Skip to main content

Methods in Determination of Formaldehyde

  • Chapter
  • First Online:
Formaldehyde and Cognition

Abstract

In order to analyze formaldehyde, a simplest aldehyde closely related to human health from both exogenous and endogenous environments, many methods have been developed and employed with different techniques and instruments. According to the universal principle, measurements by different methods result in different values for the concentration of exogenous and endogenous formaldehyde. Among the methods, high-performance liquid chromatography (HPLC) is one of the most commonly used approaches in the determination of formaldehyde in the liquid and body tissues such as urine, blood, the brain, and liver. Of course, HPLC and gas chromatography (GC) coupled with mass spectrometry (MS) or fluorescent techniques show their high sensitivity and other advantages. 2,4-Dinitrophenylhydrazine (DNPH) is one of the most frequently used reagents applied with spectrophotometer, HPLC, and gas chromatography (GC). HPLC coupled with DNPH or ampicillin has been used to determine formaldehyde levels of the morning urine from Alzheimer’s disease (AD) patients and age-matched participants. The results showed that the levels of urine formaldehyde are positively correlated with the severity of cognitive impairment in the AD patients. Approximately 40% of the AD patients have got high levels of endogenous formaldehyde, suggesting that endogenous formaldehyde could be developed as a biomarker for progression and intervention of AD. Currently, the specific fluorescent probes such as formaldehyde probe-1 (FAP-1) and formaldehyde-induced 2-aza-Cope reaction have been synthesized to label formaldehyde molecules in cells. Using these fluorescent probes, the endogenous formaldehyde is found to be localized in lysosomes. Exogenous formaldehyde is also localized and restricted in lysosome inside a living cell monitored by confocal microscopy. Furthermore, nano-techniques have been also introduced to analyze formaldehyde. Quartz crystal microbalance (QCM) can measure nanogram-scale changes of formaldehyde. As the technique advances, current efforts are underway to develop greater sensitivity, lower cost, improved portability, and more straightforward detection methods. The operational principles and sensing performance of sensor have been created as well as the convenient and high-performance formaldehyde-determining applications will appear more in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasia S, Esfandyarpoura M, Taher MA, Daneshfar A (2007) Catalytic-kinetic determination of trace amount of formaldehyde by the spectrophotometric method with a bromate-Janus green system. Spectrochimica Acta Part A-Mol Biomol Spectrosc 67(3–4):578–581

    Article  CAS  Google Scholar 

  • Alizadeh T, Soltani LH (2013) Graphene/poly (methyl methacrylate) chemiresistor sensor for formaldehyde odor sensing. J Hazard Mater 248:401–406

    Article  PubMed  CAS  Google Scholar 

  • Arvand M, Bozorgzadeh E, Shariati S, Zanjanchi MA (2012) Ionic liquid-based dispersive liquid-liquid microextraction for the determination of formaldehyde in wastewaters and detergents. Environ Monit Assess 184(12):7597–7605

    Article  CAS  PubMed  Google Scholar 

  • Backe WJ (2017) A novel mass spectrometric method for formaldehyde in Children’s personal-care products and water via derivatization with Acetylacetone. Rapid Commun Mass Spectrom 31(12):1047–1056

    Article  CAS  PubMed  Google Scholar 

  • Barkhordari A, Azari MR, Zendehdel R, Heidari M (2017) Analysis of formaldehyde and acrolein in the aqueous samples using a novel needle trap device containing nanoporous silica aerogel sorbent. Environ Monit Assess 189(4):171

    Article  PubMed  CAS  Google Scholar 

  • Bechmann IE (1998) Comparison of the formaldehyde content found in boiled and raw mince of frozen saithe using different analytical methods. Food Sci Technol -Lebensmittel-Wissenschaft & Technologie 31(5):449–453

    Google Scholar 

  • Bertoni G, Ciuchini C, Di Palo V, Possanzini M (2005) Development of a passive sampler for long-term measurements of formaldehyde and total oxidants in air. Chromatographia 61(7–8):385–389

    Article  CAS  Google Scholar 

  • Bianchi F, Careri M, Musci M, Mangia A (2007) Fish and food safety: determination of formaldehyde in 12 fish species by SPME extraction and GC-MS analysis. Food Chem 100(3):1049–1053

    Article  CAS  Google Scholar 

  • Bolta SV, Zupancic-Kralj L, Marsel J (1998) Gas chromatographic determination of formaldehyde in air using solid-phase microextraction sampling. Chromatographia 48(1–2):95–100

    Article  Google Scholar 

  • Brewer TF, Chang CJ (2015) An Aza-cope reactivity-based fluorescent probe for imaging formaldehyde in living cells. J Am Chem Soc 137(34):10886–10889

    Article  CAS  PubMed  Google Scholar 

  • Burini G, Coli R (2004) Determination of formaldehyde in spirits by high-performance liquid chromatography with diode-array detection after derivatization. Anal Chim Acta 511(1):155–158

    Article  CAS  Google Scholar 

  • Chan WH, Xie TY (1997) Determination of sub-ppbv levels of formaldehyde in ambient air using Girard’s reagent T-coated glass fiber filters and adsorption voltammetry. Anal Chim Acta 349(1–3):349–357

    Article  CAS  Google Scholar 

  • Chan WH, Shuang SM, Choi MMF (2001) Determination of airborne formaldehyde by active sampling on 3-methyl-2-benzothiazolinone hydrazone hydrochloride-coated glass fibre filters. Analyst 126(5):720–723

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Jin HY, Wang LG, Sun L, Xu HY, Ding L, Yu AM, Zhang HQ (2008) Dynamic ultrasound-assisted extraction coupled on-line with solid support derivatization and high-performance liquid chromatography for the determination of formaldehyde in textiles. J Chromatogr A 1192(1):89–94

    Article  CAS  PubMed  Google Scholar 

  • Chen EX, Yang H, Zhang J (2014) Zeolitic Imidazolate framework as formaldehyde gas sensor. Inorg Chem 53(11):5411–5413

    Article  CAS  PubMed  Google Scholar 

  • Chen XX, Su T, He YG, He RQ (2017) Effect of oxidative stress on accommodation and transportation of formaldehyde by lysosome. Prog Biochem Biophys 44(6):486–494

    Google Scholar 

  • Cui XJ, Fang GZ, Jiang LQ, Wang SZ (2007) Kinetic spectrophotometric method for rapid determination of trace formaldehyde in foods. Anal Chim Acta 590(2):253–259

    Article  CAS  PubMed  Google Scholar 

  • Demkiv O, Smutok O, Gonchar M, Nisnevitch MM (2017) A Reagentless Amperometric formaldehyde-selective chemosensor based on platinized gold electrodes. Materials 10(5):503

    Article  PubMed Central  Google Scholar 

  • Deng BY, Liu Y, Yin HH, Ning X, Lu H, Ye L, Xu QX (2012) Determination of ultra-trace formaldehyde in air using ammonium sulfate as derivatization reagent and capillary electrophoresis coupled with on-line electrochemiluminescence detection. Talanta 91:128–133

    Article  CAS  PubMed  Google Scholar 

  • Ebeler SE, Clifford AJ, Shibamoto T (1997) Quantitative analysis by gas chromatography of volatile carbonyl compounds in expired air from mice and human. J Chromatogr B Biomed Sci Appl 702(1-2):211–215

    Article  CAS  PubMed  Google Scholar 

  • Emeis D, de Groot AC, Brinkmann J (2010) Determination of formaldehyde in formaldehyde-releaser patch test preparations. Contact Dermatitis 63(2):57–62

    Article  CAS  PubMed  Google Scholar 

  • EPA (1999) Integrated risk information system (IRIS) on formaldehyde. National Center for Environmental Assessment, Office of Research and Development, Washington, DC

    Google Scholar 

  • Evans AM, Fameli N, Ogunbayo OA, Duan J, Navarro-Dorado J (2016) From contraction to gene expression: nanojunctions of the sarco/endoplasmic reticulum deliver site- and function-specific calcium signals. Sci China Life Sci 59(8):749

    Article  CAS  PubMed  Google Scholar 

  • Fang F, Bai L, Song DS, Yang HP, Sun XM, Sun HY, Zhu J (2015) Ag-modified In2O3/ZnO Nanobundles with high formaldehyde gas-sensing performance. Sensors 15(8):20086–20096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flyvholm MA, Menne T (1992) Allergic contact-dermatitis from formaldehyde – a case-study focusing on sources of formaldehyde exposure. Contact Dermatitis 27(1):27–36

    Google Scholar 

  • Gallia CL, Bettinb F, Metrab P, Fidentea P, Dominicisb ED , Marinovicha M (2015) Novel analytical method to measure formaldehyde release from heated hair straightening cosmetic products: impact on risk assessment. Regul Toxicol Pharmacol 72(3):562–568

    Google Scholar 

  • Gromping AHJ, Cammann K (1993) Development and comparison of different Fluorometric Hplc-methods with standard methods for the determination of formaldehyde in the atmosphere. Chromatographia 35(3–4):142–148

    Article  Google Scholar 

  • Gu DC, Zou MJ, Guo XX, Yu P, Lin ZW, Hu T, Wu YF, Liu Y, Gan JH, Sun SQ, Wang XC, Xu CH (2017) A rapid analytical and quantitative evaluation of formaldehyde in squid based on tri-step IR and partial least squares (PLS). Food Chem 15(229):458–463

    Article  CAS  Google Scholar 

  • He R (2016) Abnormal lysosome, formaldehyde Dysmetabolism and age-related cognitive impairment. Prog Biochem Biophys 43(12):1197

    Google Scholar 

  • Hill AA, Lipert RJ, Fritz JS, Porter MD (2009) A rapid, simple method for determining formaldehyde in drinking water using colorimetric-solid phase extraction. Talanta 77(4):1405–1408

    Article  CAS  PubMed  Google Scholar 

  • Houlgate PR, Dhingra KS, Nash SJ, Evans WH (1989) Determination of formaldehyde and acetaldehyde in mainstream cigarette-smoke by high-performance liquid-chromatography. Analyst 114(3):355–360

    Google Scholar 

  • Hu X, Wang T, Jin F (2016) Alzheimer’s disease and gut microbiota. Sci China Life Sci 59(10):1006

    Article  CAS  PubMed  Google Scholar 

  • IARC (2004) Monographs on the evaluation of carcinogenic risks to humans. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Iqbal MZ, Novalin S (2009) Analysis of formose sugar and formaldehyde by high-performance liquid chromatography. J Chromatogr A 1216(26):5116–5121

    Article  CAS  PubMed  Google Scholar 

  • Ivanyi T, Heyden YV, Visky D, Hoogmartens LJ (2002) Minimal number of chromatographic test parameters for the characterisation of reversed-phase liquid chromatographic stationary phases. J Chromatogr A 954(1–2):99–114

    Article  CAS  PubMed  Google Scholar 

  • Jeong HS, Chung H, Song SH, Kim CI, Lee JG, Kim YS (2015) Validation and determination of the contents of acetaldehyde and formaldehyde in foods. Toxicological Research 31(3):273–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jian X, Zhu MX (2016) Regulation of lysosomal ion homeostasis by channels and transporters. Sci China Life Sci 59(8):777–791

    Article  CAS  Google Scholar 

  • Jiang WZ, Adamec J, Weeks DP (2013) A small-scale, inexpensive method for detecting formaldehyde or methanol in biochemical reactions containing interfering substances. Anal Biochem 442(2):146–148

    Article  CAS  PubMed  Google Scholar 

  • Kalasz H (2003) Biological role of formaldehyde, and cycles related to methylation, demethylation, and formaldehyde production. Mini Rev Med Chem 3(3):175–192

    Article  CAS  PubMed  Google Scholar 

  • Karlberg AT, Skare L, Lindberg I, Nyhammar E (1998) A method for quantification of formaldehyde in the presence of formaldehyde donors in skin-care products. Contact Dermat 38(1):20–28

    Google Scholar 

  • Kato S, Burke PJ, Koch TH, Bierbaum VM (2001) Formaldehyde in human cancer cells: detection by preconcentration-chemical ionization mass spectrometry. Anal Chem 73(13):2992–2997

    Article  CAS  PubMed  Google Scholar 

  • Kawamura K, Kerman K, Fujihara M, Nagatani N, Hashiba T, Tamiya E (2005) Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome. Sensors and Actuators B-Chemical 105(2):495–501

    Article  CAS  Google Scholar 

  • Khataee A, Lotfi R, Hasanzadeh A, Iranifam M (2016) A simple and sensitive flow injection method based on the catalytic activity of CdS quantum dots in an acidic permanganate chemiluminescence system for determination of formaldehyde in water and wastewater. Photochem Photobiol Sci 15(4):496–505

    Article  CAS  PubMed  Google Scholar 

  • Kleinnijenhuis AJ, Staal YCM, Duistermaat E, Engel R, Woutersen RA (2013) The determination of exogenous formaldehyde in blood of rats during and after inhalation exposure. Food Chem Toxicol 52:105–112

    Article  CAS  PubMed  Google Scholar 

  • Komazaki Y, Hiratsuka M, Narita Y, Tanaka S, Fujita T (1999) The development of an automated continuous measurement system for the monitoring of HCHO and CH3CHO in the atmosphere by using an annular diffusion scrubber coupled to HPLC. Fresen J Anal Chem 363(7):686–695

    Article  CAS  Google Scholar 

  • Largiuni O, Becagli S, Innocenti M, Stortini AM, Traversi R, Udisti R (2005) Formaldehyde determination in seawater. Preliminary application to coastal samples at Terra Nova Bay (Antarctica). J Environ Monit 7(12):1299–1304

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre MA, Meuling WJA, Engel R, Nohynek GJ (2012) Consumer inhalation exposure to formaldehyde from the use of personal care products/cosmetics. Regul Toxicol Pharmacol 63(1):171–176

    Article  CAS  PubMed  Google Scholar 

  • Li B, Liu M, Zhang ZJ, Xu CL (2003) Flow-injection chemiluminescence determination of formaldehyde with a bromate-rhodamine 6G system. Anal Sci 19(12):1643–1646

    Article  CAS  PubMed  Google Scholar 

  • Li JZ, Dasgupta PK, Luke W (2005) Measurement of gaseous and aqueous trace formaldehyde-revisiting the pentanedione reaction and field applications. Anal Chim Acta 531(1):51–68

    Article  CAS  Google Scholar 

  • Li X, Wang SS, Zhou R, Zhou B (2014) Urban atmospheric formaldehyde concentrations measured by a differential optical absorption spectroscopy method. Environmental Science-Processes & Impacts 16(2):291–297

    Article  CAS  Google Scholar 

  • Li T, Su T, He YG, Lu JH, Mo WC, Wei Y, He RQ (2016) Brain formaldehyde is related to water intake behavior. Aging Dis 7(5):561–584

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu JF, Peng JF, Chi YG, Jiang GB (2005) Determination of formaldehyde in shiitake mushroom by ionic liquid-based liquid-phase microextraction coupled with liquid chromatography. Talanta 65(3):705–709

    Article  CAS  PubMed  Google Scholar 

  • Liu KL, He YG, Yu LX, He RQ (2017) Elevated formaldehyde in the cecum of APP/PS1 mouse. Microbiol China. DOI:10.13344/j.microbiol.china.176008

  • Lorrain JM, Fortune CR, Dellinger B (1981) Sampling and ion chromatographic determination of formaldehyde and acetaldehyde. Anal Chem 53(8):1302–1305

    Article  CAS  Google Scholar 

  • Luo WH, Li H, Zhang Y, Wang CY (2001) Determination of formaldehyde in blood plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr B 753(2):253–257

    Article  CAS  Google Scholar 

  • Maboudou P, Mathieu D, Bachelet H, Wiart JF, Lhermitte M (2002) Detection of oxidative stress. Interest of GC-MS for malondialdehyde and formaldehyde monitoring. Biomed Chromatogr 16(3):199–202

    Article  CAS  PubMed  Google Scholar 

  • Maneli MH, Mkentane K, Khumalo NP (2013) Lipid distribution and influence on hair structure. Int J Cosmet Sci 35(5):523–523

    Article  CAS  PubMed  Google Scholar 

  • Marceaux JC, Dilks LS, Hixson S (2008) Neuropsychological effects of formaldehyde use. J Psychoactive Drugs 40(2):207–210

    Article  PubMed  Google Scholar 

  • Mariscal A, Varo MC, Gomez E, Crehuet JF (2005) A fluorescence bioassay to detect residual formaldehyde from clinical materials sterilized with low-temperature steam and formaldehyde. Biologicals 33(3):191–196

    Article  CAS  PubMed  Google Scholar 

  • Martos PA, Pawliszyn J (1998) Sampling and determination of formaldehyde using solid-phase microextraction with on-fiber derivatization. Anal Chem 70(11):2311–2320

    Article  CAS  PubMed  Google Scholar 

  • Monakhova YB, Kuballa T, Mildau G, Kratz E, Wilhelm AK, Tschiersch C, Lachenmeier DW (2013) Formaldehyde in hair straightening products: rapid 1H NMR determination and risk assessment. Int J Cosmet Sci 35(2):201–206

    Article  CAS  PubMed  Google Scholar 

  • Monkawa A, Gessei T, Takimoto Y, Sanari N (2015) Highly sensitive and rapid gas biosensor for formaldehyde based on an enzymatic cycling system. Sensors and Actuators B-Chemical 210:241–247

    Article  CAS  Google Scholar 

  • Motyka K, Mikuska P (2004) Continuous fluorescence determination of formaldehyde in air. Anal Chim Acta 518(1–2):51–57

    Article  CAS  Google Scholar 

  • Motyka K, Mikuska P, Vecera Z (2006) Continuous chemiluminescence determination of formaldehyde in air based on Trautz-Schorigin reaction. Anal Chim Acta 562(2):236–244

    Article  CAS  Google Scholar 

  • Motyka K, Onjia A, Mikuska P, Vecera Z (2007) Flow-injection chemiluminescence determination of formaldehyde in water. Talanta 71(2):900–905

    Article  CAS  PubMed  Google Scholar 

  • Munoz MP, Rueda FJMD, Diez LMP (1989) Determination of formaldehyde in air by flow-injection using Pararosaniline and spectrophotometric detection. Analyst 114(11):1469–1471

    Article  Google Scholar 

  • Nengsih S, Umar AA, Salleh MM, Oyama M (2012) Detection of formaldehyde in water: a shape-effect on the Plasmonic sensing properties of the gold nanoparticles. Sensors 12(8):10309–10325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perna RB, Bordini EJ, Deinzer-Lifrak M (2001) A case of claimed persistent neuropsychological sequelae of chronic formaldehyde exposure - clinical, psychometric, and functional findings. Arch Clin Neuropsychol 16(1):33–44

    Article  CAS  PubMed  Google Scholar 

  • Possanzini M, DiPalo V (1997) Determination of formaldehyde and acetaldehyde in air by HPLC with fluorescence detection. Chromatographia 46(5–6):235–240

    Article  CAS  Google Scholar 

  • Qiang M, Xiao R, Su T, Wu BB, Tong ZQ, Liu Y, He RQ (2014) A novel mechanism for endogenous formaldehyde elevation in SAMP8 mouse. J Alzheimers Dis 40(4):1039–1053

    CAS  PubMed  Google Scholar 

  • Quesenberry MS, Lee YC (1996) A rapid formaldehyde assay using purpald reagent: application under periodation conditions. Anal Biochem 234(1):50–55

    Article  CAS  PubMed  Google Scholar 

  • Rivero RT, Topiwala V (2004) Quantitative determination of formaldehyde in cosmetics using a combined solid-phase microextraction-isotope dilution mass spectrometry method. J Chromatogr A 1029(1–2):217–222

    Article  CAS  PubMed  Google Scholar 

  • Rozylo TK, Siembida R, Memeth ZI, Tyihak E (2000) HPLC-OPLC-MS investigation of change of formaldehyde and its generators in human teeth of different physiological stage. Biomed Chromatogr 14(3):173–179

    Article  CAS  PubMed  Google Scholar 

  • Sardi E, Tyihak E (1994) Simple determination of formaldehyde in Dimedone adduct form in biological samples by high-performance liquid-chromatography. Biomed Chromatogr 8(6):313–314

    Article  CAS  PubMed  Google Scholar 

  • Sassine M, Varrault BP, Perraudin E, Chiappini L, Doussin JF, George C (2014) A new device for formaldehyde and total aldehydes real-time monitoring. Environ Sci Pollut Res Int 21(2):1258–1269

    Article  CAS  PubMed  Google Scholar 

  • Sawicki E, Hauser TR, Stanley TW, Elbert W (1961) The 3-methyl-2-benzothiazolone Hydrazone test. Anal Chem 33(1):93–96

    Article  CAS  Google Scholar 

  • Septon JC, Ku JC (1982) Workplace air sampling and Polarographic-determination of formaldehyde. Am Ind Hyg Assoc J 43(11):845–852

    Article  CAS  PubMed  Google Scholar 

  • Shrivastaw KP, Singh S (1995) A new method for spectrophotometric determination of formaldehyde in biologicals. Biologicals 23(1):47–53

    Article  CAS  PubMed  Google Scholar 

  • Soman A, Qiu Y, Li QC (2008) HPLC-UV method development and validation for the determination of low level formaldehyde in a drug substance. J Chromatogr Sci 46(6):461–465

    Article  CAS  PubMed  Google Scholar 

  • Spanel P, Smith D, Holland TA, Singary WA, Elder JB (1999) Analysis of formaldehyde in the headspace of urine from bladder and prostate cancer patients using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom 13(14):1354–1359

    Article  CAS  PubMed  Google Scholar 

  • Sritharathikhun P, Oshima M, Motomizu S (2005) On-line collection/concentration of trace amounts of formaldehyde in air with chromatomembrane cell and its sensitive determination by flow injection technique coupled with spectrophotometric and fluorometric detection. Talanta 67(5):1014–1022

    Article  CAS  PubMed  Google Scholar 

  • Su T, Wei Y, He RQ (2011) Assay of brain endogenous formaldehyde with 2, 4-Dinitrophenylhydrazine through UV-HPLC. Prog Biochem Biophys 38(12):1171–1177

    Article  CAS  Google Scholar 

  • Szarvas T, Szatloczky E, Volford J, Trezl L, Tyihak E, Rusznak I (1986) Determination of endogenous formaldehyde level in human-blood and urine by Dimedone-C-14 radiometric method. Journal of Radioanalytical and Nuclear Chemistry-Letters 106(6):357–367

    Article  CAS  Google Scholar 

  • Takigawa A, Yokoyama M, Tachibana S, Nagahara H, Ozawa K (2007) Anisotropic evaporation of forsterite in protoplanetary discs and its effect on infrared spectra. Meteorit Planet Sci 42:147–147

    Google Scholar 

  • Tang XJ, Bai Y, Duong A, Smith MT, Li LY, Zhang LP (2009) Formaldehyde in China: production, consumption, exposure levels, and health effects. Environ Int 35(8):1210–1224

    Article  CAS  PubMed  Google Scholar 

  • Tang YF, Chen H, Weng C, Tang XH, Zhang ML, Yang QQ, Hu T, Cai CQ (2014) The catalytic kinetic method for the determination of trace formaldehyde (FA) base on a bromate-eosin Y system. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 125:126–130

    Article  CAS  Google Scholar 

  • Tang YF, Chen H, Weng C, Tang XH, Zhang ML, Hu T (2015) Determination of trace amount of formaldehyde base on a bromate-malachite green system. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 135:506–510

    Article  CAS  Google Scholar 

  • Tang YH, Kong XQ, Xu A, Dong BL, Lin WY (2016a) Development of a two-photon fluorescent probe for imaging of endogenous formaldehyde in living tissues. Angewandte Chemie-International Edition 55(10):3356–3359

    Article  CAS  PubMed  Google Scholar 

  • Tang YH, Kong XQ, Liu ZR, Xu A, Liu WY (2016b) Lysosome-targeted turn-on fluorescent probe for endogenous formaldehyde in living cells. Anal Chem 88(19):9359–9363

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Raskin JP, Lahem D, Krumpmann A, Decroly A, Debliquy M (2017) A formaldehyde sensor based on molecularly-imprinted polymer on a TiO nanotube Array. Sensors 17(4):675

    Article  PubMed Central  Google Scholar 

  • Teshima N, Fernandez MSK, Ueda M, Nakai H, Sakai T (2011) Flow injection spectrophotometric determination of formaldehyde based on its condensation with hydroxylamine and subsequent redox reaction with iron(III)-ferrozine complex. Talanta 84(5):1205–1208

    Article  CAS  PubMed  Google Scholar 

  • Tian SQ, Ding XH, Zeng DW, Wu JJ, Zhang SP, Xie CS (2013) A low temperature gas sensor based on Pd-functionalized mesoporous SnO2 fibers for detecting trace formaldehyde. RSC Adv 3(29):11823–11831

    Article  CAS  Google Scholar 

  • Toda K, Yunoki S, Yanaga A, Takeuchi M, Ohira SI, Dasgupta PK (2014) Formaldehyde content of atmospheric aerosol. Environ Sci Technol 48(12):6636–6643

    Article  CAS  PubMed  Google Scholar 

  • Tomcik P, Jencusova P, Krajcikova M, Bustin D, Brescher R (2005) The detection of formaldehyde in textiles using interdigitated microelectrode array diffusion layer titration with electrogenerated hypobromite. Anal Bioanal Chem 383(5):864–868

    Article  CAS  PubMed  Google Scholar 

  • Tong ZQ, Zhang JL, Luo WH, Wang WS, Li FX, Li H, Luo HJ, Lu J, Zhou JN, Wan Y, He RQ (2009) Urine formaldehyde level is inversely correlated to mini mental state examination scores in senile dementia. Neurobiol Aging 32(1):31–41

    Article  PubMed  CAS  Google Scholar 

  • Trenholm RA, Rosario-Ortiz FL, Snyder SA (2008) Analysis of formaldehyde formation in wastewater using on-fiber derivatization-solid-phase microextraction-gas chromatography-mass spectrometry. J Chromatogr A 1210(1):25–29

    Article  CAS  PubMed  Google Scholar 

  • Ueta I, Mochizuki S, Kawakubo S, Kuwabara T, Jinno K, Saito Y (2015) A novel miniaturized extraction capillary for determining gaseous formaldehyde by high-performance liquid chromatography. Anal Bioanal Chem 407(3):899–905

    Article  CAS  PubMed  Google Scholar 

  • Wahed P, Razzaq MA, Dharmapuri S, Corrales M (2016) Determination of formaldehyde in food and feed by an in-house validated HPLC method. Food Chem 202:476–483

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Cui XJ, Fang GZ (2007) Rapid determination of formaldehyde and sulfur dioxide in food products and Chinese herbals. Food Chem 103(4):1487–1493

    Article  CAS  Google Scholar 

  • Wang YS, Tan X, Xue JH, Li GR, Shi LF, Yang HM, Liu L, Zhou B, Xiao XL (2011) Determination of trace formaldehyde in blood plasma by resonance fluorescence technology. Anal Chim Acta 690(2):234–239

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Ding J, Du XB, Sun X, Chen LG, Zeng QL, Xu Y, Zhang XP, Zhao Q, Ding L (2012a) Determination of formaldehyde in fruit juice based on magnetic strong cation-exchange resin modified with 2,4-dinitrophenylhydrazine. Food Chem 131(1):380–385

    Article  CAS  Google Scholar 

  • Wang XF, Cui FH, Lin JY, Ding B, Yu JY, AI-Deyab SS. (2012b) Functionalized nanoporous TiO2 fibers on quartz crystal microbalance platform for formaldehyde sensor. Sensors and Actuators B-Chemical 171:658–665

    Article  CAS  Google Scholar 

  • Wang T, Gao XL, Tong J, Chen LG (2012c) Determination of formaldehyde in beer based on cloud point extraction using 2,4-dinitrophenylhydrazine as derivative reagent. Food Chem 131(4):1577–1582

    Article  CAS  Google Scholar 

  • Wei YJ, Liu SH, Liu FJ, Liu J, Zhu Z, Li GL (2010) Direct measurement of formaldehyde and methanol emissions from gasohol engine via pulsed discharge helium ionization detector. Fuel 89(9):2179–2184

    Article  CAS  Google Scholar 

  • Weng X, Chon CH, Jiang H, Li DQ (2009) Rapid detection of formaldehyde concentration in food on a polydimethylsiloxane (PDMS) microfluidic chip. Food Chem 114(3):1079–1082

    Article  CAS  Google Scholar 

  • Wong KF, Deng JR, Wei XQ, Shao SP, Xiang DP, Wong MK (2015) Visual detection of formaldehyde by highly selective fluorophore labeling via gold(III) complex-mediated three-component coupling reaction. Org Biomol Chem 13(27):7408–7411

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (WHO) (2001) Air quality guidelines, 2nd edn. WHO regional publications, European series NO 91. WHO Regional Office for Europe, Copenhagen, pp 97–91

    Google Scholar 

  • Xu JC, Zhang Y, Zeng LT, Liu JB, Kinsella JM, Sheng RL (2016) A simple naphthalene-based fluorescent probe for high selective detection of formaldehyde in toffees and HeLa cells via aza-cope reaction. Talanta 160:645–652

    Article  CAS  PubMed  Google Scholar 

  • Yanaga A, Hozumi N, IchiOhira S, Hasegawa A, Toda K (2015) Formaldehyde vapor produced from hexamethylenetetramine and pesticide: simultaneous monitoring of formaldehyde and ozone in chamber experiments by flow-based hybrid micro-gas analyzer. Talanta 148:649–654

    Article  PubMed  CAS  Google Scholar 

  • Yang MQ, He JH (2016) Graphene oxide as quartz crystal microbalance sensing layers for detection of formaldehyde. Sensors and Actuators B-Chemical 228:486–490

    Article  CAS  Google Scholar 

  • Yang X, Wang Y, Liu W, Zhang Y, Zheng F, Wang S, Zhang D, Wang J (2015) A portable system for on-site quantification of formaldehyde in air based on G-quadruplex halves coupled with a smartphone reader. Biosens Bioelectron 75:48–54

    Article  CAS  Google Scholar 

  • Yang M, Ospina M, Tse C, Toth S, Caudill SP, Vesper HW (2017) Ultraperformance liquid chromatography tandem mass spectrometry method to determine formaldehyde hemoglobin adducts in humans as biomarker for formaldehyde exposure. Chem Res Toxicol 30(8):1592–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh TS, Lin TC, Chen CC, Wen HM (2013) Analysis of free and bound formaldehyde in squid and squid products by gas chromatography-mass spectrometry. J Food Drug Anal 21(2):190–197

    Article  CAS  Google Scholar 

  • Yu PH, Cauglin C, Wempe K, Gubisne-Haberle D (2003) A novel sensitive high-performance liquid chromatography/electrochemical procedure for measuring formaldehyde produced from oxidative deamination of methylamine and in biological samples. Anal Biochem 318(2):285–290

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Zhang XM, Ma JP, Liu QK, Wang P, Dong YB (2014a) Cu(I)-MOF: naked-eye colorimetric sensor for humidity and formaldehyde in single-crystal-to-single- crystal fashion. Chem Commun 50(12):1444–1446

    Article  CAS  Google Scholar 

  • Yu J, Su T, Zhou T, He YG, Lu J, Li J, He RQ (2014b) Uric formaldehyde levels are negatively correlated with cognitive abilities in healthy older adults. Neurosci Bull 30(2):172–184

    Google Scholar 

  • Yue XP, Zhang YY, Xing W, Chen YT, Ge PC, Li TT, He RQ, Tong ZQ (2017) A sensitive and rapid method for detecting formaldehyde in brain tissues. Anal Cell Pathol. Accepted on 5 July, (ID 9043134)

    Google Scholar 

  • Zali S, Jalali F, Es-haghi A, Shamsipur M (2013) Determination of free formaldehyde in vaccines and biological samples using solid-phase microextraction coupled to GC-MS. J Sep Sci 36(24):3883–3888

    Article  CAS  PubMed  Google Scholar 

  • Zhang SP, Xie CS, Bai ZK, Hu ML, Li HY, Zeng DW (2009) Spoiling and formaldehyde-containing detections in octopus with an E-nose. Food Chem 113(4):1346–1350

    Article  CAS  Google Scholar 

  • Zhang ZM, Zhao C, Ma YJ, Li GK (2014) Rapid analysis of trace volatile formaldehyde in aquatic products by derivatization reaction-based surface enhanced Raman spectroscopy. Analyst 139(14):3614–3621

    Google Scholar 

  • Zhao C, Li M, Jiao K (2006) Determination of formaldehyde by staircase voltammetry based on its electrocatalytic oxidation at a nickel electrode. J Anal Chem 61(12):1204–1208

    Article  CAS  Google Scholar 

  • Zilberstein G, Zilberstein R, Zilberstein S, Maor U, Baskin E, Zhang S, Righetti PG (2017) A miniaturized sensor for detection of formaldehyde fumes. Electrophoresis 38(17):2168–2174

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This project was supported by grants from the Beijing Municipal Science and Technology Project (Z161100000217141; Z161100000216137), the National Key Research and Development Program of China (2016YFC1306300), the National Basic Research Program of China (973 Program) (2012CB911004), the Natural Scientific Foundation of China (NSFC 31301880, NSFC 31270868), Foundation of Chinese Academy of Sciences (CAS-20140909), the Queensland-Chinese Academy of Sciences Biotechnology Fund (GJHZ201302), Program for Liaoning Excellent Talents in University (LJQ2015057), and Dalian High Level Talent Innovation Support Plan (No. 2015R067).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongqiao He .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Su, T., He, R. (2017). Methods in Determination of Formaldehyde. In: Formaldehyde and Cognition. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1177-5_14

Download citation

Publish with us

Policies and ethics