Skip to main content

Formaldehyde Playing a Role in (De)methylation for Memory

  • Chapter
  • First Online:
  • 799 Accesses

Abstract

Methylation of DNA, RNA, and histone is one of the mechanisms for epigenetic regulation that occurs by the addition of a methyl (CH3) group to DNA, RNA, and histone, thereby often modifies the function of the genes through chromatin remodeling. As described by recent studies, methylation of DNA or histone is regarded as a critical step in the process of memory formation. Formaldehyde as a methyl donor for the methylation of DNA, RNA, and histone acts as an epigenetic factor participating in the reversible and dynamic methylation. DNA demethylation elicits formaldehyde generation in the dividing cells and post-mitotic neurons. Endogenous formaldehyde is observably increased in aging population, but DNA methylation decreases, which closely links learning-responsive DNA methylation and memory formation. Dysmetabolism of endogenous formaldehyde, which affects DNA and histone methylation, is involved in age-related cognitive impairment. The level of formaldehyde is positively correlated with cognitive impairment, such as Alzheimer’s disease (AD) and post-stroke dementia (PSD). Enhancement of DNA demethylation or block of DNA re-methylation using 5-aza-2-deoxycytidine (an inhibitor of DNA methyltransferase, DNMT) in rats leads to spatial memory deficits during spatial memory formation. Scavenging the elevated formaldehyde effectively relieves memory loss for rats. Here, we discuss the role of endogenous formaldehyde in methylation and demethylation of DNA, RNA, and histone as well as the formation or loss of memory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelfatah E, Kerner Z, Nanda N, Ahuja N (2016) Epigenetic therapy in gastrointestinal cancer: the right combination. Therap Adv Gastroenterol 9(4):560–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23(7):781–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergman Y, Cedar H (2013) DNA methylation dynamics in health and disease. Nat Struct Mol Biol 20(3):274–281

    Article  CAS  PubMed  Google Scholar 

  • Bird A (1992) The essentials of DNA methylation. Cell 70(1):5–8

    Article  CAS  PubMed  Google Scholar 

  • Bochtler M, Kolano A, Xu GL (2016) DNA demethylation pathways: additional players and regulators. BioEssays 39(1):1–13

    PubMed  Google Scholar 

  • Borde V, Robine N, Lin W, Bonfils S, Géli V, Nicolas A (2009) Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J 28(2):99–111

    Article  CAS  PubMed  Google Scholar 

  • Bressler J, Fornage M, Demerath EW, Knopman DS, Monda KL, North KE, Penman A, Mosley TH, Boerwinkle E (2012) Fat mass and obesity gene and cognitive decline: the atherosclerosis risk in communities study. Neurology 80(1):92–99

    Article  PubMed  Google Scholar 

  • Cheng MB, Zhang Y, Cao CY, Zhang WL, Zhang Y, Shen YF (2014) Specific phosphorylation of histone demethylase KDM3A determines target gene expression in response to heat shock. PLoS Biol 12(12):e1002026

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheung VG, Sherman SL, Feingold E (2010) Genetic control of hotspots. Science 327(5967):791–792

    Article  CAS  PubMed  Google Scholar 

  • Chouliaras L, Mastroeni D, Delvaux E, Grover A, Kenis G, Hof PR, Steinbusch HWM, Coleman PD, Rutten BPF, van den Hove DLA (2013) Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiol Aging 34(9):2091–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crick F (1984) Memory and molecular turnover. Nature 312(5990):101

    Article  CAS  PubMed  Google Scholar 

  • Crider KS, Yang TP, Berry RJ, Bailey LB (2012) Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate's role. Adv Nutr 3(1):21–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day JJ, Sweatt JD (2010) DNA methylation and memory formation. Nat Neurosci 13(11):1319–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dezi V, Ivanov C, Haussmann IU, Soller M (2016) Nucleotide modifications in messenger RNA and their role in development and disease. Biochem Soc Trans 44(5):1385–1393

    Article  CAS  PubMed  Google Scholar 

  • Dias BG, Maddox S, Klengel T, Ressler KJ (2015) Epigenetic mechanisms underlying learning and the inheritance of learned behaviors. Trends Neurosci 38(2):96–107

    Google Scholar 

  • Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD et al (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13:423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field SF, JMM H, Walker NM, Dunger DB, Todd JA (2007) Analysis of the obesity gene FTO in 14,803 type 1 diabetes cases and controls. Diabetologia 50(10):2218–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiumara F, Milanese C, Corradi A, Giovedì S, Leitinger G, Menegon A, Montarolo PG, Benfenati F, Ghirardi M (2007) Phosphorylation of synapsin domain a is required for post-tetanic potentiation. J Cell Sci 120(Pt 18):3228–3237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortress AM, Frick KM (2014) Epigenetic regulation of estrogen-dependent memory. Front Neuroendocrinol 35(4):530–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JRB, Elliott KS, Lango H, Rayner NW, Shields B, Harries LW, Barrett JC, Ellard S, Groves CJ, Knight B, Patch AM, Ness AR, Ebrahim S, Lawlor DA, Ring SM, Ben-Shlomo Y, Jarvelin MR, Sovio U, Bennett AJ, Melzer D, Ferrucci L, Loos RJF, Barroso I, Wareham NJ, Karpe F, Owen KR, Cardon LR, Walker M, Hitman GA, Palmer CNA, Doney ASF, Morris AD, Smith GD, Hattersley AT, McCarthy MI (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316(5826):889–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuso A, Seminara L, Cavallaro RA, D'Anselmi F, Scarpa S (2005) S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci 28(1):195–204

    Article  CAS  PubMed  Google Scholar 

  • Gerken T, Girard CA, Tung YCL, Webby CJ, Saudek V, Hewitson KS, Yeo GSH, McDonough MA, Cunliffe S, McNeill LA, Galvanovskis J, Rorsman P, Robins P, Prieur X, Coll AP, Ma M, Jovanovic Z, Farooqi IS, Sedgwick B, Barroso I, Lindahl T, Ponting CP, Ashcroft FM, O'Rahilly S, Schofield CJ (2007) The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318(5855):1469–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith JS, Mahler HR (1969) DNA ticketing theory of memory. Nature 223(5206):580–582

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Kim SY, Artis S, Molfese DL, Schumacher A, Sweatt JD, Paylor RE, Lubin FD (2010) Histone methylation regulates memory formation. J Neurosci 30(10):3589–3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamm CA, Xie HH, Costa FF, Vanin EF, Seftor EA, Sredni ST, Bischof J, Wang DL, Bonaldo MF, Hendrix MJC, Soares MB (2009) Global demethylation of rat chondrosarcoma cells after treatment with 5-aza-29-deoxycytidine results in increased tumorigenicity. PLoS One 4:e8340

    Article  PubMed  PubMed Central  Google Scholar 

  • He RQ, Lu J, Miao JY (2010) Formaldehyde stress. Sci China Life Sci 53(12):1399–1404

    Article  CAS  PubMed  Google Scholar 

  • Heyward FD, Sweatt JD (2015) DNA methylation in memory formation: emerging insights. Neuroscientist 21(5):475–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holliday R (1999) Is there an epigenetic component in long-term memory? J Theor Biol 200(3):339–341

    Article  CAS  PubMed  Google Scholar 

  • Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang FS, Cole G (1996). Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274(5284):99–102

    Google Scholar 

  • Jabbari K, Bernardi G (2004) Cytosine methylation and CpG, TpG (CpA) and TpA frequencies. Gene 333:143–149

    Article  CAS  PubMed  Google Scholar 

  • Jarome TJ, Lubin FD (2014) Epigenetic mechanisms of memory formation and reconsolidation. Neurobiol Learn Mem 115:116–127

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kaang BK (2017) Epigenetic regulation and chromatin remodeling in learning and memory. Exp Mol Med 49(1):e281

    Google Scholar 

  • Klose RJ, Zhang Y (2007) Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 8(4):307–318

    Article  CAS  PubMed  Google Scholar 

  • Klungland A, Dahl JA (2014) Dynamic RNA modifications in disease. Curr Opin Genet De 26:47–52

    Article  CAS  Google Scholar 

  • Kress C, Thomassin H, Grange T (2001) Local DNA demethylation in vertebrates: how could it be performed and targeted? FEBS Lett 494(3):135–140

    Article  CAS  PubMed  Google Scholar 

  • Kumarasinghe IR, Woster PM (2014) Synthesis and evaluation of novel cyclic peptide inhibitors of lysine-specific demethylase 1. ACS Med Chem Lett 5(1):29–33

    Article  CAS  PubMed  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11(3):204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levenson CW (2006) Regulation of the NMDA receptor: implications for neuropsychological development. Nutr Rev 64(9):428–432

    Article  PubMed  Google Scholar 

  • Li T, Su T, He YG, He RQ (2014) Formaldehyde, an epigenetic factor for learning and memory participating histone (de)methylation. Acta Neuropharmacologica 57(4):403–411

    CAS  Google Scholar 

  • Li LL, Li C, Mao HT, Du ZF, Chan WY, Murray P, Luo B, Chan ATC, Mok TSK, Chan FKL, Ambinder RF, Tao Q (2016) Epigenetic inactivation of the CpG demethylase TET1 as a DNA methylation feedback loop in human cancers. Sci Rep 6:26591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippa CF (1999) Familial Alzheimer’s disease: genetic influences on the disease process. Int J Mol Med 4(5):529–536

    CAS  PubMed  Google Scholar 

  • Lister R, Mukamel EA (2015) Turning over DNA methylation in the mind. Front Neurosci 9:252

    Article  PubMed  PubMed Central  Google Scholar 

  • Lister R, Pelizzola M, Dowen RH, Hawkins DR, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo Q-M, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar HA, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu QC, Yang LQ, Gong CM, Tao GH, Huang HY, Liu JJ, Zhang HM, Wu DS, Xia B, Hu GH, Wang KP, Zhuang ZX (2011) Effects of long-term low-dose formaldehyde exposure on global genomic hypomethylation in 16HBE cells. Toxicol Lett 205(3):235–240

    Article  CAS  PubMed  Google Scholar 

  • Luka Z, Pakhomova S, Loukachevitch LV, Calcutt MW, Newcomer ME, Wagner C (2014) Crystal structure of the histone lysine specific demethylase LSD1 complexed with tetrahydrofolate. Protein Sci 23(7):993–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mani ST, Thakur MK (2006) In the cerebral cortex of female and male mice, amyloid precursor protein (APP) promoter methylation is higher in females and differentially regulated by sex steroids. Brain Res 1067(1):43–47

    Article  CAS  PubMed  Google Scholar 

  • Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302(5646):890–893

    Article  CAS  PubMed  Google Scholar 

  • Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J (2010) Epigenetic changes in Alzheimer’s disease: decrements in DNA methylation. Neurobiol Aging 31(12):2025–2037

    Article  CAS  PubMed  Google Scholar 

  • Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J (2011) Epigenetic mechanisms in Alzheimer’s disease. Neurobiol Aging 32(7):1161–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Métivier R, Gallais R, Tiffoche C, Le Péron C, Jurkowska RZ, Carmouche RP, Ibberson D, Barath P, Demay F, Reid G, Benes V, Jeltsch A, Gannon F, Salbert G (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452(7183):45–50

    Article  PubMed  Google Scholar 

  • Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149(7):1635–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CA, Gavin CF, White JA, Parrish RR, Honasoge A, Yancey CR et al (2010) Cortical DNA methylation maintains remote memory. Nat Neurosci 13:664–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirfattah B, Herring J, Tang H, Zhang K (2016) Probes and targets of DNA methylation and demethylation in drug development. Curr Top Med Chem 17(15):1727–1740

    Google Scholar 

  • Morris MJ, Monteggia LM (2014) Role of DNA methylation and the DNA methyltransferases in learning and memory. Dialogues Clin Neurosci 16(3):359–371

    PubMed  PubMed Central  Google Scholar 

  • Neelamegam R, Ricq EL, Malvaez M, Patnaik D, Norton S, Carlin SM, Hill IT, Wood MA, Haggarty SJ, Hookerl JM (2012) Brain-penetrant LSD1 inhibitors can block memory consolidation. ACS Chem Neurosci 3(2):120–128

    Article  CAS  PubMed  Google Scholar 

  • Ng HH, Robert F, Young RA, Struh K (2003) Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11(3):709–719

    Article  CAS  PubMed  Google Scholar 

  • Niehrs C (2009) Active DNA demethylation and DNA repair. Differentiation 77(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Oliveira AMM, Hemstedt TJ, Bading H (2012) Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities. Nat Neurosci 15(8):1111–1113

    Article  CAS  PubMed  Google Scholar 

  • Ooi SK, Bestor TH (2008) The colorful history of active DNA demethylation. Cell 133(7):1145–1148

    Article  CAS  PubMed  Google Scholar 

  • Pogribny IP, Vanyushin BF (2010) Age-related genomic hypomethylation. Epigen Aging:11e27

    Google Scholar 

  • Pollema-Mays SL, Centeno MV, Apkarian AV, Martina M (2014) Expression of DNA methyltransferases in adult dorsal root ganglia is cell-type specific and up regulated in a rodent model of neuropathic pain. Front Cell Neurosci 8:217

    Google Scholar 

  • Pollwein P, Masters CL, Beyreuther K (2016) The expression of the amyloid precursor protein (APP) is regulated by two GC-elements in the promoter. Nucleic Acids Res 20(1):63–68

    Article  Google Scholar 

  • Qazi TJ, Quan Z, Mir A, Qing H (2017) Epigenetics in Alzheimer's disease: perspective of DNA methylation. Mol Neurobiol. doi:10.1007/s12035-016-0357-6

  • Qiang M, Xiao R, Su T, Wu BB, Tong ZQ, Liu Y, He RQ (2014) A novel mechanism for endogenous formaldehyde elevation in SAMP8 mouse. J Alzheimers Dis 40(4):1039–1053

    CAS  PubMed  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293(5532):1089–1093

    Article  CAS  PubMed  Google Scholar 

  • Rogaev EI, Lukiw WJ, Lavrushina O, Rogaeva EA, St George-Hyslop PH (1994) The upstream promoter of the beta-amyloid precursor protein gene (APP) shows differential patterns of methylation in human brain. Genomics 22(2):340–347

    Article  CAS  PubMed  Google Scholar 

  • Roger L, WestJohn M, LeeLeonard E, Maroun (1995) Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer’s disease patient. J Mol Neurosci 6(2):141–146

    Google Scholar 

  • Sanchez-Pulido L, Andrade-Navarro MA (2007) The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily. BMC Biochem 8:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Santa FD, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G (2007) The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130(6):1083–1094

    Article  PubMed  Google Scholar 

  • Shcherbakova LN, Tel'pukhov VI, Trenin SO, Bashilov IA, Lapkina TI (1986) Permeability of the blood-brain barrier to intra-arterial formaldehyde. Biull Eksp Biol Med 102(11):573–575

    CAS  PubMed  Google Scholar 

  • Shi YJ, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953

    Article  CAS  PubMed  Google Scholar 

  • Shi HS, Luo YX, Yin X, Wu HH, Xue G, Geng XH, Hou YN (2015) Reconsolidation of a cocaine associated memory requires DNA methyltransferase activity in the basolateral amygdala. Sci Rep 5:13327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sims RJ, Nishioka K, Reinberg D (2003) Histone lysine methylation: a signature for chromatin function. Trends Genet 19(11):629–639

    Article  CAS  PubMed  Google Scholar 

  • Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14(3):204–220

    Article  CAS  PubMed  Google Scholar 

  • Staab CA, Ålander J, Morgenstern R, Grafström RC, Höög JO (2009) The Janus face of alcohol dehydrogenase 3. Chem Biol Interact 178(1–3):29–35

    Article  CAS  PubMed  Google Scholar 

  • Su SC, Tsai LH (2012) DNA methylation in cognition comes of age. Nat Neurosci 2012 Jul 26;15(8):1061–1062

    Google Scholar 

  • Su T, Song D, Li T, Wang XH, He RQ (2015) Nucleic acid methylation/demethylation, endogenous formaldehyde and age-related cognitive impairment. Prog Biochem Biophys 43(3):211–219

    Google Scholar 

  • Tahiliani M, Koh KP, Shen YH, Pastor WA, Bandukwala H, Brudno Y, Agarwa S, Iyer LM, Liu DR, Aravind L, Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y, Ukitsu M (1999) Reduction with age in methylcytosine in the promoter region −224 approximately −101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res Mol Brain Res 70(2):288–292

    Article  Google Scholar 

  • Taylor CJ, He RQ, Bartlett PF (2014) The role of the N-methyl-D-aspartate receptor in the proliferation of adult hippocampal neural stem and precursor cells. Sci China Life Sci 57(4):403–411

    Article  CAS  PubMed  Google Scholar 

  • Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y, Ukitsu M (1999) Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res Mol Brain Res 70(2):288–292

    Article  CAS  PubMed  Google Scholar 

  • Tong ZQ, Zhang JL, Luo WH, Wang WS, Li FX, Li H, Luo HJ, Lu J, Zhou JN, Wan Y, He RQ (2009) Urine formaldehyde level is inversely correlated to mini mental state examination scores in senile dementia. Neurobiol Aging 32(1):31–41

    Article  PubMed  Google Scholar 

  • Tong ZQ, Han CS, Miao JY, Lu J, He RQ (2011) Excess endogenous formaldehyde induces memory decline. Prog Biochem Biophys 38(6):575–579

    Google Scholar 

  • Tong ZQ, Han CS, Luo WH, Wang XH, Li H, Luo HJ, Zhou JN, Qi JS, He RQ (2012) Accumulated hippocampal formaldehyde induces age-dependent memory decline. Age (Dordr) 35(3):583–596

    Article  Google Scholar 

  • Tong ZQ, Han CS, Luo WH, Li H, Luo HJ, Qiang M, Su T, Wu BB, Liu Y, Yang X, Wan Y, Cui DH, He RQ (2013) Aging-associated excess formaldehyde leads to spatial memory deficits. Sci Rep 3:1807

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong ZQ, Han CS, Qiang M, Wang WS, Lv JH, Zhang SZ, Luo WH, Lie H, Luo HJ, Zhou JN, Wu BB, Su T, Yang X, Wang XM, Liu Y, He RQ (2015) Age-related formaldehyde interferes with DNA methyltransferase function, causing memory loss in Alzheimer’s disease. Neurobiol Aging 36(1):100–110

    Google Scholar 

  • Tong ZQ, Wang WS, Luo WH, Lv JH, Li H, Luo HJ, Jia JP, He RQ (2016) Urine formaldehyde predicts cognitive impairment in post-stroke dementia and Alzheimer's disease. J Alzheimers Dis 55(3):1031–1038

    Article  Google Scholar 

  • Venturelli S, Berger A, Weiland T, Essmann F, Waibel M, Nuebling T, Häcker S, Schenk M, Schulze-Osthoff K, Salih HR, Fulda S, Sipos B, Johnstone RW, Lauer UM, Bitzer M (2013) Differential induction of apoptosis and senescence by the DNA methyltransferase inhibitors 5-azacytidine and 5-aza-2′-deoxycytidine in solid tumor cells. Mol Cancer Ther 12(10):2226–2236

    Article  CAS  PubMed  Google Scholar 

  • Wang X, He C (2014) Dynamic RNA modifications in posttranscriptional regulation. Mol Cell 56(1):5–12

    Article  CAS  PubMed  Google Scholar 

  • Wang KY, Shen CKJ (2004) DNA methyltransferase Dnmt1 and mismatch repair. Oncogene 23(47):7898–7902

    Article  CAS  PubMed  Google Scholar 

  • Wang ZQ, Tang BS, He YQ, Jin P (2016) DNA methylation dynamics in neurogenesis. Epigenomics 8(3):401–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West RL, Lee JM, Maroun LE (1995) Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer’s disease patient. J Mol Neurosci 6(2):141–146

    Article  CAS  PubMed  Google Scholar 

  • Wu YC, Ling ZQ (2014) The role of TET family proteins and 5-hydroxymethylcytosine in human tumors. Histol Histopathol 29(8):991–997

    CAS  PubMed  Google Scholar 

  • Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11(9):607–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Zhang Y (2011) Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 25(23):2436–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu KY, Ren RT, Su WT, Wen B, Zhang YY, Yi F, Qiao XH, Yuan TT, Wang JH, Liu LM, Belmonte JCI, Liu GH, Chen C (2014) A novel suppressive effect of alcohol dehydrogenase 5 in neuronal differentiation. J Biol Chem 289(29):20193–20199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagata Y, Szabó P, Szüts D, Bacquet C, Arányi T, Páldi A (2012) Rapid turnover of DNA methylation in human cells. Epigenetics 7:141–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan F, Fujimori DG (2011) RNA methylation by radical SAM enzymes RlmN and Cfr proceeds via methylene transfer and hydride shift. Proc Natl Acad Sci 108(10):3930–3934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu NK, Baek SH, Kaang BK (2011) DNA methylation-mediated control of learning and memory. Mol Brain 4:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LP, Wang J, Pan YQ, Jin J, Sang JQ, Huang P, Shao GB (2014) Expression of histone H3 lysine 4 methylation and its demethylases in the developing mouse testis. Cell Tissue Res 358(3):875–883

    Article  CAS  PubMed  Google Scholar 

  • Zheng G, Dah JA, Niu YM, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, Lu ZK, Bosmans RPG, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia GF, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C (2012) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49(1):18–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Kang D, Xu YG, Zhang LY, Zha XM (2014) Identification of novel selective lysine-specific demethylase 1 (LSD1) inhibitors using a pharmacophore-based virtual screening combined with docking. Chem Biol Drug Des 85(6):659–671

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This project was supported by grants from the Beijing Municipal Science and Technology Project (Z161100000217141; Z161100000216137), the National Key Research and Development Program of China (2016YFC1306300), the National Basic Research Program of China (973 Program) (2012CB911004), the Natural Scientific Foundation of China (NSFC 31301880, NSFC 31270868), the Foundation of Chinese Academy of Sciences CAS-20140909, the Queensland-Chinese Academy of Sciences Biotechnology Fund (GJHZ201302), the Program for Liaoning Excellent Talents in University (LJQ2015057), and the Dalian High Level Talent Innovation Support Plan (No. 2015R067).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongqiao He .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Su, T., He, R. (2017). Formaldehyde Playing a Role in (De)methylation for Memory. In: Formaldehyde and Cognition. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1177-5_3

Download citation

Publish with us

Policies and ethics