Prim Care 35:215–237

    Article  Google Scholar 

  • Mortvedt JJ, Sikora FJ (1992) Heavy metal, radionuclides, and fluorides in phosphorus fertilizers. In: Sikora FJ (ed) Future directions for agricultural phosphorus research. TVA Bulletin Y-224. Muscle Shoals, pp 69–73

    Google Scholar 

  • Mosier AR, Syers JK, Freney JR (2004) Nitrogen fertilizer: An essential component of increased fodder, feed and fiber production. In: Mosier AR, Syers JK, Freney JR (eds) Agriculture and the nitrogen cycle: assessing the impacts of fertiliser use on food production and the environment, vol 65. SCOPE, Paris, pp 3–15

    Google Scholar 

  • Mozolewski W, Smoczynski S (2004) Effect of culinary processes on the content of nitrates and nitrites in potatoes. Pak J Nutr 3:357–361

    Article  Google Scholar 

  • Muttucumaru N, Halford NG, Elmore JS, Dodson AT, Parry MAJ, Shewry PR, Mottram DS (2006) The formation of high levels of acrylamide during the processing of flour derived from sulfate-deprived wheat. J Agric Food Chem 54:8951–8955

    Article  CAS  Google Scholar 

  • Muttucumaru N, Powers SJ, Elmore JS, Mottram DS (2013) Effects of nitrogen and sulphur fertilization on free amino acids, sugars and acrylamide-forming potential in potato. J Agric Food Chem 61:6734–6742

    Article  CAS  Google Scholar 

  • Naismith DJ, Braschi A (2003) The effect of low-dose potassium supplementation on blood pressure in apparently healthy volunteers. Br J Nutr 90:53–60

    Article  CAS  Google Scholar 

  • Nayyar VK, Chhibba IM (2000) Nutritional disorders in field crops – visual symptoms and remedial measures. Department of Soils, Punjab Agricultural University, Ludhiana

    Google Scholar 

  • Nieder R, Benbi DK (2008) Carbon and nitrogen in the terrestrial environment. Springer, Heidelberg/New York, p 432

    Book  Google Scholar 

  • Nieder R, Benbi DK, Scherer W (2011) Fixation and defixation of ammonium in soils: a review. Biol Fertil Soils 47:1–14

    Article  CAS  Google Scholar 

  • Nordin BEC (1976) Nutritional considerations. In: Nordin BEC (ed) Calcium, phosphate and magnesium metabolism. Churchill Livingstone, Edinburgh, pp 1–35

    Google Scholar 

  • NRC (National Research Council) (1989) Recommended daily allowances. National Research Council, Washington, DC

    Google Scholar 

  • Ong CN, Grandjean AC, Heaney RP (2009) The mineral composition of water and its contribution to calcium and magnesium intake. In: Calcium and magnesium in drinking-water: public health significance. World Health Organization, Geneva, pp 37–58

    Google Scholar 

  • Paice B, Gray JM, McBride D, Donnelly T, Lawson DH (1983) Hyperkalaemia in patients in hospital. BMJ (Clin Res ed) 286:1189–1192

    Article  CAS  Google Scholar 

  • Parcell SW (2002) Sulfur in human nutrition and applications in medicine. Altern Med Rev 7:22–44

    Google Scholar 

  • Pennington JAT (1998) Dietary exposure models for nitrates and nitrites. Food Control 9:385–395

    Article  Google Scholar 

  • Peoples MB, Boyer EW, Goulding KWT, Heffer P, Ochwoh VA, Vanlauwe B, Wood S, Yagi K, Cleemput OV (2004) Pathways of nitrogen loss and their impacts on human health and the environment. In: Mosier AR, Syers JK, Freney JR (eds) Agriculture and the nitrogen cycle: assessing the impacts of fertiliser use on food production and the environment, SCOPE 65. Permaculture, Paris, pp 53–69

    Google Scholar 

  • Pepin J, Shields C (2012) Advances in diagnosis and management of hypokalemic and hyperkalemic emergencies. Emerg Med Pract 14:1–17

    Google Scholar 

  • Perazella M, Mahnensmith R (1997) Hyperkalemia in the elderly. J Gen Intern Med 12:646–656

    Article  CAS  Google Scholar 

  • Phetchawee S, Kanareugsa C, Sittibusaya C, Khunathai H (1985) Potassium availability in the soils of Thailand. In: Proceedings of the 19th colloquium of the International Potash Institute. International Potash Institute, Worblaufen, pp 167–196

    Google Scholar 

  • Pierzynski GM, Loan TJ (1993) Crop, soil, and management effects of phosphorus test levels. J Prod Agric 6:513–520

    Article  Google Scholar 

  • Prentice A, Bates CJ (1994) Adequacy of dietary mineral supply for human bone growth and mineralisation. Eur J Clin Nutr 48(Suppl 1):S161–S176

    Google Scholar 

  • Ralt D (2009) Does NO metabolism play a role in the effects of vegetables in health? Nitric oxide formation via the reduction of nitrites and nitrates. Med Hypotheses 73:794–796

    Article  CAS  Google Scholar 

  • Rand WM, Pellett PL, Young VR (2003) Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am J Clin Nutr 77:109–127

    CAS  Google Scholar 

  • Rask L, Andreasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113

    Article  CAS  Google Scholar 

  • Rastegar A (1990) Serum potassium. In: Walker HK, Hall WD, Hurst JW (eds) Clinical methods: the history, physical, and laboratory examinations. Butterworths, Boston, pp 884–887

    Google Scholar 

  • Reddy NR, Sathe SK, Salunkhe DK (1982) Phytates in legumes and cereals. Adv Food Res 28:1

    Article  CAS  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512

    Article  Google Scholar 

  • Reinhold JG, Nasr K, Lanhimagarzedeh A, Hedayati H (1973) Effect of purified phytate and phytate-rich breads upon metabolism of zinc, calcium, phosphorus, and nitrogen in man. Lancet 1:283

    Article  CAS  Google Scholar 

  • Richmond VL (1986) Incorporation of methylsulfonylmethane sulfur into guinea pig serum proteins. Life Sci 39:263–268

    Article  CAS  Google Scholar 

  • Rodenburg EM, Visser LE, Hoorn EJ, Ruiter R, Lous JJ, Hofman A, Uitterlinden AG, Stricker BH (2014) Thiazides and the risk of hypokalemia in the general population. J Hypertens 32:2092–2097

    Article  CAS  Google Scholar 

  • Rosenlund M, Berglind N, Hallqvist J, Bellander T, Bluhm G (2005) Daily intake of magnesium and calcium from drinking water in relation to myocardial infarction. Epidemiology 16(4):570–576

    Article  Google Scholar 

  • Runge-Metzger A (1995) Closing the cycle: obstacles to efficient P management for improved global food security. SCOPE 54-phosphorus in the global environment-transfers, cycles and management

    Google Scholar 

  • Russell EW (1973) Soil conditions and plant growth. Longman, London

    Google Scholar 

  • Samotus B, Schwimmer S (1962) Phytic acid as a phosphorus reservoir in the developing potato tuber. Nature 194:578–579

    Article  CAS  Google Scholar 

  • Sanchez PA (1976) Properties and management of soils in the tropics. Wiley Interscience Publishers, New York

    Google Scholar 

  • Santamaria P (2006) Nitrate in vegetables: toxicity, content, intake and EC regulation. J Sci Food Agric 86:10–17

    Article  CAS  Google Scholar 

  • Schlesinger HW (1997) Biogeochemistry, an analysis of global change, 2nd edn. Academic, San Diego

    Google Scholar 

  • Schulten HR, Schnitzer M (1998) The chemistry of soil organic nitrogen: a review. Biol Fertil Soils 26:1–15

    Article  CAS  Google Scholar 

  • Schümann K, Classen HG, Hages M, Prinz-Langenohl R, Pietrzik K, Biesalski HK (1997) Bioavailability of oral vitamins, minerals, and trace elements in perspective. Arzneim-Forsch/Drug Res 47:369–380

    Google Scholar 

  • Seelig MS (1980) Magnesium deficiency in the pathogenesis of disease. Plenum Med Book Comp, New York

    Book  Google Scholar 

  • Seelig MS (1989) Cardiovascular consequences of magnesium deficiency and loss: pathogenesis, prevalence and manifestations – magnesium and chloride loss in refractory potassium repletion. Am J Cardiol 63:46–216

    Article  Google Scholar 

  • Sharma RD (1986) Phytate and the epidemiology of heart disease, renal calculi and colon cancer. In: Graf E (ed) Phytic acid chemistry and applications. Pilatus Press, Minneapolis, p 161

    Google Scholar 

  • Simons-Morton DG, Hunsberger SA, Van Horn L, Barton BA, Robson AM, McMahon RP, Muhonen LE, Kwiterovich PO, Lasser NL, Kimm SYS, Greenlick MR (1997) Nutrient intake and blood pressure in the Dietary Intervention Study in children. Hypertension 29:930–936

    Article  CAS  Google Scholar 

  • Singh RB, Singh NK, Niaz MA, Sharma JP (1996) Effect of treatment with magnesium and potassium on mortality and reinfarction rate of patients with suspected acute myocardial infarction. Int J Clin Pharmacol Ther 34:219–225

    CAS  Google Scholar 

  • Skiba U, Ball B (2002) The effect of soil texture and soil drainage on emissions of nitric oxide and nitrous oxide. Soil Use Manag 18:56–60

    Article  Google Scholar 

  • Smil V (1999) Crop residues: agriculture’s largest harvest. Bioscience 49:299–308

    Article  Google Scholar 

  • Smil V (2000a) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25:53–88

    Article  Google Scholar 

  • Smil V (2000b) Feeding the world: a challenge for the 21st century. The MIT Press, Cambridge, MA

    Google Scholar 

  • Smil V (2001) Enriching the earth. The MIT Press, Cambridge, p 338

    Google Scholar 

  • Smil V (2002a) Phosphorus: global transfers. In: Douglas PI (ed) Encyclopedia of global environmental change. Wiley, Chichester

    Google Scholar 

  • Smil V (2002b) Nitrogen and food production: proteins and human diet. Ambio 31:126–131

    Article  Google Scholar 

  • Søderlund R, Rosswall T (1982) The nitrogen cycle. In: Hutzinger O (ed) The handbook of environmental chemistry, The natural environment and the biogeochemical cycles, vol 1B. Springer Verlag, Heidelberg, pp 60–81

    Google Scholar 

  • Sprent JI (1999) The biology of nitrogen transformations. Soil Use Manag 6:74–77

    Article  Google Scholar 

  • Steen I (1998) Phosphorus availability in the 21st century: management of a non renewable resource. Phosphor Potassium 217:25–31

    Google Scholar 

  • Stergiou GS, Salgami EV (2004) World Health Organization-International Society of Hypertension (WHO-ISH), USA Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC-7) and European Society of Hypertension-European Society of Cardiology (ESH-ESC) New European, American and international guidelines for hypertension management: agreement and disagreement. Expert Rev Cardiovasc Ther 2(3):359–368

    Article  CAS  Google Scholar 

  • Storch KJ, Wagner DA, Burke JF, Young VR (1988) Quantitative study in vivo of methionine cycle in humans using [methyl-2H3]- and [1-13C]methionine. Am J Phys 255:E322–E331

    CAS  Google Scholar 

  • Syers JK, Skinner RJ, Curtin D (1987) Soil and fertilizer sulphur in UK agriculture. Proc Fertil Soc Lond 264:43

    Google Scholar 

  • Thomson BM, Nokes CJ, Cressey PJ (2007) Intake and risk assessment of nitrate and nitrite from New Zealand foods and drinking water. Food Addit Contam 24:113–121

    Article  CAS  Google Scholar 

  • Tilman GD, Cassman KG, Matson PA, Naylor RL, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  Google Scholar 

  • Toth SJ (1955) Colloid chemistry of soils. In: Bear FE (ed) Chemistry of the soil. Reinhold Publishing, New York, pp 85–106

    Google Scholar 

  • Touyz RM, Yao G (2003) Modulation of vascular smooth muscle cell growth by magnesium -role of mitogen-activated protein kinases. J Cell Physiol 197(3):326–335

    Article  CAS  Google Scholar 

  • TSI (The Sulphur Institute) (n.d.) Atmospheric sulphur – the agronomic aspects. TSI Bull. No. 23

    Google Scholar 

  • UKEVM (United Kingdom Food Standards Agency, Expert Group on Vitamins and Minerals) (2003) Risk assessments: potassium. In: Safe upper levels for vitamins and minerals. London, p 299

    Google Scholar 

  • Van Leer EM, Seidell JC, Kromhout D (1995) Dietary calcium, potassium, magnesium and blood pressure in the Netherlands. Int J Epidemiol 24:1117–1123

    Article  Google Scholar 

  • Vitousek PM, Menge DNL, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc B: Biol Sci 368(1621):20130119

    Article  CAS  Google Scholar 

  • Wacker WEC (1980) Magnesium and man. Harvard University Press, Cambridge, UK

    Book  Google Scholar 

  • Walker KC, Booth EJ (1992) Sulphur research on oilseed rape in Scotland. Sulphur Agric 16:15–19

    Google Scholar 

  • Wardlaw GM, Insel PM (1996) Perspectives in nutrition. Mosby, St. Louis

    Google Scholar 

  • Weaver CM, Nieves JW (2009) Calcium and magnesium: role of drinking-water in relation to bone metabolism. In: Calcium and magnesium in drinking-water: public health significance. World Health Organization, Geneva, pp 96–109

    Google Scholar 

  • Webster PO (1987) Magnesium. Am J Clin Nutr 45:1305–1312

    Article  Google Scholar 

  • Whelton PK, Klag MJ (1989) Magnesium and blood pressure: review of the epidemiologic and clinical trial experience. Am J Cardiol 63:26G–30G

    Article  CAS  Google Scholar 

  • Whelton PK, He J, Cutler JA, Brancati FL, Appel LJ, Follmann D, Klag MJ (1997) Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. J Am Med Assoc 277:1624–1632

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (2007) Protein and amino acid requirements in human nutrition: report of a joint FAO/WHO/UNU expert consultation. WHO technical report series No. 935, p 265

    Google Scholar 

  • WHO (World Health Organization) (2009a) Potassium in drinking-water: background document for development of WHO. Guidelines for drinking-water quality. WHO, Geneva, p 12

    Google Scholar 

  • WHO (World Health Organization) (2009b) Calcium and magnesium in drinking-water: public health significance. WHO, Geneva, p 194

    Google Scholar 

  • WHO (World Health Organization) (2012) Guidelines: potassium intake for adults and children. WHO, Geneva

    Google Scholar 

  • Widdowson EM, Spray CM (1951) Chemical development in utero. Arch Dis Child 26:205–214

    Article  CAS  Google Scholar 

  • Wildman REC, Medeiros DM (2000) Protein. In: Advanced human nutrition. CRC Press, New York, pp 123–150

    Google Scholar 

  • Wu J, O’Donnell GO, Syers JK (1995) Influence of glucose, nitrogen and plant residues on the immobilisation of sulphate S in soil. Soil Biol Biochem 25:1567–1573

    Article  Google Scholar 

  • Yan X, Akimoto H, Ohara T (2003) Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia. Glob Chang Biol 9:1080–1096

    Article  Google Scholar 

  • Ying L, Hofseth LJ (2007) An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer. Cancer Res 67:1407–1410

    Article  CAS  Google Scholar 

  • Zhou JR, Erdman JW Jr (1995) Phytic acid in health and disease. Crit Rev Food Sci Nutr 35:495–508

    Article  CAS  Google Scholar 

  • Zinke PJ, Stangenberger AG, Post WM, Emmanuel WR, Olson JS (1984) Worldwide organic soil carbon and nitrogen data. Oak Ridge National Laboratory, Oak Ridge. ORNL/TM-8857

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nieder, R., Benbi, D.K., Reichl, F.X. (2018). Macro- and Secondary Elements and Their Role in Human Health. In: Soil Components and Human Health. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1222-2_6

Download citation

Publish with us

Policies and ethics