Skip to main content

Formaldehyde from Environment

  • Chapter
  • First Online:
Formaldehyde and Cognition

Abstract

Formaldehyde is widely present from the universe to a single cell. It also comes from our daily life, including food, water, clothing and building materials. As a main material or by-product from industrial and commercial production, formaldehyde is the most common aldehyde in the environment. The most common formaldehyde exposure is from contaminated air. In general, human beings spend around 90% of their time indoors, where there are complex mixtures of pollutants, including formaldehyde. Indoor formaldehyde exposures can be extremely dangerous, such as residential exposing to renovated homes, offices and public shopping centres. Another main method of formaldehyde immersion is through occupational exposure, for instance, in some factories, hospitals and laboratories, where formaldehyde concentrations are much higher and the people working there are highly vulnerable. Although the toxicity of formaldehyde has been extensively studied and its detections have been well developed, the exposure of formaldehyde is still serious all over the world, especially the countries that are producing and consuming huge amounts of construction materials which contain and emit aldehydes. People are exposed to formaldehyde through breathing and gastric intestinal digestion or by skin contact. The exposure to formaldehyde can cause respiratory irritation, asthma, tumours and multiple neuropsychological abnormalities or even cause death. Therefore, it is of great importance to control possible sources of formaldehyde and set up international standards to avoid formaldehyde insult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acheson ED, Gardner MJ, Pannett B, Barnes HR, Osmond C, Taylor CP (1984) Formaldehyde in the british chemical industry: an occupational cohort study. Lancet 1:611–616

    Google Scholar 

  • Agency for Toxic Substances and Disease Registry (1999a) Medical management guidelines for formaldehyde. Toxic Substances Portal. Website: https://www.atsdr.cdc.gov/mmg/mmg.asp?id=216&tid=39

  • Agency for Toxic Substances and Disease Registry (1999b) Toxicological profile for formaldehyde. Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services

    Google Scholar 

  • Andersen I, Lundqvist GR, Mølhave L (1975) Indoor air pollution due to chipboard used as a construction material. Atmos Environ 9:1121–1127

    Article  CAS  Google Scholar 

  • ARB (1997) Formaldehyde, toxic air contaminant identification. ARB/SSD/SES, September 1997

    Google Scholar 

  • Azari MR, Parisa A, Mohammad Javad J, Hamid S, Vajihe H (2012) Occupational exposure of a medical school staff to formaldehyde in tehran. Tanaffos 11:36–41

    PubMed  PubMed Central  Google Scholar 

  • Base USMC, Lejeune C, Carolina N, Maslia ML, Wre D (1999) Agency for Toxic Substances and Disease Registry toxicological profile information

    Google Scholar 

  • Binazzi A, Ferrante P, Marinaccio A (2015) Occupational exposure and sinonasal cancer: a systematic review and meta-analysis. BMC Cancer 2015:15–49

    Google Scholar 

  • Blair SK, Magnani L, Brand J, Wouterloot JG (2008) Formaldehyde in the far outer galaxy: constraining the outer boundary of the galactic habitable zone. Astrobiology 8:59–73

    Article  CAS  PubMed  Google Scholar 

  • Bosetti C, Mclaughlin JK, Tarone RE, Pira E, La VC (2008) Formaldehyde and cancer risk: a quantitative review of cohort studies through 2006. Ann Oncol 19:29–43

    Google Scholar 

  • Bradman A, Gaspar F, Castorina R, Williams J, Hoang T, Jenkins PL, Mckone TE, Maddalena R (2016) Formaldehyde and acetaldehyde exposure and risk characterization in California early childhood education environments. Indoor Air 27(1):104–113

    Article  PubMed  Google Scholar 

  • Brooks NM (1998) Alexander Butlerov and the professionalization of science in Russia. Russ Rev 57:10–24

    Article  Google Scholar 

  • Bruckner JV, Warren DA (2001) Toxic effects of solvents and vapors. In Klaassen CD (ed) Casarett Doull’s toxiology, the basic science of poisons. 6th edn. The McGraw-Hill Co., Kansas, pp 894–895

    Google Scholar 

  • Bruinen de Bruin Y, Koistinen K, Kephalopoulos S, Geiss O, Tirendi S, Kotzias D (2008) Characterisation of urban inhalation exposures to benzene, formaldehyde and acetaldehyde in the European Union: comparison of measured and modelled exposure data. Environ Sci Pollut Res 15:417–430

    Article  CAS  Google Scholar 

  • Casanova-Schmitz M, David RM, Heck HD (1984a) Oxidation of formaldehyde and acetaldehyde by NAD+−dependent dehydrogenases in rat nasal mucosal homogenates. Biochem Pharmacol 33:1137–1142

    Article  CAS  PubMed  Google Scholar 

  • Casanova-Schmitz M, Starr TB, Heck HD (1984b) Differentiation between metabolic incorporation and covalent binding in the labeling of macromolecules in the rat nasal mucosa and bone marrow by inhaled [14C]- and [3H]formaldehyde. Toxicol Appl Pharmacol 76:26–44

    Google Scholar 

  • Chen XX, Su T, He YG, He RQ (2017) Effect of oxidative stress on accommodation and transportation of formaldehyde by lysosome. Prog Biochem Biophys 44(6):486–494

    Google Scholar 

  • Cheremisinoff, N. P. (2016). 74. Photochemical smog, John Wiley & Sons, Inc

    Google Scholar 

  • Chi RH, Wu L (1998) The case of catastrophic producing counterfeit spirits in Shanxi province. Zhi Liang Tian Di 2:13–13

    Google Scholar 

  • Coggon D, Ntani G, Harris EC, Palmer KT (2014) Upper airway cancer, myeloid leukemia, and other cancers in a cohort of British chemical workers exposed to formaldehyde. Am J Epidemiol 179:1301–1311

    Article  PubMed  PubMed Central  Google Scholar 

  • Crawford S, Lungu CT (2011) Influence of temperature on styrene emission from a vinyl ester resin thermoset composite material. Sci Total Environ 409:3403–3408

    Article  CAS  PubMed  Google Scholar 

  • Crider KS, Yang TP, Berry RJ, Bailey LB (2012) Folate and DNA methylation: a review of molecular mechanisms and the evidence for Folate’s role. Adv Nutr 3:21–38

    Google Scholar 

  • d’Ettorre G, Criscuolo M, Mazzotta M (2017) Managing formaldehyde indoor pollution in anatomy pathology departments. Work 56(3):397–402

    Google Scholar 

  • Domingo JL, Rovira J, Roig N, Schuhmacher M, Nadal M (2014) Risk assessment of indoor exposure to formaldehyde: a potential threat. Toxicol Lett 229:S117–S117

    Google Scholar 

  • Dreyfuss JH (2010) Occupational formaldehyde exposure linked to increased risk of myeloid leukemia and death. Ca A Cancer J Clinicians 60:135–136

    Article  Google Scholar 

  • Du Z, Mo J, Zhang Y, Xu Q (2013) Volatile organic compound in newly renovated homes and associated Cancer risk in Guangzhou. A Preliminary Study, China

    Google Scholar 

  • Du Z, Mo J, Zhang Y (2014) Risk assessment of population inhalation exposure to volatile organic compounds and carbonyls in urban China. Environ Int 73:33–45

    Article  CAS  PubMed  Google Scholar 

  • Dunky M (2004) Adhesives based on formaldehyde condensation resins. Macromol Symp 217:417–430

    Article  CAS  Google Scholar 

  • Duong A, Steinmaus C, Mchale CM, Vaughan CP, Zhang L (2011) Reproductive and developmental toxicity of formaldehyde: a systematic review. Mut Res Rev Mut Res 728:118–138

    Article  CAS  Google Scholar 

  • European Food Safety Authority (2014) Endogenous formaldehyde turnover in humans compared with exogenous contribution from food sources. Efsa J 12:n/a–n/a

    Google Scholar 

  • Evans AM, Fameli N, Ogunbayo OA, Duan J, Navarro-Dorado J (2016) From contraction to gene expression: nanojunctions of the sarco/endoplasmic reticulum deliver site- and function-specific calcium signals. Sci China Life Sci 59:749–763

    Google Scholar 

  • Fox CH, Johnson FB, Whiting J, Roller PP (1985) Formaldehyde fixation. J Histochem Cytochem 33:845–853

    Article  CAS  PubMed  Google Scholar 

  • Fromme H, Heitmann D, Dietrich S, Schierl R, Körner W, Kiranoglu M, Zapf A, Twardella D (2008) Air quality in schools - classroom levels of carbon dioxide (CO2), volatile organic compounds (VOC), aldehydes, endotoxins and cat allergen. Das Gesundheitswesen 70:88–97

    Article  CAS  PubMed  Google Scholar 

  • Gerken T, Girard CA, Tung YCL, Webby CJ, Saudek V, Hewitson KS, Yeo GSH, Mcdonough MA, Cunliffe S, Mcneill LA (2007) The obesity-associated FTO gene encodes a 2-Oxoglutarate-dependent nucleic acid demethylase. Science 318:1469–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafson P, Barregård L, Lindahl R, Sällsten G (2004) Formaldehyde levels in Sweden: personal exposure, indoor, and outdoor concentrations. J Expo Anal Environ Epidemiol 15:252–260

    Article  Google Scholar 

  • Han KH, Zhang JS, Guo B (2017) Toward effective design and adoption of catalyst-based filter for indoor hazards: formaldehyde abatement under realistic conditions. J Hazard Mater 331:161–170

    Article  CAS  PubMed  Google Scholar 

  • He Z, Zhang Y, Wei W (2012) Formaldehyde and VOC emissions at different manufacturing stages of wood-based panels. Build Environ 47:197–204

    Article  Google Scholar 

  • Heck HD, White EL, Casanovaschmitz M (1982) Determination of formaldehyde in biological tissues by gas chromatography/mass spectrometry. Biomed Mass Spectrom 9:347–353

    Google Scholar 

  • Hill HG, Nuth JA (2003) The catalytic potential of cosmic dust: implications for prebiotic chemistry in the solar nebula and other protoplanetary systems. Astrobiology 3:291–304

    Article  CAS  PubMed  Google Scholar 

  • Ho SS, Ip HS, Ho KF, Ng LP, Chan CS, Dai WT, Cao JJ (2013) Hazardous airborne carbonyls emissions in industrial workplaces in China. J Air Waste Manag Assoc 63:864–877

    Article  CAS  PubMed  Google Scholar 

  • Hoekman SK (1992) Speciated measurements and calculated Reactivities of vehicle exhaust emissions from conventional and reformulated gasolines. Environ Sci Technol 26:1206–1216

    Article  CAS  Google Scholar 

  • Hoffman EA, Frey BL, Smith LM, Auble DT (2015) Formaldehyde crosslinking: a tool for the study of chromatin complexes. J Biol Chem 290:26404–26411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Wang T, Jin F (2016) Alzheimer’s disease and gut microbiota. Sci China Life Sci 59:1006–1023

    Google Scholar 

  • Huang L, Mo J, Sundell J, Fan Z, Zhang Y (2013) Health risk assessment of inhalation exposure to formaldehyde and benzene in newly remodeled buildings, Beijing. PLoS One 8:e79553

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang S, Xiong J, Zhang Y (2015) Impact of temperature on the ratio of initial Emittable concentration to Total concentration for formaldehyde in building materials: theoretical correlation and validation. Environ Sci Technol 49:1537–1544

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Wei W, Weschler LB, Salthammer T, Kan H, Bu Z, Zhang Y (2017) Indoor formaldehyde concentrations in urban China: preliminary study of some important influencing factors. Sci Total Environ 590–591:394–405

    Google Scholar 

  • Hult EL, Willem H, Price PN, Hotchi T, Russell ML, Singer BC (2015) Formaldehyde and acetaldehyde exposure mitigation in US residences: inhome measurements of ventilation control and source control. Indoor Air 25:523–535

    Google Scholar 

  • Institute for Health and Consumer Protection, P. a. C. E. U., I-21020 Ispra (VA) Italys (2005) HEXPOC-human exposure characterization of chemical substances; quantification of exposure routes. Luxembourg: Office for Official Publication of the European Communities. ISBN 92-894-8848-4, http://bookshop.europa.eu/en/hexpoc-human-exposure-characterization-of-chemical-substances-pbLBNA21501/downloads/LB-NA-21-501-EN-C/LBNA21501ENC

  • Jian X, Zhu MX (2016) Regulation of lysosomal ion homeostasis by channels and transporters. Sci China Life Sci 59:777–791

    Google Scholar 

  • Johannsen FR, Levinskas GJ, Tegeris AS (1986) Effects of formaldehyde in the rat and dog following oral exposure. Toxicol Lett 30:1–6

    Article  CAS  PubMed  Google Scholar 

  • Jurvelin J, Edwards R, Saarela K, Laine-Ylijoki J, De Bortoli M, Oglesby L, Schlapfer K, Georgoulis L, Tischerova E, Hanninen O, Jantunen M (2001) Evaluation of VOC measurements in the EXPOLIS study. Air pollution exposure distributions within adult Urban Urban Populations in Europe. J Environ Monit 3:159–165

    Article  CAS  PubMed  Google Scholar 

  • Kalapos MP (1998) An evolutionary role of formaldehyde. Acta Biol Hung 49:167–171

    Google Scholar 

  • Kalapos MP (1999) A possible evolutionary role of formaldehyde. Exp Mol Med 31:1–4

    Google Scholar 

  • Kerns WD, Pavkov KL, Donofrio DJ, Gralla EJ, Swenberg JA (1983) Carcinogenicity of formaldehyde in rats and mice after long-term inhalation exposure. Cancer Res 43:4382–4392

    CAS  PubMed  Google Scholar 

  • Kim KH, Jahan SA, Lee JT (2011) Exposure to formaldehyde and its potential human health hazards. J Environ Sci Health Part C Environ Carcinogen Ecotoxicol Rev 29:277–299

    Article  CAS  Google Scholar 

  • Kimbell J, Overton J, Subramaniam R, Schlosser P, Morgan K, Conolly R, Miller F (2001) Dosimetry modeling of inhaled formaldehyde: binning nasal flux predictions for quantitative risk assessment. Toxicol Sci 64:111–121

    Article  CAS  PubMed  Google Scholar 

  • Kirchner S, Derbez M, Duboudin C, Elias P, Gregoire A, Lucas JP, Pasquier N, Ramalho O, Weiss N (2008) Indoor air quality in French dwellings. Dissert Theses Gradw 22:1

    Google Scholar 

  • Kotzias D (2005) Indoor air and human exposure assessment–needs and approaches. Exp Toxicol Pathol 57(Suppl 1):5–7

    Google Scholar 

  • Kotzias DK, Koistinen K, Kephalopoulos S, Schlitt C, Carrer P, Maroni M (2005) The INDEX project: critical appraisal of the setting and implementation of indoor exposure limits in the EU, European Commission. JRC, Ispra

    Google Scholar 

  • Kotzias D, Geiss O, Tirendi S, Barreromoreno J, Reina V, Gotti A, Ciminoreale G, Casati B, Marafante E, Sarigiannis D (2009) Exposure to multiple air contaminants in public buildings, schools and kindergartens–the European indoor air monitoring and exposure assessment (AIRMEX) study. Fresenius Environ Bull 18:670

    CAS  Google Scholar 

  • Ladeira C, Gomes MC, Brito M (2010) 74 genotoxicity biomarkers in occupational exposure to formaldehyde in pathology anatomy laboratories. Eur J Cancer Suppl 8:19–19

    Article  Google Scholar 

  • Ladeira C, Viegas S, Carolino E, Prista J, Gomes MC, Brito M (2011) Genotoxicity biomarkers in occupational exposure to formaldehyde--the case of histopathology laboratories. Mut Res Fundam Mol Mech Mutagen 721:15–20

    CAS  Google Scholar 

  • Lai HK, Bayer-Oglesby L, Colvile R, Götschi T, Jantunen MJ, Künzli N, Kulinskaya E, Schweizer C, Nieuwenhuijsen MJ (2006) Determinants of indoor air concentrations of PM in six European cities (EXPOLIS study). Atmos Environ 40:1299–1313

    Article  CAS  Google Scholar 

  • Lee EG, Magrm R, Kusti M, Kashon ML, Guffey S, Costas MM, Boykin CJ, Harper M (2017) Comparison between active (pumped) and passive (diffusive) sampling methods for formaldehyde in pathology and histology laboratories. J Occup Environ Hyg 14:31–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leon CPD, Pletcher D (1995) Removal of formaldehyde from aqueous solutions via oxygen reduction using a reticulated vitreous carbon cathode cell. J Appl Electrochem 25:307–314

    Article  Google Scholar 

  • Li YN, He RQ (2016) The effects of formaldehyde on life span and stress resistance in Drosophila melanogaster. Prog Biochem Biophys 43:420–428

    Google Scholar 

  • Li T, Su T, He Y-G, He R-Q (2014) Formaldehyde, an epigenetic factor for learning and memory participating histone (de)methylation. Acta Neuropharmacologica 4:21–29

    CAS  Google Scholar 

  • Lin CC, Yu KP, Zhao P, Lee WM (2009) Evaluation of impact factors on VOC emissions and concentrations from wooden flooring based on chamber tests. Build Environ 44:525–533

    Article  Google Scholar 

  • Lin D, Guo Y, Yi J, Kuang D, Li X, Deng H, Huang K, Guan L, He Y, Zhang X (2013) Occupational exposure to formaldehyde and genetic damage in the peripheral blood lymphocytes of plywood workers. J Occup Health 55:284

    Article  PubMed  Google Scholar 

  • Liu C, Zhang Y, Benning JL, Little JC (2015) The effect of ventilation on indoor exposure to semivolatile organic compounds. Indoor Air 25:285–296

    Article  PubMed  Google Scholar 

  • Miller FP, Vandome AF, Mcbrewster J (2010) August Wilhelm von Hofmann I. Eur J Inorg Chem 19:314–316

    Google Scholar 

  • Madureira J, Paciencia I, Cavaleiro-Rufo J, de Oliveira Fernandes E (2016) Indoor pollutant exposure among children with and without asthma in Porto, Portugal, during the cold season. Environ Sci Pollut Res Int 23:20539–20552

    Article  CAS  PubMed  Google Scholar 

  • Mangum JG, Darling J, Menten KM, Henkel C (2007) Formaldehyde densitometry of starburst galaxies. Astrophys J 673:832

    Article  Google Scholar 

  • Marcon A, Fracasso ME, Marchetti P, Doria D, Girardi P, Guarda L, Pesce G, Pironi V, Ricci P, de Marco R (2014) Outdoor formaldehyde and NO2 exposures and markers of genotoxicity in children living near chipboard industries. Environ Health Perspect 122:639–645

    PubMed  PubMed Central  Google Scholar 

  • Matsuo Y, Nishino Y, Fukutsuka T, Sugie Y (2008) Removal of formaldehyde from gas phase by silylated graphite oxide containing amino groups. Carbon 46:1162–1163

    Article  CAS  Google Scholar 

  • McLaughlin JK (1994) Formaldehyde and cancer: a critical review. Int Arch Occup Environ Health 66:295–301

    Article  CAS  PubMed  Google Scholar 

  • Meng F, Wu H (2015) Indoor air pollution by Methylsiloxane in household and automobile settings. PLoS One 10:e0135509

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirabelli MC, Holt SM, Cope JM (2011) Anatomy laboratory instruction and occupational exposure to formaldehyde. Occupat Environ Med 68:375–378

    Article  CAS  Google Scholar 

  • Mui KW, Wong LT, Hui PS, Chan WY (2009) Formaldehyde exposure risk in air-conditioned offices of Hong Kong. Build Serv Eng 30:279–286

    Article  Google Scholar 

  • Müller RH, Babel W (1991) Formaldehyde as a carbon and energy source in yeast growth. Zentralbl Mikrobiol 146:25–33

    Google Scholar 

  • Myers GE (1985) The effects of temperature and humidity on formaldehyde emission from UF-bonded boards: a literature critique. For Prod J 35:20–31

    CAS  Google Scholar 

  • National Research Council (US) Committee to Review EPA’s Draft IRIS Assessment of Formaldehyde (2011) Review of the Environmental Protection Agency’s draft IRIS assessment of formaldehyde. In: Review of the Environmental Protection Agency’s draft IRIS assessment of formaldehyde. National Academies Press (US) https://www.ncbi.nlm.nih.gov/books/NBK208227/

  • Nielsen GD, Larsen ST, Wolkoff P (2017) Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk assessment. Arch Toxicol 91:35–61

    Article  CAS  PubMed  Google Scholar 

  • Ochs SDM, Grotz LDO, Factorine LS, Rodrigues MR, Netto ADP (2012) Occupational exposure to formaldehyde in an institute of morphology in Brazil: a comparison of area and personal sampling. Environ Sci Pollut Res 19:2813–2819

    Article  CAS  Google Scholar 

  • Oglesby L (2000) Population sampling in European air pollution exposure study, EXPOLIS: comparisons between the cities and representativeness of the samples. J Expos Anal Environ Epidemiol 10:355

    Article  Google Scholar 

  • Parker ET, Cleaves JH, Burton AS, Glavin DP, Dworkin JP, Zhou M, Bada JL, Fernández FM (2014) Conducting miller-urey experiments. J Vis Exp 83:e51039

    Google Scholar 

  • Parthasarathy S, Maddalena RL, Russell ML, Apte MG (2011) Effect of temperature and humidity on formaldehyde emissions in temporary housing units. J Air Waste Manage Assoc 61:689–695

    Article  CAS  Google Scholar 

  • Peters TL, Kamel F, Lundholm C, Feychting M, Weibull CE, Sandler DP, Wiebert P, Sparen P, Ye W, Fang F (2017) Occupational exposures and the risk of amyotrophic lateral sclerosis. Occup Environ Med 74:87–92

    Article  PubMed  Google Scholar 

  • Pinto JP, Gladstone GR, Yung YL (1980) Photochemical production of formaldehyde in Earth's primitive atmosphere. Science 210:183–185

    Article  CAS  PubMed  Google Scholar 

  • Pizzi A (2003) Phenolic resin adhesives. In: Handbook of adhesive technology. CRC Press, Boca Raton

    Google Scholar 

  • Restani P, Galli CL (1991) Oral toxicity of formaldehyde and its derivatives. Crit Rev Toxicol 21:315–328

    Article  CAS  PubMed  Google Scholar 

  • Reuss G, Disteldorf W, Gamer AO, Hilt A (2000) Formaldehyde. Wiley‐VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  • Roberts AL, Johnson NJ, Cudkowicz ME, Eum KD, Weisskopf MG (2016) Job-related formaldehyde exposure and ALS mortality in the USA. J Neurol Neurosurg Psychiatry 87:786–788

    Article  PubMed  Google Scholar 

  • Salonen HJ, Pasanen AL, Lappalainen SK, Riuttala HM, Tuomi TM, Pasanen PO, Back BC, Reijula KE (2009) Airborne concentrations of volatile organic compounds, formaldehyde and ammonia in Finnish office buildings with suspected indoor air problems. J Occup Environ Hyg 6:200–209

    Article  CAS  PubMed  Google Scholar 

  • Salthammer T (2013) Formaldehyde in the ambient atmosphere: from an indoor pollutant to an outdoor pollutant? ChemInform 44:3320

    Article  Google Scholar 

  • Salthammer T, Fuhrmann F, Kaufhold S, Meyer B, Schwarz A (1995) Effects of climatic parameters on formaldehyde concentrations in indoor air. Indoor Air 5:120–128

    Article  CAS  Google Scholar 

  • Salthammer T, Mentese S, Marutzky R (2010) Formaldehyde in the indoor environment. Chem Rev 110:2536–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salthammer T (2015) The formaldehyde dilemma. Int J Hyg Environ Health 218(4):433–436

    Google Scholar 

  • Saowakon N, Ngernsoungnern P, Watcharavitoon P, Ngernsoungnern A, Kosanlavit R (2015) Formaldehyde exposure in gross anatomy laboratory of Suranaree University of Technology: a comparison of area and personal sampling. Environ Sci Pollut Res Int 22:19002–19012

    Article  CAS  PubMed  Google Scholar 

  • Sarigiannis DA, Karakitsios SP, Gotti A, Liakos IL, Katsoyiannis A (2011) Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environ Int 37:743–765

    Article  CAS  PubMed  Google Scholar 

  • Seco R, Filella PI (2008) Formaldehyde emission and uptake by Mediterranean trees Quercus Ilex and Pinus Halepensis. Atmos Environ 42:7907–7914

    Article  CAS  Google Scholar 

  • Sekine Y (2005) Sick house/building syndrome in JAPAN – current status and practical research on indoor air quality. Korean J Environ Health 31(3):207–214

    CAS  Google Scholar 

  • Sekine Y, Katori R, Tsuda Y, Kitahara T (2016) Colorimetric monitoring of formaldehyde in indoor environment using built-in camera on mobile phone. Environ Technol 37:1647–1655

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine J, Cole P, Casero R (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    Article  CAS  PubMed  Google Scholar 

  • Sie SS, Timo K, Pentti K, Pirjo H, Eero P (2012) Occupational exposure to wood dust and formaldehyde and risk of nasal, nasopharyngeal, and lung cancer among Finnish men. Cancer Manage Res 4:223–232

    Article  Google Scholar 

  • Stranger M, Potgieter-Vermaak SS, Van GR (2007) Comparative overview of indoor air quality in Antwerp, Belgium. Environ Int 33(6):789–797

    Article  CAS  PubMed  Google Scholar 

  • Stribling R, Miller SL (1987) Energy yields for hydrogen cyanide and formaldehyde syntheses: the HCN and amino acid concentrations in the primitive ocean. Orig Life Evol Biosph 17:261–273

    Article  CAS  PubMed  Google Scholar 

  • Su T, Dan S, Li T, Wang XH, He R-Q (2015) Nucleic acid methylation/demethylation, endogenous formaldehyde and age-related cognitive impairment. Prog Biochem Biophys 42:211–219

    CAS  Google Scholar 

  • Suarez-Bertoa R, Clairotte M, Arlitt B, Nakatani S, Hill L, Winkler K, Kaarsberg C, Knauf T, Zijlmans R, Boertien H (2017) Intercomparison of ethanol, formaldehyde and acetaldehyde measurements from a flex-fuel vehicle exhaust during the WLTC. Fuel 203:330–340

    Article  CAS  Google Scholar 

  • Tang X, Bai Y, Duong A, Smith MT, Li L, Zhang L (2009) Formaldehyde in China: production, consumption, exposure levels, and health effects. Environ Int 36:1210–1224

    Article  Google Scholar 

  • Til HP, Woutersen RA, Feron VJ, Hollanders VHM, Falke HE, Clary JJ (1989) Two-year drinking-water study of formaldehyde in rats. Food Chem Toxicol 27:77–87

    Article  CAS  PubMed  Google Scholar 

  • Tohmura S (2001) Influence of the melamine content in melamine-urea-formaldehyde resins on formaldehyde emission and cured resin structure. J Wood Sci 47:451–457

    Article  CAS  Google Scholar 

  • Toth J, Biggin MD (2000) The specificity of protein–DNA crosslinking by formaldehyde: in vitro and in drosophila embryos. Nucleic Acids Res 28:e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tulpule K, Dringen R (2013) Formaldehyde in brain: an overlooked player in neurodegeneration? J Neurochem 127:7–21

    CAS  PubMed  Google Scholar 

  • Uchiyama I (2008) The regulations for indoor air pollution in Japan: a public health perspective. J Risk Res 11:301–314

    Article  Google Scholar 

  • Vaughan TL, Strader C, Davis S, Daling JR (1986a) Formaldehyde and cancers of the pharynx, sinus and nasal cavity: I. Occupational exposures. Int J Cancer 38:677–683

    Article  CAS  PubMed  Google Scholar 

  • Vaughan TL, Strader C, Davis S, Daling JR (1986b) Formaldehyde and cancers of the pharynx, sinus and nasal cavity: II. Residential exposures. Int J Cancer 38:685–688

    Article  CAS  PubMed  Google Scholar 

  • Victorin K (1998) Risk assessment of carcinogenic air pollutants. IMM-report 1998. Institutet for miljo medicin, Stockholm. Available: http://www.imm.ki.se/publ/PDF/Rapp1-98.pdf

  • Viegas S, Nunes C, Maltavacas J, Gomes M, Brito M, Mendonça P, Prista J (2010) Genotoxic effects in occupational exposure to formaldehyde: a study in anatomy and pathology laboratories and formaldehyde-resins production. J Occupat Med Toxicol 196:1–8

    Google Scholar 

  • Viegas S, Ladeira C, Gomes M, Nunes C, Brito M, Prista J (2013) Exposure and genotoxicity assessment methodologies - the case of formaldehyde occupational exposure. Curr Anal Chem 9:476–484

    Article  CAS  Google Scholar 

  • Wahed P, Razzaq MA, Dharmapuri S, Corrales M (2016) Determination of formaldehyde in food and feed by an in-house validated HPLC method. Food Chem 202:476–483

    Article  CAS  PubMed  Google Scholar 

  • Weaver HF (1970) Some characteristics of interstellar gas in the galaxy. Springer, Dordrecht

    Google Scholar 

  • World Health Organization (2010) WHO guidelines for indoor air quality: selected pollutants. In: WHO guidelines for indoor air quality: selected pollutants, vol. World Health Organization, Geneva. Available at http://www.ncbi.nlm.nih.gov/books/NBK138711/

  • World Health Organization (2014) WHO indoor air quality guidelines: household fuel combustion. Indoor Air Pollution

    Google Scholar 

  • Xing C, Riedl B, Cloutier A, Shaler SM (2005) Characterization of urea-formaldehyde resin penetration into medium density fiberboard fibers. Wood Sci Technol 39:374–384

    Article  CAS  Google Scholar 

  • Xiong J, Zhang Y (2010) Impact of temperature on the initial emittable concentration of formaldehyde in building materials: experimental observation. Indoor Air 20:523–529

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Wei W, Huang S, Zhang Y (2013) Association between the emission rate and temperature for chemical pollutants in building materials: general correlation and understanding. Environ Sci Technol 47:8540–8547

    Article  CAS  PubMed  Google Scholar 

  • Yan F, Frey PA (2011) RNA methylation by radical SAM enzymes RlmN and Cfr proceeds via methylene transfer and hydride shift. Proc Natl Acad Sci U S A 108:3930–3934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Liang W, Zhu L, Duan Y, Jin Y, He L (2014) Relationship between the concentration of formaldehyde in the air and asthma in children: a meta-analysis. Int J Clin Exp Med 8:8358–8362

    Google Scholar 

  • Ye W, Zhang X, Gao J, Cao G., Zhou X, Su X (2017) Indoor air pollutants, ventilation rate determinants and potential control strategies in Chinese dwellings: a literature review. Sci Total Environ 586:696–729

    Google Scholar 

  • Zaitseva N, Zemlyanova M, Dolgikh O (2013) Formaldehyde exposure and allergic sensitization in children. In: Environment and health – bridging south, north, east and west. MDPI, Basel

    Google Scholar 

  • Zhai L, Zhao J, Xu B, Deng Y, Xu Z (2013) Influence of indoor formaldehyde pollution on respiratory system health in the urban area of Shenyang, China. Afr Health Sci 13:137–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Freeman LEB, Nakamura J, Hecht SS, Vandenberg JJ, Smith MT, Sonawane BR (2010a) Formaldehyde and leukemia: epidemiology, potential mechanisms and implications for risk assessment. Environ Mol Mutagen 51:181–191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Tang X, Rothman N, Vermeulen R, Ji Z, Shen M, Qiu C, Guo W, Liu S, Reiss B, Freeman LB, Ge Y, Hubbard AE, Hua M, Blair A, Galvan N, Ruan X, Alter BP, Xin KX, Li S, Moore LE, Kim S, Xie Y, Hayes RB, Azuma M, Hauptmann M, Xiong J, Stewart P, Li L, Rappaport SM, Huang H, Fraumeni JF Jr, Smith MT, Lan Q (2010b) Occupational exposure to formaldehyde, hematotoxicity, and leukemia-specific chromosome changes in cultured myeloid progenitor cells. Cancer Epidemiol Biomark Prev 19:80–88

    Article  CAS  Google Scholar 

  • Zuckerman et al (1970) Formaldehyde appears to be a useful probe for astrochemists due to its low reactivity in the gas. Wikipedia.unicefuganda.org

Download references

Acknowledgements

We would like to thank NCBI for the data on formaldehyde we cited from the website: www.ncbi.nlm.nih.gov. This project was supported by grants from the National Key Research and Development Programme of China (2016YFC1306300), the National Basic Research Programme of China (973 Programme) (2012CB911004), the Beijing Municipal Science and Technology Project (Z161100000217141; Z161100000216137), the Natural Scientific Foundation of China (NSFC 31270868), Foundation of Chinese Academy of Sciences CAS-20140909 and the Queensland-Chinese Academy of Sciences Biotechnology Fund (GJHZ201302). This project was also supported by grants from the National Natural Science Foundation of China (NSFC 81274093), Shandong Province Natural Science Foundation (ZR2015HL128) and Health Department of Shandong Province (2014WS0478).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongqiao He .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Qu, M., Lu, J., He, R. (2017). Formaldehyde from Environment. In: Formaldehyde and Cognition. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1177-5_1

Download citation

Publish with us

Policies and ethics