Skip to main content

Immune Cell Metabolism in Tumor Microenvironment

  • Chapter
  • First Online:
Immune Metabolism in Health and Tumor

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1011))

Abstract

Tumor microenvironment (TME) is composed of tumor cells, immune cells, cytokines, extracellular matrix, etc. The immune system and the metabolisms of glucose, lipids, amino acids, and nucleotides are integrated in the tumorigenesis and development. Cancer cells and immune cells show metabolic reprogramming in the TME, which intimately links immune cell functions and edits tumor immunology. Recent findings in immune cell metabolism hold the promising possibilities toward clinical therapeutics for treating cancer. This chapter introduces the updated understandings of metabolic reprogramming of immune cells in the TME and suggests new directions in manipulation of immune responses for cancer diagnosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lord EM, Penney DP, Sutherland RM, Cooper RA Jr (1979) Morphological and functional characteristics of cells infiltrating and destroying tumor multicellular spheroids in vivo. Virchows Arch B Cell Pathol Incl Mol Pathol 31:103–116

    Article  CAS  PubMed  Google Scholar 

  2. Shearer WT, Fink MP (1977) Immune surveillance system: its failure and activation. Prog Hematol 10:247–310

    CAS  PubMed  Google Scholar 

  3. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    Article  CAS  PubMed  Google Scholar 

  4. Teng MW, Galon J, Fridman WH, Smyth MJ (2015) From mice to humans: developments in cancer immunoediting. J Clin Invest 125:3338–3346

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    Article  CAS  PubMed  Google Scholar 

  6. Galon J, Angell HK, Bedognetti D, Marincola FM (2013) The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39:11–26

    Article  CAS  PubMed  Google Scholar 

  7. Desrichard A, Snyder A, Chan TA (2016) Cancer neoantigens and applications for immunotherapy. Clin Cancer Res 22:807–812

    Article  CAS  PubMed  Google Scholar 

  8. Inman BA, Frigola X, Dong H, Kwon ED (2007) Costimulation, coinhibition and cancer. Curr Cancer Drug Targets 7:15–30

    Article  CAS  PubMed  Google Scholar 

  9. Boroughs LK, DeBerardinis RJ (2015) Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 17:351–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Biswas S, Metabolic K (2015) Reprogramming of immune cells in cancer progression. Immunity 43:435–449

    Article  CAS  PubMed  Google Scholar 

  11. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  12. Chiarugi P, Cirri P (2015) Metabolic exchanges within tumor microenvironment. Cancer Lett 380:272–280

    Article  PubMed  CAS  Google Scholar 

  13. Krebs H, The A (1972) Pasteur effect and the relations between respiration and fermentation. Essays Biochem 8:1–34

    CAS  PubMed  Google Scholar 

  14. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    Article  CAS  PubMed  Google Scholar 

  15. Garcia-Heredia JM, Carnero A (2015) Decoding Warburg’s hypothesis: tumor-related mutations in the mitochondrial respiratory chain. Oncotarget 6:41582–41599

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chan DA et al (2011) Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci Transl Med 3:94ra70

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lussey-Lepoutre C et al (2015) Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism. Nat Commun 6:8784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clark GR et al (2014) Germline FH mutations presenting with pheochromocytoma. J Clin Endocrinol Metab 99:E2046–E2050

    Article  CAS  PubMed  Google Scholar 

  19. Sonveaux P et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Semenza GL (2008) Tumor metabolism: cancer cells give and take lactate. J Clin Invest 118:3835–3837

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fischer K et al (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109:3812–3819

    Article  CAS  PubMed  Google Scholar 

  22. Gottfried E et al (2006) Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107:2013–2021

    Article  CAS  PubMed  Google Scholar 

  23. De Vitto H, Perez-Valencia J, Radosevich JA (2016) Glutamine at focus: versatile roles in cancer. Tumour Biol 37:1541–1558

    Article  PubMed  CAS  Google Scholar 

  24. McKeehan WL (1982) Glycolysis, glutaminolysis and cell proliferation. Cell Biol Int Rep 6:635–650

    Article  CAS  PubMed  Google Scholar 

  25. Mushtaq M, Darekar S, Klein G, Kashuba E (2015) Different mechanisms of regulation of the Warburg effect in lymphoblastoid and Burkitt lymphoma cells. PLoS One 10:e0136142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Dang CV, Kim JW, Gao P, Yustein J (2008) The interplay between MYC and HIF in cancer.Nat Rev Cancer 8:51–56

    Google Scholar 

  27. Gao P et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wise DR et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105:18782–18787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. DeBerardinis RJ et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104:19345–19350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haissaguerre M, Saucisse N, Cota D (2014) Influence of mTOR in energy and metabolic homeostasis. Mol Cell Endocrinol 397:67–77

    Article  CAS  PubMed  Google Scholar 

  31. Salloum D, Mukhopadhyay S, Tung K, Polonetskaya A, Foster DA (2014) Mutant ras elevates dependence on serum lipids and creates a synthetic lethality for rapamycin. Mol Cancer Ther 13:733–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bensaad K et al (2014) Fatty acid uptake and lipid storage induced by HIF-1alpha contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep 9:349–365

    Article  CAS  PubMed  Google Scholar 

  33. Carracedo A, Cantley LC, Pandolfi PP (2013) Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 13:227–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nomura DK et al (2010) Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140:49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sugiarto S et al (2011) Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell 20:328–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Borah A, Raveendran S, Rochani A, Maekawa T, Kumar DS (2015) Targeting self-renewal pathways in cancer stem cells: clinical implications for cancer therapy. Oncogenesis 4:e177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takeishi S, Nakayama KI (2016) To wake up cancer stem cells, or to let them sleep, that is the question. Cancer Sci 107:875–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Viale A et al (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514:628–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kurtova AV et al (2015) Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517:209–213

    Article  CAS  PubMed  Google Scholar 

  40. Zhuang ZH et al (2008) Early upregulation of cyclooxygenase-2 in human papillomavirus type 16 and telomerase-induced immortalization of human esophageal epithelial cells. J Gastroenterol Hepatol 23:1613–1620

    Article  CAS  PubMed  Google Scholar 

  41. Hale JS et al (2014) Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression. Stem Cells 32:1746–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Franklin RA et al (2014) The cellular and molecular origin of tumor-associated macrophages. Science 344:921–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    Article  CAS  PubMed  Google Scholar 

  44. Mantovani A et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  CAS  PubMed  Google Scholar 

  45. Yang K et al (2013) T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39:1043–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheng SC et al (2014) mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345:1250684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Baardman J, Licht I, de Winther MP, Van den Bossche J (2015) Metabolic-epigenetic crosstalk in macrophage activation. Epigenomics 7:1155–1164

    Article  CAS  PubMed  Google Scholar 

  48. Bosca L et al (2015) Metabolic signatures linked to macrophage polarization: from glucose metabolism to oxidative phosphorylation. Biochem Soc Trans 43:740–744

    Article  CAS  PubMed  Google Scholar 

  49. Colegio OR et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:559–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Krawczyk CM et al (2010) Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115:4742–4749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chang M, Hamilton JA, Scholz GM, Elsegood CL (2009) Glycolytic control of adjuvant-induced macrophage survival: role of PI3K, MEK1/2, and Bcl-2. J Leukoc Biol 85:947–956

    Article  CAS  PubMed  Google Scholar 

  52. Byles V et al (2013) The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 4:2834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Howell JJ, Manning BD (2011) mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol Metab 22:94–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schmid MC et al (2011) Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kgamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell 19:715–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rivera LB et al (2015) Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy. Cell Rep 11:577–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rozengurt E, Soares HP, Sinnet-Smith J (2014) Suppression of feedback loops mediated by PI3K/mTOR induces multiple overactivation of compensatory pathways: an unintended consequence leading to drug resistance. Mol Cancer Ther 13:2477–2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pello OM et al (2012) Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood 119:411–421

    Article  PubMed  CAS  Google Scholar 

  58. Palsson-McDermott EM et al (2015) Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab 21:65–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Semenza GL, Roth PH, Fang HM, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269:23757–23763

    CAS  PubMed  Google Scholar 

  60. Semenza G, Targeting L (2003) HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  CAS  PubMed  Google Scholar 

  61. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11:889–896

    Article  CAS  PubMed  Google Scholar 

  62. Lewis CE, De Palma M, Naldini L (2007) Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer Res 67:8429–8432

    Article  CAS  PubMed  Google Scholar 

  63. Lemke G, Lu Q (2003) Macrophage regulation by Tyro 3 family receptors. Curr Opin Immunol 15:31–36

    Article  CAS  PubMed  Google Scholar 

  64. Chang CI, Liao JC, Kuo L (2001) Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res 61:1100–1106

    CAS  PubMed  Google Scholar 

  65. Ho VW, Sly LM (2009) Derivation and characterization of murine alternatively activated (M2) macrophages. Methods Mol Biol 531:173–185

    Article  CAS  PubMed  Google Scholar 

  66. Stuehr DJ, Nathan CF (1989) Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169:1543–1555

    Article  CAS  PubMed  Google Scholar 

  67. Ellyard JI, Quah BJ, Simson L, Parish CR (2010) Alternatively activated macrophage possess antitumor cytotoxicity that is induced by IL-4 and mediated by arginase-1. J Immunother 33:443–452

    Article  CAS  PubMed  Google Scholar 

  68. Odegaard JI, Chawla A (2011) Alternative macrophage activation and metabolism. Annu Rev Pathol 6:275–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang SC et al (2014) Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 15:846–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Traversari C, Sozzani S, Steffensen KR, Russo V (2014) LXR-dependent and -independent effects of oxysterols on immunity and tumor growth. Eur J Immunol 44:1896–1903

    Article  CAS  PubMed  Google Scholar 

  71. Li Y et al (2011) Pleiotropic regulation of macrophage polarization and tumorigenesis by formyl peptide receptor-2. Oncogene 30:3887–3899

    Article  CAS  PubMed  Google Scholar 

  72. Park H, Lee J, Park T, Lee S, Yi W (2015) Enhancement of photo-current conversion efficiency in a CdS/CdSe quantum-dot-sensitized solar cell incorporated with single-walled carbon nanotubes. J Nanosci Nanotechnol 15:1614–1617

    Article  CAS  PubMed  Google Scholar 

  73. Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311

    Article  CAS  PubMed  Google Scholar 

  74. Biswas SK, Mantovani A (2012) Orchestration of metabolism by macrophages. Cell Metab 15:432–437

    Article  CAS  PubMed  Google Scholar 

  75. Zhou D et al (2014) Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal 26:192–197

    Article  CAS  PubMed  Google Scholar 

  76. Jha AK et al (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42:419–430

    Article  CAS  PubMed  Google Scholar 

  77. Zhao Q et al (2012) Activated CD69+ T cells foster immune privilege by regulating IDO expression in tumor-associated macrophages. J Immunol 188:1117–1124

    Article  CAS  PubMed  Google Scholar 

  78. Frumento G, Piazza T, Di Carlo E, Ferrini S (2006) Targeting tumor-related immunosuppression for cancer immunotherapy. Endocr Metab Immune Disord Drug Targets 6:233–237

    Article  PubMed  Google Scholar 

  79. Cairo G, Recalcati S, Mantovani A, Locati M (2011) Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype. Trends Immunol 32:241–247

    Article  CAS  PubMed  Google Scholar 

  80. Recalcati S et al (2010) Differential regulation of iron homeostasis during human macrophage polarized activation. Eur J Immunol 40:824–835

    Article  CAS  PubMed  Google Scholar 

  81. Deng R et al (2013) Inhibition of tumor growth and alteration of associated macrophage cell type by an HO-1 inhibitor in breast carcinoma-bearing mice. Oncol Res 20:473–482

    Article  CAS  PubMed  Google Scholar 

  82. Wilkinson N, Pantopoulos K (2013) IRP1 regulates erythropoiesis and systemic iron homeostasis by controlling HIF2alpha mRNA translation. Blood 122:1658–1668

    Article  CAS  PubMed  Google Scholar 

  83. Koskenkorva-Frank TS, Weiss G, Koppenol WH, Burckhardt S (2013) The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic Biol Med 65:1174–1194

    Article  CAS  PubMed  Google Scholar 

  84. Kayadibi H, Sertoglu E, Uyanik M, Tapan S (2014) Neutrophil-lymphocyte ratio is useful for the prognosis of patients with hepatocellular carcinoma. World J Gastroenterol 20:9631–9632

    Article  PubMed  PubMed Central  Google Scholar 

  85. Galdiero MR et al (2013) Tumor associated macrophages and neutrophils in cancer. Immunobiology 218:1402–1410

    Article  CAS  PubMed  Google Scholar 

  86. Galdiero MR, Garlanda C, Jaillon S, Marone G, Mantovani A (2013) Tumor associated macrophages and neutrophils in tumor progression. J Cell Physiol 228:1404–1412

    Article  CAS  PubMed  Google Scholar 

  87. Fridlender ZG et al (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16:183–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Federzoni EA et al (2012) PU.1 is linking the glycolytic enzyme HK3 in neutrophil differentiation and survival of APL cells. Blood 119:4963–4970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ahmed N, Weidemann MJ (1994) Purine metabolism in promyelocytic HL60 and dimethylsulphoxide-differentiated HL60 cells. Leuk Res 18:441–451

    Article  CAS  PubMed  Google Scholar 

  90. Azevedo EP et al (2015) A metabolic shift toward pentose phosphate pathway is necessary for amyloid fibril- and phorbol 12-myristate 13-acetate-induced Neutrophil Extracellular Trap (NET) formation. J Biol Chem 290:22174–22183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Suzuki H, Kakinuma K (1983) Evidence that NADPH is the actual substrate of the oxidase responsible for the “respiratory burst” of phagocytosing polymorphonuclear leukocytes. J Biochem 93:709–715

    Article  CAS  PubMed  Google Scholar 

  92. Rodriguez-Espinosa O, Rojas-Espinosa O, Moreno-Altamirano MM, Lopez-Villegas EO, Sanchez-Garcia FJ (2015) Metabolic requirements for neutrophil extracellular traps formation. Immunology 145:213–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cools-Lartigue J et al (2013) Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. 123:3446–3458

    Google Scholar 

  94. Wculek SK, Malanchi I (2015) Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528:413–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Karasuyama H, Yamanishi Y (2014) Basophils have emerged as a key player in immunity. Curr Opin Immunol 31:1–7

    Article  CAS  PubMed  Google Scholar 

  96. Davis BP, Rothenberg ME (2014) Eosinophils and cancer. Cancer Immunol Res 2:1–8

    Article  CAS  PubMed  Google Scholar 

  97. Berek C (2016) Eosinophils: important players in humoral immunity. Clin Exp Immunol 183:57–64

    Article  CAS  PubMed  Google Scholar 

  98. Shi HZ (2004) Eosinophils function as antigen-presenting cells. J Leukoc Biol 76:520–527

    Article  CAS  PubMed  Google Scholar 

  99. Cho KS et al (2014) Adipose-derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma. Mediat Inflamm 2014:436476

    Article  CAS  Google Scholar 

  100. Pinto A et al (1997) The role of eosinophils in the pathobiology of Hodgkin’s disease. Ann Oncol 8(Suppl 2):89–96

    Article  PubMed  Google Scholar 

  101. Nolen BM, Lokshin AE (2010) Targeting CCL11 in the treatment of ovarian cancer. Expert Opin Ther Targets 14:157–167

    Article  CAS  PubMed  Google Scholar 

  102. Vendramini-Costa DB, Carvalho JE (2012) Molecular link mechanisms between inflammation and cancer. Curr Pharm Des 18:3831–3852

    Article  CAS  PubMed  Google Scholar 

  103. Simon HU et al (2003) Interleukin-2 primes eosinophil degranulation in hypereosinophilia and Wells’ syndrome. Eur J Immunol 33:834–839

    Article  CAS  PubMed  Google Scholar 

  104. Nadif R, Zerimech F, Bouzigon E, Matran R (2013) The role of eosinophils and basophils in allergic diseases considering genetic findings. Curr Opin Allergy Clin Immunol 13:507–513

    Article  CAS  PubMed  Google Scholar 

  105. Lotfi R et al (2009) Eosinophils oxidize damage-associated molecular pattern molecules derived from stressed cells. J Immunol 183:5023–5031

    Article  CAS  PubMed  Google Scholar 

  106. Elishmereni M, Bachelet I, Nissim Ben-Efraim AH, Mankuta D, Levi-Schaffer F (2013) Interacting mast cells and eosinophils acquire an enhanced activation state in vitro. Allergy 68:171–179

    Article  CAS  PubMed  Google Scholar 

  107. Kataoka S, Konishi Y, Nishio Y, Fujikawa-Adachi K, Tominaga A (2004) Antitumor activity of eosinophils activated by IL-5 and eotaxin against hepatocellular carcinoma. DNA Cell Biol 23:549–560

    Article  CAS  PubMed  Google Scholar 

  108. Krystel-Whittemore M, Dileepan KN, Wood JG (2015) Mast cell: a multi-functional master cell. Front Immunol 6:620

    PubMed  Google Scholar 

  109. Sekar Y, Moon TC, Slupsky CM, Befus AD (2010) Protein tyrosine nitration of aldolase in mast cells: a plausible pathway in nitric oxide-mediated regulation of mast cell function. J Immunol 185:578–587

    Article  CAS  PubMed  Google Scholar 

  110. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  CAS  PubMed  Google Scholar 

  111. Shiga K et al (2015) Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers (Basel) 7:2443–2458

    Article  Google Scholar 

  112. Johansson AC et al (2012) Cancer-associated fibroblasts induce matrix metalloproteinase-mediated cetuximab resistance in head and neck squamous cell carcinoma cells. Mol Cancer Res 10:1158–1168

    Article  CAS  PubMed  Google Scholar 

  113. Zhang D et al (2015) Metabolic reprogramming of cancer-associated fibroblasts by IDH3alpha downregulation. Cell Rep 10:1335–1348

    Article  PubMed  CAS  Google Scholar 

  114. Guido C et al (2012) Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth. Oncotarget 3:798–810

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lisanti MP, Martinez-Outschoorn UE, Sotgia F (2013) Oncogenes induce the cancer-associated fibroblast phenotype: metabolic symbiosis and “fibroblast addiction” are new therapeutic targets for drug discovery. Cell Cycle 12:2723–2732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Janzer A et al (2012) The H3K4me3 histone demethylase Fbxl10 is a regulator of chemokine expression, cellular morphology, and the metabolome of fibroblasts. J Biol Chem 287:30984–30992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Martinez-Outschoorn UE, Lisanti MP, Sotgia F (2014) Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol 25:47–60

    Article  CAS  PubMed  Google Scholar 

  118. Shi H et al (2015) Overexpression of monocarboxylate anion transporter 1 and 4 in T24-induced cancer-associated fibroblasts regulates the progression of bladder cancer cells in a 3D microfluidic device. Cell Cycle 14:3058–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xing Y, Zhao S, Zhou BP, Mi J (2015) Metabolic reprogramming of the tumour microenvironment. FEBS J 282:3892–3898

    Article  CAS  PubMed  Google Scholar 

  120. Orr MT, Lanier LL (2010) Natural killer cell education and tolerance. Cell 142:847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vivier E et al (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Keppel MP, Saucier N, Mah AY, Vogel TP, Cooper MA (2015) Activation-specific metabolic requirements for NK Cell IFN-gamma production. J Immunol 194:1954–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Velasquez SY et al (2016) Short-term hypoxia synergizes with interleukin 15 priming in driving glycolytic gene transcription and supports human natural killer cell activities. J Biol Chem 291:12960–12977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Le Nours J et al (2016) Atypical natural killer T-cell receptor recognition of CD1d-lipid antigens. Nat Commun 7:10570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Dahlberg CI, Sarhan D, Chrobok M, Duru AD, Alici E (2015) Natural killer cell-based therapies targeting cancer: possible strategies to gain and sustain anti-tumor activity. Front Immunol 6:605

    Article  PubMed  PubMed Central  Google Scholar 

  126. Hida K, Maishi N, Torii C, Hida Y (2016) Tumor angiogenesis-characteristics of tumor endothelial cells. Int J Clin Oncol 21:206–212

    Article  CAS  PubMed  Google Scholar 

  127. Ribatti D (2016) Tumor refractoriness to anti-VEGF therapy. Oncotarget 7:46668–46677

    Article  PubMed  PubMed Central  Google Scholar 

  128. Goel S et al (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dudley AC (2012) Tumor endothelial cells. Cold Spring Harb Perspect Med 2:a006536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Lee SL, Fanburg BL (1987) Glycolytic activity and enhancement of serotonin uptake by endothelial cells exposed to hypoxia/anoxia. Circ Res 60:653–658

    Article  CAS  PubMed  Google Scholar 

  131. Jakobsson L et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12:943–953

    Article  CAS  PubMed  Google Scholar 

  132. De Bock K, Georgiadou M, Carmeliet P (2013) Role of endothelial cell metabolism in vessel sprouting. Cell Metab 18:634–647

    Article  PubMed  CAS  Google Scholar 

  133. De Bock K et al (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154:651–663

    Article  PubMed  CAS  Google Scholar 

  134. Schoors S et al (2014) Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab 19:37–48

    Article  CAS  PubMed  Google Scholar 

  135. Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 71:2550–2560

    Article  CAS  PubMed  Google Scholar 

  136. Sonveaux P et al (2012) Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS One 7:e33418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Leopold JA, Zhang YY, Scribner AW, Stanton RC, Loscalzo J (2003) Glucose-6-phosphate dehydrogenase overexpression decreases endothelial cell oxidant stress and increases bioavailable nitric oxide. Arterioscler Thromb Vasc Biol 23:411–417

    Article  CAS  PubMed  Google Scholar 

  138. Tian WN et al (1998) Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem 273:10609–10617

    Article  CAS  PubMed  Google Scholar 

  139. Locasale JW et al (2011) Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 43:869–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jiang P et al (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13:310–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Anastasiou D et al (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334:1278–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Spolarics Z, Lang CH, Bagby GJ, Spitzer JJ (1991) Glutamine and fatty acid oxidation are the main sources of energy for Kupffer and endothelial cells. Am J Phys 261:G185–G190

    CAS  Google Scholar 

  143. Unterluggauer H et al (2008) Premature senescence of human endothelial cells induced by inhibition of glutaminase. Biogerontology 9:247–259

    Article  CAS  PubMed  Google Scholar 

  144. Li H et al (2001) Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells. Am J Physiol Endocrinol Metab 280:E75–E82

    CAS  PubMed  Google Scholar 

  145. Wu G, Haynes TE, Li H, Yan W, Meininger CJ (2001) Glutamine metabolism to glucosamine is necessary for glutamine inhibition of endothelial nitric oxide synthesis. Biochem J 353:245–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kim YW, Byzova TV (2014) Oxidative stress in angiogenesis and vascular disease. Blood 123:625–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Dagher Z, Ruderman N, Tornheim K, Ido Y (2001) Acute regulation of fatty acid oxidation and amp-activated protein kinase in human umbilical vein endothelial cells. Circ Res 88:1276–1282

    Article  CAS  PubMed  Google Scholar 

  148. Wang Q et al (2006) Induction of allospecific tolerance by immature dendritic cells genetically modified to express soluble TNF receptor. J Immunol 177:2175–2185

    Article  CAS  PubMed  Google Scholar 

  149. Dudek AM, Martin S, Garg AD, Agostinis P (2013) Immature, semi-mature, and fully mature dendritic cells: toward a DC-cancer cells interface that augments anticancer immunity. Front Immunol 4:438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Perrot I et al (2007) Dendritic cells infiltrating human non-small cell lung cancer are blocked at immature stage. J Immunol 178:2763–2769

    Article  CAS  PubMed  Google Scholar 

  151. Cahill EF, Tobin LM, Carty F, Mahon BP, English K (2015) Jagged-1 is required for the expansion of CD4+ CD25+ FoxP3+ regulatory T cells and tolerogenic dendritic cells by murine mesenchymal stromal cells. Stem Cell Res Ther 6:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Melief CJ (2008) Cancer immunotherapy by dendritic cells. Immunity 29:372–383

    Article  CAS  PubMed  Google Scholar 

  153. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426

    Article  CAS  PubMed  Google Scholar 

  154. Apetoh L, Locher C, Ghiringhelli F, Kroemer G, Zitvogel L (2011) Harnessing dendritic cells in cancer. Semin Immunol 23:42–49

    Article  CAS  PubMed  Google Scholar 

  155. Dong H, Bullock TN (2014) Metabolic influences that regulate dendritic cell function in tumors. Front Immunol 5:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Kumar V, Gabrilovich DI (2014) Hypoxia-inducible factors in regulation of immune responses in tumour microenvironment. Immunology 143:512–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mancino A et al (2008) Divergent effects of hypoxia on dendritic cell functions. Blood 112:3723–3734

    Article  CAS  PubMed  Google Scholar 

  158. Yang M et al (2010) HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunol Cell Biol 88:165–171

    Article  CAS  PubMed  Google Scholar 

  159. Nasi A, Rethi B (2013) Disarmed by density: a glycolytic break for immunostimulatory dendritic cells? Oncoimmunology 2:e26744

    Article  PubMed  PubMed Central  Google Scholar 

  160. Novitskiy SV et al (2008) Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 112:1822–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ahmed MS et al (2015) Dab2, a negative regulator of DC immunogenicity, is an attractive molecular target for DC-based immunotherapy. Oncoimmunology 4:e984550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL (2015) Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol 194:2985–2991

    Article  PubMed  CAS  Google Scholar 

  163. Galvin KC et al (2013) Blocking retinoic acid receptor-alpha enhances the efficacy of a dendritic cell vaccine against tumours by suppressing the induction of regulatory T cells. Cancer Immunol Immunother 62:1273–1282

    Article  CAS  PubMed  Google Scholar 

  164. Ravindran R et al (2014) Vaccine activation of the nutrient sensor GCN2 in dendritic cells enhances antigen presentation. Science 343:313–317

    Article  CAS  PubMed  Google Scholar 

  165. Everts B et al (2014) TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nat Immunol 15:323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rehman A et al (2013) Role of fatty-acid synthesis in dendritic cell generation and function. J Immunol 190:4640–4649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Harshyne LA, Zimmer MI, Watkins SC, Barratt-Boyes SM (2003) A role for class A scavenger receptor in dendritic cell nibbling from live cells. J Immunol 170:2302–2309

    Article  CAS  PubMed  Google Scholar 

  168. Malinarich F et al (2015) High mitochondrial respiration and glycolytic capacity represent a metabolic phenotype of human tolerogenic dendritic cells. J Immunol 194:5174–5186

    Article  CAS  PubMed  Google Scholar 

  169. Cubillos-Ruiz JR et al (2015) ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161:1527–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Li S, Champlin R, Fitchen JH, Gale RP (1985) Abnormalities of myeloid progenitor cells after “successful” bone marrow transplantation. J Clin Invest 75:234–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Strober S (1984) Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: exploring obscure relationships. Annu Rev Immunol 2:219–237

    Article  CAS  PubMed  Google Scholar 

  172. Young MR, Kolesiak K, Wright MA, Gabrilovich DI (1999) Chemoattraction of femoral CD34+ progenitor cells by tumor-derived vascular endothelial cell growth factor. Clin Exp Metastasis 17:881–888

    Article  CAS  PubMed  Google Scholar 

  173. Bronte V et al (2000) Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood 96:3838–3846

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Tartour E et al (2011) Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev 30:83–95

    Article  CAS  PubMed  Google Scholar 

  175. Morse MA, Hall JR, Plate JM (2009) Countering tumor-induced immunosuppression during immunotherapy for pancreatic cancer. Expert Opin Biol Ther 9:331–339

    Article  CAS  PubMed  Google Scholar 

  176. Maeda A, Kawamura T, Ueno T, Usui N, Miyagawa S (2014) Monocytic suppressor cells derived from human peripheral blood suppress xenogenic immune reactions. Xenotransplantation 21:46–56

    Article  PubMed  Google Scholar 

  177. Obermajer N, Muthuswamy R, Lesnock J, Edwards RP, Kalinski P (2011) Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 118:5498–5505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Draghiciu O, Lubbers J, Nijman HW, Daemen T (2015) Myeloid derived suppressor cells-an overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology 4:e954829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Hossain F et al (2015) Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res 3:1236–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zoso A et al (2014) Human fibrocytic myeloid-derived suppressor cells express IDO and promote tolerance via Treg-cell expansion. Eur J Immunol 44:3307–3319

    Article  CAS  PubMed  Google Scholar 

  181. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77

    Article  CAS  PubMed  Google Scholar 

  182. Nagaraj S, Schrum AG, Cho HI, Celis E, Gabrilovich DI (2010) Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J Immunol 184:3106–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lu T et al (2011) Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121:4015–4029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Brito C et al (1999) Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J Immunol 162:3356–3366

    CAS  PubMed  Google Scholar 

  185. Kasic T et al (2011) Modulation of human T-cell functions by reactive nitrogen species. Eur J Immunol 41:1843–1849

    Article  CAS  PubMed  Google Scholar 

  186. Wu AA, Drake V, Huang HS, Chiu S, Zheng L (2015) Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology 4:e1016700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Crook KR et al (2015) Myeloid-derived suppressor cells regulate T cell and B cell responses during autoimmune disease. J Leukoc Biol 97:573–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Obermajer N, Muthuswamy R, Odunsi K, Edwards RP, Kalinski P (2011) PGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res 71:7463–7470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhang N, Bevan MJ (2011) CD8(+) T cells: foot soldiers of the immune system. Immunity 35:161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Liao W, Lin JX, Leonard WJ (2013) Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38:13–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Siska PJ, Rathmell JC (2015) T cell metabolic fitness in antitumor immunity. Trends Immunol 36:257–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. MacIver NJ, Michalek RD, Rathmell JC (2013) Metabolic regulation of T lymphocytes. Annu Rev Immunol 31:259–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Zheng Y, Delgoffe GM, Meyer CF, Chan W, Powell JD (2009) Anergic T cells are metabolically anergic. J Immunol 183:6095–6101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Patsoukis N et al (2015) PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun 6:6692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330:1344–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Calcinotto A et al (2012) Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res 72:2746–2756

    Article  CAS  PubMed  Google Scholar 

  197. Chang CH et al (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153:1239–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Maciolek JA, Pasternak JA, Wilson HL (2014) Metabolism of activated T lymphocytes. Curr Opin Immunol 27:60–74

    Article  CAS  PubMed  Google Scholar 

  199. Wang Q, Liang B, Shirwany NA, Zou MH (2011) 2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase. PLoS One 6:e17234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Zeng H, Chi H (2014) mTOR signaling and transcriptional regulation in T lymphocytes. Transcription 5:e28263

    Article  PubMed  PubMed Central  Google Scholar 

  201. Fernandez-Ramos AA, Poindessous V, Marchetti-Laurent C, Pallet N, Loriot MA (2016) The effect of immunosuppressive molecules on T-cell metabolic reprogramming. Biochimie 127:23–36

    Article  CAS  PubMed  Google Scholar 

  202. Blagih J et al (2015) The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42:41–54

    Article  CAS  PubMed  Google Scholar 

  203. Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5:641–654

    Article  CAS  PubMed  Google Scholar 

  204. Rodriguez PC et al (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64:5839–5849

    Article  CAS  PubMed  Google Scholar 

  205. Bronte V et al (2005) Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med 201:1257–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Aulak KS et al (2001) Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc Natl Acad Sci U S A 98:12056–12061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Molon B et al (2011) Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 208:1949–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Wang W et al (2016) Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell 165:1092–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Liu X et al (2010) Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 115:3520–3530

    Article  CAS  PubMed  Google Scholar 

  210. Uyttenhove C et al (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274

    Article  CAS  PubMed  Google Scholar 

  211. Carbotti G et al (2015) IL-27 induces the expression of IDO and PD-L1 in human cancer cells. Oncotarget 6:43267–43280

    Article  PubMed  PubMed Central  Google Scholar 

  212. Leung BS, Stout LE, Shaskan EG, Thompson RM (1992) Differential induction of indoleamine-2,3-dioxygenase (IDO) by interferon-gamma in human gynecologic cancer cells. Cancer Lett 66:77–81

    Article  CAS  PubMed  Google Scholar 

  213. Sorensen RB et al (2011) Spontaneous cytotoxic T-cell reactivity against indoleamine 2,3-dioxygenase-2. Cancer Res 71:2038–2044

    Article  CAS  PubMed  Google Scholar 

  214. Yang W et al (2016) Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature 531:651–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Mucida D et al (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317:256–260

    Article  CAS  PubMed  Google Scholar 

  216. Liu Z et al (2015) Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature 528:225–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Vacchelli E et al (2014) Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 3:e957994

    Article  PubMed  PubMed Central  Google Scholar 

  218. Michalek RD et al (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186:3299–3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Lochner M, Berod L, Sparwasser T (2015) Fatty acid metabolism in the regulation of T cell function. Trends Immunol 36:81–91

    Article  CAS  PubMed  Google Scholar 

  220. Beier UH et al (2015) Essential role of mitochondrial energy metabolism in Foxp3(+) T-regulatory cell function and allograft survival. FASEB J 29:2315–2326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Bollinger T et al (2014) HIF-1alpha- and hypoxia-dependent immune responses in human CD4+CD25high T cells and T helper 17 cells. J Leukoc Biol 96:305–312

    Article  PubMed  CAS  Google Scholar 

  222. Shi LZ et al (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208:1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. McGeachy MJ, Cua DJ (2008) Th17 cell differentiation: the long and winding road. Immunity 28:445–453

    Article  CAS  PubMed  Google Scholar 

  224. Leung S et al (2010) The cytokine milieu in the interplay of pathogenic Th1/Th17 cells and regulatory T cells in autoimmune disease. Cell Mol Immunol 7:182–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Berod L et al (2014) De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 20:1327–1333

    Article  CAS  PubMed  Google Scholar 

  226. Caro-Maldonado A et al (2014) Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J Immunol 192:3626–3636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Bashir U et al (2015) PET/MRI in oncological imaging: state of the art. Diagnostics (Basel) 5:333–357

    Article  Google Scholar 

  228. Flechsig P, Mehndiratta A, Haberkorn U, Kratochwil C, Giesel FL (2015) PET/MRI and PET/CT in lung lesions and thoracic malignancies. Semin Nucl Med 45:268–281

    Article  PubMed  Google Scholar 

  229. Mehanna H et al (2016) PET-CT Surveillance versus neck dissection in advanced head and neck cancer. N Engl J Med 374:1444–1454

    Article  CAS  PubMed  Google Scholar 

  230. Radford J et al (2015) Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med 372:1598–1607

    Article  CAS  PubMed  Google Scholar 

  231. McGranahan N et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351:1463–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Palazon A et al (2012) The HIF-1alpha hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy. Cancer Discov 2:608–623

    Article  CAS  PubMed  Google Scholar 

  233. Noman MZ et al (2014) PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211:781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Gowrishankar K et al (2015) Inducible but not constitutive expression of PD-L1 in human melanoma cells is dependent on activation of NF-kappaB. PLoS One 10:e0123410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Kleffel S et al (2015) Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell 162:1242–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Zelenay S et al (2015) Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162:1257–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Chen C, Rowell EA, Thomas RM, Hancock WW, Wells AD (2006) Transcriptional regulation by Foxp3 is associated with direct promoter occupancy and modulation of histone acetylation. J Biol Chem 281:36828–36834

    Article  CAS  PubMed  Google Scholar 

  238. Onodera T et al (2009) Constitutive expression of IDO by dendritic cells of mesenteric lymph nodes: functional involvement of the CTLA-4/B7 and CCL22/CCR4 interactions. J Immunol 183:5608–5614

    Article  CAS  PubMed  Google Scholar 

  239. Chevolet I et al (2015) Characterization of the immune network of IDO, tryptophan metabolism, PD-L1, and in circulating immune cells in melanoma. Oncoimmunology 4:e982382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Hellmann MD, Friedman CF, Wolchok JD (2016) Combinatorial cancer immunotherapies. Adv Immunol 130:251–277

    Article  PubMed  Google Scholar 

  241. Dai H, Wang Y, Lu X, Han W (2016) Chimeric antigen receptors modified T-cells for cancer therapy. J Natl Cancer Inst 108:djv439

    Google Scholar 

  242. Jackson HJ, Rafiq S, Brentjens RJ (2016) Driving CAR T-cells forward. Nat Rev Clin Oncol 13:370–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Kawalekar OU et al (2016) Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44:380–390

    Article  CAS  PubMed  Google Scholar 

  244. Wurth R et al (2016) Drug-repositioning opportunities for cancer therapy: novel molecular targets for known compounds. Drug Discov Today 21:190–199

    Article  CAS  PubMed  Google Scholar 

  245. Wang BY et al (2015) Intermittent high dose proton pump inhibitor enhances the antitumor effects of chemotherapy in metastatic breast cancer. J Exp Clin Cancer Res 34:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Luciani F et al (2004) Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. J Natl Cancer Inst 96:1702–1713

    Article  CAS  PubMed  Google Scholar 

  247. Nicolau-Galmes F et al (2011) Terfenadine induces apoptosis and autophagy in melanoma cells through ROS-dependent and -independent mechanisms. Apoptosis 16:1253–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Strandberg TE et al (2004) Mortality and incidence of cancer during 10-year follow-up of the Scandinavian Simvastatin Survival Study (4S). Lancet 364:771–777

    Article  CAS  PubMed  Google Scholar 

  249. Ishimoto T et al (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 19:387–400

    Article  CAS  PubMed  Google Scholar 

  250. Yae T et al (2012) Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nat Commun 3:883

    Article  PubMed  CAS  Google Scholar 

  251. Yoshikawa M et al (2013) xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamous cell carcinoma. Cancer Res 73:1855–1866

    Article  CAS  PubMed  Google Scholar 

  252. Ferrannini E (2014) The target of metformin in type 2 diabetes. N Engl J Med 371:1547–1548

    Article  PubMed  CAS  Google Scholar 

  253. Psutka SP et al (2015) The association between metformin use and oncologic outcomes among surgically treated diabetic patients with localized renal cell carcinoma. Urol Oncol 33(67):e15–e23

    Google Scholar 

  254. Zhang Y et al (2014) Involvement of metformin and AMPK in the radioresponse and prognosis of luminal versus basal-like breast cancer treated with radiotherapy. Oncotarget 5:12936–12949

    Article  PubMed  PubMed Central  Google Scholar 

  255. Chen H et al (2015) Synergistic effects of metformin in combination with EGFR-TKI in the treatment of patients with advanced non-small cell lung cancer and type 2 diabetes. Cancer Lett 369:97–102

    Article  CAS  PubMed  Google Scholar 

  256. Takahashi RU et al (2015) Loss of microRNA-27b contributes to breast cancer stem cell generation by activating ENPP1. Nat Commun 6:7318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Singh M, Ferrara N (2012) Modeling and predicting clinical efficacy for drugs targeting the tumor milieu. Nat Biotechnol 30:648–657

    Article  CAS  PubMed  Google Scholar 

  258. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Clem B et al (2008) Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 7:110–120

    Article  CAS  PubMed  Google Scholar 

  260. Whiteside TL (2006) The role of immune cells in the tumor microenvironment. Cancer Treat Res 130:103–124

    Article  CAS  PubMed  Google Scholar 

  261. Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14:1014–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Mauge L, Terme M, Tartour E, Helley D (2014) Control of the adaptive immune response by tumor vasculature. Front Oncol 4:61

    Article  PubMed  PubMed Central  Google Scholar 

  263. Kohlhapp FJ, Mitra AK, Lengyel E, Peter ME (2015) MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment. Oncogene 34:5857–5868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Pio R, Ajona D, Lambris JD (2013) Complement inhibition in cancer therapy. Semin Immunol 25:54–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Yuneva MO et al (2012) The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 15:157–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Li, Y., Wan, Y.Y., Zhu, B. (2017). Immune Cell Metabolism in Tumor Microenvironment. In: Li, B., Pan, F. (eds) Immune Metabolism in Health and Tumor. Advances in Experimental Medicine and Biology, vol 1011. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1170-6_5

Download citation

Publish with us

Policies and ethics