Skip to main content

Reactive Water-Soluble Forms of Nitrogen and Phosphorus and Their Impacts on Environment and Human Health

  • Chapter
  • First Online:
Soil Components and Human Health

Abstract

Water is a basic necessity of life and access to clean water is vital for sanitation, hygiene, agriculture, and industry. Yet the world faces threats of scarcity of clean drinking water and the pollution of the water resources. Groundwater is an important source of drinking-water in many regions of the world, particularly in areas with limited or polluted surface water sources. It could be contaminated with chemicals that may affect human health. Nitrate is the most common chemical contaminant in the world’s groundwater aquifers, and surface water are particularly affected by the presence of phosphorus. Occurrence of reactive N and P species in water can have serious environmental and human health impacts. Nitrate by itself is usually non-toxic. Its adverse effects on human health are due to conversion of nitrate into nitrite, nitric oxide and N-nitroso compounds. In the human body, NO3 is converted to NO2 , which can cause methaemoglobinemia by interfering with the ability of haemoglobin to take up O2. Infants younger than 3 months of age are particularly prone to adverse effects of nitrate exposure. Opinions differ on the effects of high dietary intake of nitrate on human health and the evidence linking high nitrate level in drinking water with methaemoglobinemia is still controversial. High nitrate level in drinking water has also been implicated, but not incontrovertibly, in the incidence of cancers of the digestive track. Besides the possible adverse human health effects associated with high nitrate intake, evidence is emerging of its potential benefits in cardiovascular health and providing protection against infections. Enrichment of surface waters with nitrogen and phosphorus contributes to the phenomenon of eutrophication leading to harmful algal blooms, which can impact several ecosystem services. Therefore, it is important to protect the quality of groundwater and surface water by proper management of sources of pollutants and reducing input of nitrogen and phosphorus in agricultural systems. In this chapter, we provide information on sources of reactive nitrogen and phosphorus species in water, their effects on ecosystems and human health as well as mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addiscott TM (2005) Nitrate, agriculture, and environment. CABI Publishers, Wallingford

    Google Scholar 

  • Addiscott TM, Cox D (1976) Winter leaching of nitrate from autumn-applied calcium nitrate, ammonium sulphate, urea and sulphur-coated urea in bare soil. J Agric Sci (Camb) 87:381–389

    Article  Google Scholar 

  • Anderson DM, Burkholder JM, Cochlan WP, Glibert PM, Gobler CJ, Heil CA, Kudela R, Parsons ML, Jack Rensel JE, Townsend DW, Trainer VL, Vargo GA (2008) Harmful algae blooms and eutrophication: examining linkages from selected coastal regions of the United States. Harmful Algae 8:39–53

    Article  CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (2004) Interaction profile for cyanide, fluoride, nitrate, and uranium. US Department of Health and Human Services, Atlanta

    Google Scholar 

  • Avery AA (1999) Infantile methemoglobinemia: reexamining the role of drinking water nitrates. Child Health 107:583–586

    CAS  Google Scholar 

  • Bartholomew B, Hill MJ (1984) The pharmacology of dietary nitrate and the origin of urinary nitrate. Food Chem Toxicol 22:789–795

    Article  CAS  Google Scholar 

  • Beaulac MN, Reckhow KH (1982) An examination of land use-nutrient export relationships. Water Resour Bull 18:1013–1022

    Article  CAS  Google Scholar 

  • Benbi DK (1990) Efficiency of nitrogen use by dryland wheat in a subhumid region in relation to optimizing the amount of available water. J Agric Sci (Camb) 115:7–10

    Article  CAS  Google Scholar 

  • Benbi DK, Biswas CR, Kalkat JS (1991) Nitrate distribution and accumulation in an Ustochrept soil profile in a long-term fertilizer experiment. Fertil Res 28:173–178

    Article  CAS  Google Scholar 

  • Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51:227–234

    Article  Google Scholar 

  • Berens PD, Bryan NS (2011) Nitrite and nitrate in human breast milk: implications for development. In: Bryan NS, Loscalzo J (eds) Nitrite and nitrate in human health and disease. Humana Press, New York, pp 139–153

    Chapter  Google Scholar 

  • Billen G, Garnier J, Lassaletta L (2013) The nitrogen cascade from agricultural soils to the sea: modelling N transfers at regional watershed and global scales. Philos Trans R Soc B 368:20130123. https://doi.org/10.1098/rstb.2013.0123

    Article  CAS  Google Scholar 

  • Bouwman AF, Beusen AHW, Billen G (2009) Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob Biogeochem Cycles 23:GB0A04

    Article  CAS  Google Scholar 

  • Bouwman L, Goldewijk KK, van der Hoek KW, Beusen AHW, van Vuuren DP, Willems J, Rufino MC, Stehfest E (2011) Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc Natl Acad Sci US 109:6348–6353

    Google Scholar 

  • Burkholder JM (1998) Implications of harmful microalgae and heterotrophic dinoflagellates in management of sustainable marine fisheries. Ecol Appl 8:S37–S62

    Article  Google Scholar 

  • Camargo JA, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849

    Article  CAS  Google Scholar 

  • Carlstrӧm M, Persson AE, Larsson E, Hezel M, Scheffer PG, Teerlink T, Weitzberg E, Lundberg JO (2011) Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension. Cardiovasc Res 89:574–585

    Article  CAS  Google Scholar 

  • Carmichael WW (2001) Health effects of toxin-producing cyanobacteria: “The CyanoHABs”. Hum Ecol Risk Assess 7:1393–1407

    Article  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–569

    Article  Google Scholar 

  • Chorus I, Bartram J (eds) (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. World Health Organization, Geneva

    Google Scholar 

  • Cole DW, Rapp M (1981) Elemental cycling in forest ecosystems. In: Reichle DE (ed) Dynamic properties of forest ecosystems. Cambridge University Press, New York, pp 341–403

    Google Scholar 

  • Colwell R, Huq A (2001) Marine ecosystems and cholera. Hydrobiologia 460:141–145

    Article  Google Scholar 

  • Comly HH (1945) Cyanosis in infants caused by nitrates in well water. J Am Med Assoc 129:112–116

    Article  CAS  Google Scholar 

  • Committee on Environment and Natural Resources (2010) Scientific assessment of hypoxia in U.S. coastal waters. Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health of the Joint Subcommittee on Ocean Science and Technology, Washington, DC

    Google Scholar 

  • Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos G, Xu X, Huang KT, Shields H, Kim-Shapiro DB, Schechter AN, Cannon RO III, Gladwin MT (2003) Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9:1498–1505

    Article  CAS  Google Scholar 

  • Cottingham KL, Chiavelli DA, Taylor RA (2003) Environmental microbe and human pathogen: the ecology and microbiology of Vibrio cholerae. Front Ecol Environ 2:80–86

    Article  Google Scholar 

  • Dabney BJ, Zelarney PT, Hall AH (1990) Evaluation and treatment of patients exposed to systemic asphyxiants. Emerg Care Q 6:65–80

    Article  Google Scholar 

  • Di HJ, Cameron KC (2002) Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutr Cycl Agroecosyst 46:237–256

    Article  Google Scholar 

  • Duan S, Zhang S, Huang H (2000) Transport of dissolved inorganic nitrogen from the major rivers to estuaries in China. Nutr Cycl Agroecosyst 57:13–22

    Article  CAS  Google Scholar 

  • Duncan C, Dougall H, Johnston P, Greens S, Brogan R, Leifert C, Smith L, Golden M, Benjamin N (1995) Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of the dietary nitrate. Nat Med 1:546–551

    Article  CAS  Google Scholar 

  • Dusdieker LB, Dungy CI (1996) Nitrates and babies: a dangerous combination. Contemp Pediatr 13:91–102

    Google Scholar 

  • EC (1995) European Parliament and Council Directive No. 95/2/EC of 20 February 1995 on food additives other than colours and sweeteners. Official J Eur Commun L61:1–53

    Google Scholar 

  • EFSA (European Food Safety Authority) (2008) Nitrate in vegetables. Scientific opinion of the panel on contaminants in the food chain. EFSA J 689:1–79

    Google Scholar 

  • EFSA (European Food Safety Authority) (2010) EFSA panel on contaminants in the food chain (CONTAM); scientific opinion on possible health risks for infants and young children from the presence of nitrates in leafy vegetables. EFSA J 8(12):42

    Google Scholar 

  • Eisenbrand G, Schmähl D, Preussmann R (1980) Carcinogenicity of N-nitroso-3-hydroxypyrrolidine and dose-response study with N-nitrosopiperidine in rats. IARC Sci Publ 31:657–666

    CAS  Google Scholar 

  • Ellen G, Schuller PL (1983) Nitrate, origin of continuous anxiety. In: Preusmann R (ed) Das nitrosamin problem. Deutsche Forschungsgemeinschaft, Verlag Chemie GmbH, Weinheim, pp 97–134

    Google Scholar 

  • FAO (Food and Agriculture Organisation) (1996) Control of water pollution from agriculture – FAO irrigation and drainage paper 55. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO/WHO (Food and Agriculture Organisation of the United Nations/World Health Organization) (2003a) Nitrate (and potential endogenous formation of N-nitroso compounds), WHO Food Additive series 50. World Health Organisation, Geneva

    Google Scholar 

  • FAO/WHO (Food and Agriculture Organisation of the United Nations/World Health Organization) (2003b) Nitrite (and potential endogenous formation of N-nitroso compounds), WHO Food Additive series 50. World Health Organisation, Geneva

    Google Scholar 

  • Fewtrell L (2004) Drinking-water nitrate, methemoglobinemia, and global burden of disease: a discussion. Environ Health Perspect 112:1371–1374

    Article  Google Scholar 

  • Forman D, Al-Dabbagh S, Doll R (1985a) Nitrates, nitrites and gastric cancer in Great Britain. Nature 313:620–625

    Article  CAS  Google Scholar 

  • Forman D, Al-Dabbagh S, Doll R (1985b) Nitrate and gastric cancer risks. Nature 317:675–676

    Article  Google Scholar 

  • Galloway JN (2000) Nitrogen mobilization in Asia. Nutr Cycl Agroecosyst 57:1–12

    Article  Google Scholar 

  • Galloway JN, Ojima DS, Melillo JM (1998) Asian change in the context of global change: an overview. In: Galloway J, Melillo J (eds) Asian change in the context of global climate change: impact of natural and anthropogenic changes in Asia on global biogeochemistry. Cambridge University Press, Cambridge, pp 1–18

    Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asier GP, Cleveland C, Green P, Holland E, Karl DM, Michaels AF, Porter JH, Townsend A, Vorosmary C (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Gangolli SD, van den Brandt P, Feron V, Janzowsky C, Koeman J, Speijers G, Speigelhalder B, Walker R, Winshnok J (1994) Assessment of nitrate, nitrite, and N-nitroso compounds. Eur J Pharmacol Environ Toxicol Pharmacol 292:1–38

    Article  CAS  Google Scholar 

  • Gilliom RJ, Alley WM, Gurtz ME (1995) Design of the national water quality assessment program: occurrence and distribution of water quality condition. US Geol Sur Circ 1112:33

    Google Scholar 

  • Gladwin MT, Schechter AN, Kim-Shapiro DB, Patel RP, Hogg N, Shiva S, Cannon RO III, Kelm M, Wink DA, Espey MG, Oldfield EH, Pluta RM, Freeman BA, Lancaster JR Jr, Feelisch M, Lundberg J (2005) Nat Chem Biol 1:308–314

    Article  CAS  Google Scholar 

  • Graves DV (2012) The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 45(26):42

    Article  CAS  Google Scholar 

  • Green CT, Puckett LJ, Böhlke JK, Bekins BA, Phillips SP, Kauffman LJ, Denver JM, Johnson HM (2008) Limited occurrence of denitrification in four shallow aquifers in agricultural areas of the United States. J Environ Qual 37:994–1009

    Article  CAS  Google Scholar 

  • Gregory J, Foster K, Tyler H, Wiseman M (1990) The dietary and nutritional survey of British adults. Her Majesty’s Stationary Office, London

    Google Scholar 

  • Grizzetti B, Bouraoui F, Billen G, van Grinsven H, Cardoso AC, Thieu V, Garnier J (2011) Nitrogen processes in aquatic ecosystems. In: Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti B (eds) The European nitrogen assessment. Cambridge University Press, Cambridge, pp 379–404

    Chapter  Google Scholar 

  • Gupta SK, Fitzgerald JF, Chong SK, Croffie JM, Garcia JG (1998) Expression of inducible nitric oxide synthase (iNOS) mRNA in inflamed esophageal and colonic mucosa in a pediatric population. Am J Gastroenterol 93:795–798

    Article  CAS  Google Scholar 

  • Gupta SK, Gupta RC, Gupta AB, Seth AK, Bassin JK, Gupta A (2000) Recurrent acute respiratory infections in areas with high nitrate concentrations in drinking water. Environ Health Perspect 108:363–366

    Article  CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer) (1978) Monograph on the evaluation of the carcinogenic risk of chemicals to humans: some N-nitroso compounds, Monograph no. 17. International Agency for Research on Cancer (IARC), Lyon

    Google Scholar 

  • Isermann K, Isermann R (1997) Ausgangslage, Lösungsansätze und Lösungsaussichten zur nachhaltigen Landnutzung des deutschen Donaueinzugsgebietes auf der Grundlage seiner Stickstoff- und Phosphorbilanz. VDLUFA-Schriftenreihe 45:623–626

    Google Scholar 

  • Janus LL, Vollenweider RA (1981) The OECD Cooperative programme on eutrophication: summary report – Canadian contribution, Inland Waters Directorate Scientific Series No. 131, Environment Canada, Burlington

    Google Scholar 

  • Jensen FB (2005) Nitrite transport into pig erythrocytes and its potential biological role. Acta Physiol Scand 184:243–251

    Article  CAS  Google Scholar 

  • Johnson CJ, Kross BC (1990) Continuing importance of nitrate contamination of groundwater and wells in rural areas. Am J Ind Med 18(4):449–456

    Article  CAS  Google Scholar 

  • Jordan TE, Correll DL, Weller DE (1997) Effects of agriculture on discharges of nutrients from coastal plain watersheds of Chesapeake Bay. J Environ Qual 26:836–848

    Article  CAS  Google Scholar 

  • Kosaka H, Tyuma I (1987) Mechanism of autocatalytic oxidation of oxyhemoglobin by nitrite. Environ Health Perspect 73:147–151

    Article  CAS  Google Scholar 

  • Kramer MH, Herwaldt BL, Craun GF (1996) Surveillance of waterborne-disease outbreaks- United States, 1993–1994. CDCP Surveill Summ MMWR 45:1–33

    CAS  Google Scholar 

  • Kross BC, Ayebo AD, Fuortes LJ (1992) Methemoglobinemia: nitrate toxicity in rural America. Am Fam Physician 46(1):183–188

    CAS  Google Scholar 

  • L’hirondel J-L, Avery A, Addiscott T (2006) Dietary nitrate: where is the risk? Environ Health Perspect 114:A458–A459

    Article  Google Scholar 

  • Lee GF, Jones RA (1986) Detergent phosphate bans and eutrophication. Environ Sci Technol 20(4):330–331

    Article  CAS  Google Scholar 

  • Lehman PW, Sevier J, Giulianotti J, Johnson M (2004) Sources of oxygen demand in the lower 1176 San Joaquin River, California. Estuaries 27(3):405–418

    Article  CAS  Google Scholar 

  • Lennox SD, Foy RH, Smith RV, Jordan C (1997) Estimating the contribution from agriculture to the phosphorus load in surface water. In: Tunney H, Carton OT, Brookes PC, Johnson AE (eds) Phosphorus loss from soil to water. CAB Int, Wallingford, pp 55–75

    Google Scholar 

  • Levine JJ, Pettei MJ, Valderrama E, Gold DM, Kessler BH, Trachtman H (1998) Nitric oxide and inflammatory bowel disease: evidence for local intestinal production in children with active colonic disease. J Pediatr Gastroenterol Nutr 26(1):34–38

    Article  CAS  Google Scholar 

  • Lundberg JO, Weitzberg E (2005) NO generation from nitrite and its role in vascular control. Arterioscler Thromb Vasc Biol 25:915–922

    Article  CAS  Google Scholar 

  • Lundberg JO, Weitzberg E, Cole JA, Benjamin N (2004) Nitrate, bacteria and human health. Nat Rev Microbiol 2:593–602

    Article  CAS  Google Scholar 

  • Mackenzie FT, Ver LM, Lerman A (1998) Coupled biogeochemical cycles of carbon, nitrogen, phosphorus, and sulfur in the land-ocean-atmosphere system. In: Galloway JN, Melillo JM (eds) Asian change in the context of global change. Cambridge University Press, New York, pp 42–100

    Google Scholar 

  • MAFF (Ministry of Agriculture, Fisheries and Food) (1995) National food survey 1994: annual report on household food consumption and expenditure. Her Majesty’s Stationary Office, London

    Google Scholar 

  • Mathews E, Hammond A (1999) Critical consumption trends and implications-degrading earth’s ecosystems: 1. Food consumption and disruption of the nitrogen cycle. World Resource Institute (WRI), Washington, DC, pp 11–24

    Google Scholar 

  • McKnight GM, Duncan CW, Leifert C, Golden MH (1999) Dietary nitrate in man: friend or foe? Br J Nutr 81:349–335

    Article  CAS  Google Scholar 

  • Mensinga TT, Speijers GJA, Meulenbelt J (2003) Health implications of exposure to environmental nitrogen compounds. Toxicol Rev 22:41–51

    Article  CAS  Google Scholar 

  • Michalzik B, Kalbitz K, Park JH, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen- a synthesis for temperate forests. Biogeochemistry 52:173–205

    Article  Google Scholar 

  • Mueller BA, Newton K, Holly EA, Preston-Martin S (2001) Residential water source and the risk of childhood brain tumors. Environ Health Perspect 109:551–556

    Article  CAS  Google Scholar 

  • Mullins G (2009) Phosphorus, agriculture and the environment. Virginia Cooperative Extension, Virginia State University, Blacksburg

    Google Scholar 

  • Nieder R, Benbi DK (2008) Carbon and nitrogen in the terrestrial environment. Springer, Heidelberg, p 432

    Book  Google Scholar 

  • Nolan BT (1999) Nitrate behavior in ground waters of the Southeastern USA. J Environ Qual 28:1518–1527

    Article  CAS  Google Scholar 

  • NRC (National Research Council) (2000) Clean coastal waters. National Academy Press, Washington, DC

    Google Scholar 

  • Parker AE, Dugdale RC, Wilkerson FP (2012) Elevated ammonium concentrations from 1240 wastewater discharge depress primary productivity in the Sacramento River and the Northern 1241 San Francisco Estuary. Mar Pollut Bull 64(3):574–586

    Article  CAS  Google Scholar 

  • Pedley S, Howard G (1997) The public health implications of microbiological contamination of groundwater. Q J Eng Geol 30:179–188

    Article  Google Scholar 

  • Petersson J, Phillipson M, Jansson E, Patzak A, Lundberg JO, Holm L (2007) Dietary nitrate increases gastric mucosal blood flow and mucosal defense. Am J Physiol Gastrointest Liver Physiol 292:G718

    Article  CAS  Google Scholar 

  • Phillips G, Pietilainen OP, Carvalho L, Solimini A, Solheim AL, Cardoso AC (2008) Chlorophyll-nutrient relationships of different lake types using a large European dataset. Aquat Ecol 42:213–226

    Article  CAS  Google Scholar 

  • Powlson DS, Addiscott TM, Benjamin N, de Kok TM, van Grinsven H, L’hirondel J-L, Avery AA, van Kassel C (2008) When does nitrate become a risk for humans. J Environ Qual 37:291–295

    Article  CAS  Google Scholar 

  • Pratt PF (1984) Nitrogen use and nitrate leaching in irrigated agriculture. In: Hauck RD (ed) Nitrogen in crop production. ASA, CSSA, SSSA, Madison, pp 319–333

    Google Scholar 

  • Prihar SS, Gajri PR, Benbi DK, Arora VK (2000) Intensive cropping: efficient use of water, nutrients and tillage. Food Products Press, New York, p 264

    Google Scholar 

  • Puckett LJ, Cowdery TK, Lorenz DL, Stoner JD (1999) Estimation of nitrate contamination of an agro-ecosystem outwash aquifer using a nitrogen mass-balance budget. J Environ Qual 28:2015–2025

    Article  CAS  Google Scholar 

  • Refsgaard JC, Thorsen M, Jensen JB, Kleeschulte S, Hansen S (1999) Large scale modelling of groundwater contamination from nitrate leaching. J Hydrol 221:117–140

    Article  CAS  Google Scholar 

  • Rejmankova E, Savage HM, Rejmanek M, Arredondo-Jimenez JI, Roberts DR (1991) Multivariate analysis of relationships between habitats, environmental factors and occurrence of Anopheline mosquito larvae Anopheles albimanus and A. pseuodopunctipennis in southern Chiapas, Mexico. J Appl Ecol 28:827–841

    Article  Google Scholar 

  • Rekolainen S, Ekholm P, Ulen B, Gustafson A (1997) Phosphorus losses from agriculture to surface waters in the Nordic countries. In: Tunney H, Carton OT, Brookes PC, Johnson AE (eds) Phosphorus loss from soil to water. CAB Int, Wallingford, pp 77–93

    Google Scholar 

  • Sanchez-Echaniz J, Benito-Fernandez J, Mintegui-Raso S (2001) Methemoglobinemia and the consumption of vegetables in infants. Pediatrics 107:1024–1028

    Article  CAS  Google Scholar 

  • Santamaria P (2006) Nitrate in vegetables: toxicity, content, intake and EC regulation. J Sci Food Agric 86:10–17

    Article  CAS  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry, an analysis of global change, 2nd edn. Academic, San Diego

    Google Scholar 

  • Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci US 106:203–208

    Article  CAS  Google Scholar 

  • Seitzinger SP, Kroeze C (1998) Global distribution in nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Glob Biogeochem Cycles 12:93–113

    Article  CAS  Google Scholar 

  • Seitzinger SP, Harrison JA, Dumont E, Beusen AHW, Bouwman AF (2005) Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: an overview of global nutrient export from watersheds (NEWS) models and their application. Glob Biogeochem Cycles 19(4):GB4S01

    Article  CAS  Google Scholar 

  • Selman M, Greenhalgh S (2009) Eutrophication: policies, actions, and strategies to address nutrient pollution. WRI policy note no. 3 water quality: eutrophication and hypoxia. World Resources Institute, Washington, DC

    Google Scholar 

  • Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25:53–88

    Article  Google Scholar 

  • Smith RP (1991) Toxic responses of the blood. In: Amdur MO, Doull J, Klaassen CD (eds) Casarett and Doulls toxicology: the basic science of poisons. Pergamon Press, New York, pp 257–281

    Google Scholar 

  • Smith VH (2003) Eutrophication of freshwater and marine ecosystems: a global problem. Environ Sci Pollut Res Int 10:126–139

    Article  CAS  Google Scholar 

  • Spalding RF, Exner ME (1993) Occurrence of nitrate in groundwater-a review. J Environ Qual 22:392–402

    Article  CAS  Google Scholar 

  • Spiegelhalder B, Eisenbrand G, Preussmann R (1976) Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet Toxicol 14:545–548

    Article  CAS  Google Scholar 

  • Stephany RW, Schuller PL (1980) Daily dietary intakes of nitrate, nitrite and volative N-nitrosamines in the Netherlands using the duplicate portion sampling technique. Oncology 37:203–210

    Article  CAS  Google Scholar 

  • Stillman L (2010) Pollution and public health in a shrinking world: concentrated animal feeding operations as a paradigm for emergent needs in environmental and public health policy. Self-designed majors honors papers, Paper 2. http://digitalcommons.conncoll.edu/selfdesignedhp/2

  • Taylor AW, Kilmer VJ (1980) Agricultural phosphorus in the environment. In: Khasawneh FE, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture. Am Soc Agron, Madison, pp 545–557

    Google Scholar 

  • Teng HJ, Wu YL, Wang SJ, Lin C (1998) Effects of environmental factors on abundance of Anopheles minimus larvae and their seasonal fluctuations in Taiwan. Environ Entomol 27:324–328

    Article  Google Scholar 

  • Thomas GW, Phillips RE (1979) Consequences of water movement in macropores. J Environ Qual 8:149–152

    Article  Google Scholar 

  • Tsezou A, Kitsiou-Tzeli Galla A, Gourgiotis D, Mitrou S, Molybdas P, Sinaniotis C (1996) High nitrate content in drinking water: cytogenetic effects in exposed children. Arch Environ Health 51:458–461

    Article  CAS  Google Scholar 

  • Tsirkunov VV, Nikrangrov AM, Laznik MM, Zhu DW (1992) Analysis of long-term and seasonal river quality changes in Latvia. Water Res 26:1203–1216

    Article  CAS  Google Scholar 

  • Turek B, Hlavsova D, Tucek J, Waldman J, Cerna J (1980) The fate of nitrates and nitrites in the organism. IARC Sci Publ:625–632

    Google Scholar 

  • US EPA (US Environmental Protection Agency) (1986) Quality criteria for water 1986, Report 440/5-86-001. US, Environmental Protection Agency , Washington, DC

    Google Scholar 

  • US EPA (US Environmental Protection Agency) (1999) Update of ambient water quality criteria for ammonia. 1300 EPA-822-R-99-014. Office of Water, Washington DC

    Google Scholar 

  • US EPA (US Environmental Protection Agency) (2014) Cyanobacteria and cyanotoxins: information for drinking water systems. EPA-810F11001, Office of Water, Washington DC

    Google Scholar 

  • van de Bund W (2009) Water framework directive intercalibration technical report part 1: rivers. JRC Sci Tech Rep, EUR 23838 EN/1

    Google Scholar 

  • van Drecht G, Bouwman AF, Knoop JM, Beusen AHW, Meinardi CR (2003) Global modeling of the fate of nitrogen from point and nonpoint sources in soils, groundwater, and surface water. Glob Biogeochem Cycles 17: doi: https://doi.org/10.1029/2003GB002060

  • van Grinsven HJ, Ward MH, Benjamin N, de Kok TM (2006) Does the evidence about health risks associated with nitrate ingestion warrant an increase of the nitrate standard for drinking water? Environ Health 5:26

    Article  CAS  Google Scholar 

  • van Maanen JM, Pachen DM, Dallinga JW, Kleinjans JC (1998) Formation of nitrosamines during consumption of nitrate and amine-rich foods, and the influence of mouthwashes. Cancer Detect Prev 22:204–212

    Article  Google Scholar 

  • van Vuuren DP, Bouwman AF, Beusen AHW (2010) Phosphorus demand for the 1970–2100 period: a scenario analysis of resource depletion. Glob Environ Chang Hum Policy Dimens 20:428–439

    Article  Google Scholar 

  • Volterra L, Boualam M, Menesguen A, Duguet J, Duchemin J, Bonnefoy, X (2002) Eutrophication and health. World Health Organization Regional Office for Europe. European Communities. Available from http://europa.eu.int

  • Voss M, Baker A, Bange HW, Conley D, Cornell S, Deutsch B, Engel A, Ganeshram R, Garnier J, Heiskanen A-S, Jickells T, Lancelot C, McQuatters-Gollop A, Middelburg J, Schiedek D, Slomp CP (2011) Nitrogen processes in coastal and marine systems. In: Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Greenfelt P, Van Grinsven H, Grizzetti B (eds) The European nitrogen assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Wagner DA, Schultz DS, Deen WM, Young VR, Tannenbaum SR (1983) Metabolic fate of an oral dose of 15N-labeled nitrate in humans: effect of diet supplementation with ascorbic acid. Cancer Res 43:1921–1925

    CAS  Google Scholar 

  • Walker R (1990) Nitrates, nitrites and N-nitrosocompounds: a review of the occurrence in food and diet and the toxicological implications. Food Addit Contam 7:717–768

    Article  CAS  Google Scholar 

  • Walker R (1996) The metabolism of dietary nitrites and nitrates. Biochem Soc Trans 24(3):780–785

    Article  CAS  Google Scholar 

  • Walker ED, Lawson DL, Merritt RW, Morgan WT, Klug MJ (1991) Nutrient dynamics, bacterial populations and mosquito productivity in treehole ecosystems and microcosms. Ecology 72:1529–1546

    Article  Google Scholar 

  • Ward MH, deKok TM, Levallois P, Brender J, Gulis G, Nolan BT, Van Derslice J (2005) Workgroup report: drinking-water nitrate and health-recent findings and research needs. Environ Health Perspect 113:1608–1614

    Article  CAS  Google Scholar 

  • Weyer PJ, Cerhan JR, Kross BC, Hallberg GR, Kantamneni J, Breuer G, Jones MP, Zheng W, Lynch CF (2001) Municipal drinking water nitrate level and cancer risk in older women: the Iowa women’s health study. Epidemiology 11:327–338

    Article  Google Scholar 

  • White RE (1985) A model for nitrate leaching in undisturbed structured clay soil during unsteady flow. J Hydrol 79:37–51

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (1996) Toxicological evaluation of certain food additives and contaminants. Prepared by the Forty-Fourth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), International Programme on Chemical Safety (WHO Food Additives Series 35). World Health Organization, Geneva

    Google Scholar 

  • WHO (World Health Organization) (2004) Guidelines for drinking water quality, vol 1., Recommendations, 3rd edn. World Health Organization, Geneva

    Google Scholar 

  • WHO (World Health Organization) (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva

    Google Scholar 

  • WHO/UNICEF (2010) Progress on sanitation and drinking-water: 2010 Update. WHO/UNICEF joint monitoring programme for water supply and sanitation. World Health Organization, Geneva

    Google Scholar 

  • Wishnok JS, Tannenbaum SR, Tamir S, De Rojas-Walker T (1995) Endogenous formation of nitrate. In: Health aspects of nitrate and its metabolites (particularly nitrite). Proc International Workshop, Bilthoven, Netherlands, 8–10 November 1994, Council of Europe Press, Strasbourg, pp 151–179

    Google Scholar 

  • Woodwell GM, Mackenzie FT (eds) (1995) Biotic feedbacks in the global climatic system. Oxford University Press, New York

    Google Scholar 

  • WRI (World Resources Institute) (2008) WRI policy note. Water quality: eutrophication and hypoxia 1:1–6. Available online: http://www.wri.org/publication/eutrophication-and-hypoxia-coastal-areas; Accessed 11 Jul 2017

  • Yano SS, Danish EH, Hsia YE (1982) Transient methemoglobinemia with acidosis in infants. J Pediatr 100:415–418

    Article  CAS  Google Scholar 

  • Zeman CL, Kross B, Vlad M (2002) A nested case-control study of methemoglobinemia risk factors in children of Transylvania, Romania. Environ Health Perspect 110:817–822

    Article  Google Scholar 

  • Zetterquist W, Pedroletti C, Lundberg JON, Alving K (1999) Salivary contribution to exhaled nitric oxide. Eur Respir J 13:327–333

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nieder, R., Benbi, D.K., Reichl, F.X. (2018). Reactive Water-Soluble Forms of Nitrogen and Phosphorus and Their Impacts on Environment and Human Health. In: Soil Components and Human Health. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1222-2_5

Download citation

Publish with us

Policies and ethics