Skip to main content

Metabolic Regulation of T Cell Immunity

  • Chapter
  • First Online:
Book cover Immune Metabolism in Health and Tumor

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1011))

Abstract

It is becoming increasingly clear that cellular metabolism plays a critical role in the propagation of appropriate, effective, and pathologic immune responses. In this chapter, we detail the metabolic pathways involved in T cell activation and differentiation, highlighting specific factors responsible for directing the processes that lead to metabolic programming at important stages in the dynamic life cycle of this immune cell lineage. Additionally, this chapter will discuss how key metabolites are acquired, touching on the factors and conditions regulating the expression of crucial transporter molecules in response to activation and pathological states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang R et al (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35(6):871–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 28:445–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Littman DR, Rudensky AY (2010) Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140(6):845–858

    Article  CAS  PubMed  Google Scholar 

  4. Rudensky AY (2011) Regulatory T cells and Foxp3. Immunol Rev 241(1):260–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8(7):523–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nishikawa H, Sakaguchi S (2010) Regulatory T cells in tumor immunity. Int J Cancer 127(4):759–767

    CAS  PubMed  Google Scholar 

  7. Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564

    Article  CAS  PubMed  Google Scholar 

  8. Schell JC, Rutter J (2013) The long and winding road to the mitochondrial pyruvate carrier. Cancer Metab 1(1):6

    PubMed  PubMed Central  Google Scholar 

  9. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  10. Fox CJ, Hammerman PS, Thompson CB (2005) Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 5(11):844–852

    Article  CAS  PubMed  Google Scholar 

  11. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pearce EL, Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38(4):633–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pearce EL et al (2013) Fueling immunity: insights into metabolism and lymphocyte function. Science 342(6155):1242454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Segal AW (2008) The function of the NADPH oxidase of phagocytes and its relationship to other NOXs in plants, invertebrates, and mammals. Int J Biochem Cell Biol 40(4):604–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wahl DR et al (2012) Distinct metabolic programs in activated T cells: opportunities for selective immunomodulation. Immunol Rev 249(1):104–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Boer RJ, Homann D, Perelson AS (2003) Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J Immunol 171(8):3928–3935

    Article  PubMed  Google Scholar 

  17. Pearce EL et al (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460(7251):103–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shi LZ et al (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208(7):1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dardalhon V et al (2008) Role of Th1 and Th17 cells in organ-specific autoimmunity. J Autoimmun 31(3):252–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sukumar M et al (2013) Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J Clin Invest 123(10):4479–4488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schwenk RW et al (2010) Fatty acid transport across the cell membrane: regulation by fatty acid transporters. Prostaglandins Leukot Essent Fat Acids 82(4–6):149–154

    Article  CAS  Google Scholar 

  22. Lochner M, Berod L, Sparwasser T (2015) Fatty acid metabolism in the regulation of T cell function. Trends Immunol 36(2):81–91

    Article  CAS  PubMed  Google Scholar 

  23. Michalek RD et al (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186(6):3299–3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Delgoffe GM et al (2011) The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 12(4):295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaech SM, Cui W (2012) Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol 12(11):749–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van der Windt GJ et al (2012) Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36(1):68–78

    Article  PubMed  CAS  Google Scholar 

  27. van der Windt GJ et al (2013) CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc Natl Acad Sci U S A 110(35):14336–14341

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fraser KA et al (2013) Preexisting high frequencies of memory CD8+ T cells favor rapid memory differentiation and preservation of proliferative potential upon boosting. Immunity 39(1):171–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nicholls DG (2009) Spare respiratory capacity, oxidative stress and excitotoxicity. Biochem Soc Trans 37(Pt 6):1385–1388

    Article  CAS  PubMed  Google Scholar 

  30. Newsholme EA, Crabtree B, Ardawi MS (1985) The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Biosci Rep 5(5):393–400

    Article  CAS  PubMed  Google Scholar 

  31. van Stipdonk MJ et al (2003) Dynamic programming of CD8+ T lymphocyte responses. Nat Immunol 4(4):361–365

    Article  PubMed  CAS  Google Scholar 

  32. Rathmell JC et al (2000) In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol Cell 6(3):683–692

    Article  CAS  PubMed  Google Scholar 

  33. Newell MK et al (2006) Cellular metabolism as a basis for immune privilege. J Immune Based Ther Vaccines 4:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Macintyre AN et al (2014) The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab 20(1):61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mueckler M, Thorens B (2013) The SLC2 (GLUT) family of membrane transporters. Mol Asp Med 34(2–3):121–138

    Article  CAS  Google Scholar 

  36. Scheepers A, Joost HG, Schurmann A (2004) The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. JPEN J Parenter Enteral Nutr 28(5):364–371

    Article  CAS  PubMed  Google Scholar 

  37. Wood IS, Trayhurn P (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 89(1):3–9

    Article  CAS  PubMed  Google Scholar 

  38. Qu Q et al (2016) Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis 7:e2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chakrabarti R et al (1994) Changes in glucose transport and transporter isoforms during the activation of human peripheral blood lymphocytes by phytohemagglutinin. J Immunol 152(6):2660–2668

    CAS  PubMed  Google Scholar 

  40. Frauwirth KA et al (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16(6):769–777

    Article  CAS  PubMed  Google Scholar 

  41. Jacobs SR et al (2008) Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 180(7):4476–4486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cham CM et al (2008) Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur J Immunol 38(9):2438–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cham CM, Gajewski TF (2005) Glucose availability regulates IFN-gamma production and p70S6 kinase activation in CD8+ effector T cells. J Immunol 174(8):4670–4677

    Article  CAS  PubMed  Google Scholar 

  44. Nakaya M et al (2014) Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40(5):692–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sinclair LV et al (2013) Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol 14(5):500–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Verrey F et al (2004) CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch 447(5):532–542

    Article  CAS  PubMed  Google Scholar 

  47. Hayashi K et al (2013) LAT1 is a critical transporter of essential amino acids for immune reactions in activated human T cells. J Immunol 191(8):4080–4085

    Article  CAS  PubMed  Google Scholar 

  48. Rao RR et al (2010) The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32(1):67–78

    Article  PubMed  CAS  Google Scholar 

  49. Araki K et al (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460(7251):108–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Usui T et al (2006) Brasilicardin a, a natural immunosuppressant, targets amino acid transport system L. Chem Biol 13(11):1153–1160

    Article  CAS  PubMed  Google Scholar 

  51. Zheng Y et al (2009) Anergic T cells are metabolically anergic. J Immunol 183(10):6095–6101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yan Z, Banerjee R (2010) Redox remodeling as an immunoregulatory strategy. Biochemistry 49(6):1059–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dahlgren C, Karlsson A (1999) Respiratory burst in human neutrophils. J Immunol Methods 232(1–2):3–14

    Article  CAS  PubMed  Google Scholar 

  54. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82(2):291–295

    Article  CAS  PubMed  Google Scholar 

  55. Thoren FB et al (2007) Cutting edge: Antioxidative properties of myeloid dendritic cells: protection of T cells and NK cells from oxygen radical-induced inactivation and apoptosis. J Immunol 179(1):21–25

    Article  CAS  PubMed  Google Scholar 

  56. Cemerski S, van Meerwijk JP, Romagnoli P (2003) Oxidative-stress-induced T lymphocyte hyporesponsiveness is caused by structural modification rather than proteasomal degradation of crucial TCR signaling molecules. Eur J Immunol 33(8):2178–2185

    Article  CAS  PubMed  Google Scholar 

  57. Mougiakakos D, Johansson CC, Kiessling R (2009) Naturally occurring regulatory T cells show reduced sensitivity toward oxidative stress-induced cell death. Blood 113(15):3542–3545

    Article  CAS  PubMed  Google Scholar 

  58. Yan Z, Garg SK, Banerjee R (2010) Regulatory T cells interfere with glutathione metabolism in dendritic cells and T cells. J Biol Chem 285(53):41525–41532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Munn DH, Mellor AL (2013) Indoleamine 2, 3 dioxygenase and metabolic control of immune responses. Trends Immunol 34(3):137–143

    Article  CAS  PubMed  Google Scholar 

  60. Prodinger J et al (2016) The tryptophan metabolite picolinic acid suppresses proliferation and metabolic activity of CD4+ T cells and inhibits c-Myc activation. J Leukoc Biol 99(4):583–594

    Article  CAS  PubMed  Google Scholar 

  61. Baban B et al (2009) IDO activates regulatory T cells and blocks their conversion into Th17-like T cells. J Immunol 183(4):2475–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sharma MD et al (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 117(9):2570–2582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sharma MD et al (2013) An inherently bifunctional subset of Foxp3+ T helper cells is controlled by the transcription factor eos. Immunity 38(5):998–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4(10):762–774

    Article  CAS  PubMed  Google Scholar 

  65. Qian F et al (2009) Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Res 69(20):8009–8016

    Article  CAS  PubMed  Google Scholar 

  66. Carlson TJ et al (2014) Halofuginone-induced amino acid starvation regulates Stat3-dependent Th17 effector function and reduces established autoimmune inflammation. J Immunol 192(5):2167–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee CM, Reddy EP (1999) The v-myc oncogene. Oncogene 18(19):2997–3003

    Article  CAS  PubMed  Google Scholar 

  68. Boxer LM, Dang CV (2001) Translocations involving c-myc and c-myc function. Oncogene 20(40):5595–5610

    Article  CAS  PubMed  Google Scholar 

  69. Erikson J et al (1983) Transcriptional activation of the translocated c-myc oncogene in burkitt lymphoma. Proc Natl Acad Sci U S A 80(3):820–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dang CV (1999) C-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19(1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Douglas NC et al (2001) Defining the specific physiological requirements for c-Myc in T cell development. Nat Immunol 2(4):307–315

    Article  CAS  PubMed  Google Scholar 

  72. Mateyak MK et al (1997) Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ 8(10):1039–1048

    CAS  PubMed  Google Scholar 

  73. Chou C et al (2014) C-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells. Nat Immunol 15(9):884–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Best JA et al (2013) Transcriptional insights into the CD8(+) T cell response to infection and memory T cell formation. Nat Immunol 14(4):404–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nie Z et al (2012) C-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151(1):68–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hann SR, Eisenman RN (1984) Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Mol Cell Biol 4(11):2486–2497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hann SR et al (1983) Proteins encoded by v-myc and c-myc oncogenes: identification and localization in acute leukemia virus transformants and bursal lymphoma cell lines. Cell 34(3):789–798

    Article  CAS  PubMed  Google Scholar 

  78. Man K et al (2013) The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat Immunol 14(11):1155–1165

    Article  CAS  PubMed  Google Scholar 

  79. Yao S et al (2013) Interferon regulatory factor 4 sustains CD8(+) T cell expansion and effector differentiation. Immunity 39(5):833–845

    Article  CAS  PubMed  Google Scholar 

  80. Finlay DK et al (2012) PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J Exp Med 209(13):2441–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dang EV et al (2011) Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146(5):772–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nayar R et al (2014) Graded levels of IRF4 regulate CD8+ T cell differentiation and expansion, but not attrition, in response to acute virus infection. J Immunol 192(12):5881–5893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brustle A et al (2007) The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat Immunol 8(9):958–966

    Article  PubMed  CAS  Google Scholar 

  84. Cretney E et al (2011) The transcription factors blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat Immunol 12(4):304–311

    Article  CAS  PubMed  Google Scholar 

  85. Lohoff M et al (2002) Dysregulated T helper cell differentiation in the absence of interferon regulatory factor 4. Proc Natl Acad Sci U S A 99(18):11808–11812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mittrucker HW et al (1997) Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275(5299):540–543

    Article  CAS  PubMed  Google Scholar 

  87. Zheng Y et al (2009) Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458(7236):351–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dang CV et al (2008) The interplay between MYC and HIF in cancer. Nat Rev Cancer 8(1):51–56

    Article  CAS  PubMed  Google Scholar 

  89. Miller DM et al (2012) C-Myc and cancer metabolism. Clin Cancer Res 18(20):5546–5553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95

    Article  CAS  PubMed  Google Scholar 

  91. Casey SC et al (2016) MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352(6282):227–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yin X et al (2003) Low molecular weight inhibitors of Myc-max interaction and function. Oncogene 22(40):6151–6159

    Article  CAS  PubMed  Google Scholar 

  93. Bandukwala HS et al (2012) Selective inhibition of CD4+ T-cell cytokine production and autoimmunity by BET protein and c-Myc inhibitors. Proc Natl Acad Sci U S A 109(36):14532–14537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cafferkey R et al (1993) Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol Cell Biol 13(10):6012–6023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brown EJ et al (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369(6483):756–758

    Article  CAS  PubMed  Google Scholar 

  96. Sabatini DM et al (1994) RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78(1):35–43

    Article  CAS  PubMed  Google Scholar 

  97. Sabers CJ et al (1995) Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 270(2):815–822

    Article  CAS  PubMed  Google Scholar 

  98. Fingar DC, Blenis J (2004) Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23(18):3151–3171

    Article  CAS  PubMed  Google Scholar 

  99. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484

    Article  CAS  PubMed  Google Scholar 

  100. Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10(5):307–318

    Article  PubMed  CAS  Google Scholar 

  101. Sarbassov DD et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14(14):1296–1302

    Article  CAS  PubMed  Google Scholar 

  102. Jacinto E et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128

    Article  CAS  PubMed  Google Scholar 

  103. Hosokawa N et al (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg 13-FIP200 complex required for autophagy. Mol Biol Cell 20(7):1981–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jung CH et al (2009) ULK-Atg 13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20(7):1992–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ganley IG et al (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284(18):12297–12305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hresko RC, Mueckler M (2005) mTOR.RICTOR is the Ser 473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 280(49):40406–40416

    Article  CAS  PubMed  Google Scholar 

  107. Sarbassov DD et al (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101

    Article  CAS  PubMed  Google Scholar 

  108. Hara K et al (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110(2):177–189

    Article  CAS  PubMed  Google Scholar 

  109. Kim DH et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110(2):163–175

    Article  CAS  PubMed  Google Scholar 

  110. Peterson TR et al (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137(5):873–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kaizuka T et al (2010) Tti 1 and Tel 2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem 285(26):20109–20116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nojima H et al (2003) The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p 70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 278(18):15461–15464

    Article  CAS  PubMed  Google Scholar 

  113. Loewith R et al (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10(3):457–468

    Article  CAS  PubMed  Google Scholar 

  114. Foster KG et al (2010) Regulation of mTOR complex 1 (mTORC1) by raptor Ser 863 and multisite phosphorylation. J Biol Chem 285(1):80–94

    Article  CAS  PubMed  Google Scholar 

  115. Fingar DC et al (2004) mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol 24(1):200–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schalm SS et al (2003) TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 13(10):797–806

    Article  CAS  PubMed  Google Scholar 

  117. Wang L et al (2007) PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem 282(27):20036–20044

    Article  CAS  PubMed  Google Scholar 

  118. Sancak Y et al (2008) The rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vander Haar E et al (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9(3):316–323

    Article  CAS  PubMed  Google Scholar 

  120. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577–590

    Article  CAS  PubMed  Google Scholar 

  121. Potter CJ, Pedraza LG, Xu T (2002) Akt regulates growth by directly phosphorylating Tsc 2. Nat Cell Biol 4(9):658–665

    Article  CAS  PubMed  Google Scholar 

  122. Ma L et al (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121(2):179–193

    Article  CAS  PubMed  Google Scholar 

  123. Roux PP et al (2004) Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p 90 ribosomal S6 kinase. Proc Natl Acad Sci U S A 101(37):13489–13494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Long X et al (2005) Rheb binds and regulates the mTOR kinase. Curr Biol 15(8):702–713

    Article  CAS  PubMed  Google Scholar 

  125. Tee AR et al (2003) Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13(15):1259–1268

    Article  CAS  PubMed  Google Scholar 

  126. Curatolo P, Moavero R (2012) mTOR inhibitors in tuberous sclerosis complex. Curr Neuropharmacol 10(4):404–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Harrington LE et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123–1132

    Article  CAS  PubMed  Google Scholar 

  128. Manning BD (2004) Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J Cell Biol 167(3):399–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Powell JD, Delgoffe GM (2010) The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 33(3):301–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Beugnet A et al (2003) Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem J 372(Pt 2):555–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schriever SC et al (2013) Cellular signaling of amino acids towards mTORC1 activation in impaired human leucine catabolism. J Nutr Biochem 24(5):824–831

    Article  CAS  PubMed  Google Scholar 

  132. Duran RV et al (2012) Glutaminolysis activates rag-mTORC1 signaling. Mol Cell 47(3):349–358

    Article  CAS  PubMed  Google Scholar 

  133. Nicklin P et al (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136(3):521–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kim SG et al (2013) Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol Cell 49(1):172–185

    Article  CAS  PubMed  Google Scholar 

  135. Hara K et al (1998) Amino acid sufficiency and mTOR regulate p 70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273(23):14484–14494

    Article  CAS  PubMed  Google Scholar 

  136. Jewell JL, Guan KL (2013) Nutrient signaling to mTOR and cell growth. Trends Biochem Sci 38(5):233–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jewell JL et al (2015) Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 347(6218):194–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zoncu R et al (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334(6056):678–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sancak Y, Sabatini DM (2009) Rag proteins regulate amino-acid-induced mTORC1 signalling. Biochem Soc Trans 37(Pt 1):289–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gwinn DM et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wouters BG, Koritzinsky M (2008) Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer 8(11):851–864

    Article  CAS  PubMed  Google Scholar 

  142. DeYoung MP et al (2008) Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 22(2):239–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Katiyar S et al (2009) REDD1, an inhibitor of mTOR signalling, is regulated by the CUL4A-DDB1 ubiquitin ligase. EMBO Rep 10(8):866–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Frias MA et al (2006) mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16(18):1865–1870

    Article  CAS  PubMed  Google Scholar 

  145. Jacinto E et al (2006) SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127(1):125–137

    Article  CAS  PubMed  Google Scholar 

  146. Guertin DA et al (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11(6):859–871

    Article  CAS  PubMed  Google Scholar 

  147. Sarbassov DD et al (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22(2):159–168

    Article  CAS  PubMed  Google Scholar 

  148. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12(1):9–22

    Article  CAS  PubMed  Google Scholar 

  149. Populo H, Lopes JM, Soares P (2012) The mTOR signalling pathway in human cancer. Int J Mol Sci 13(2):1886–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lawlor MA, Alessi DR (2001) PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 114(Pt 16):2903–2910

    CAS  PubMed  Google Scholar 

  151. Zheng Y et al (2007) A role for mammalian target of rapamycin in regulating T cell activation versus anergy. J Immunol 178(4):2163–2170

    Article  CAS  PubMed  Google Scholar 

  152. Delgoffe GM et al (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30(6):832–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chi H (2012) Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol 12(5):325–338

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Pollizzi KN et al (2015) mTORC1 and mTORC2 selectively regulate CD8(+) T cell differentiation. J Clin Invest 125(5):2090–2108

    Article  PubMed  PubMed Central  Google Scholar 

  155. Kaech SM, Ahmed R (2003) Immunology. CD8 T cells remember with a little help. Science 300(5617):263–265

    Article  CAS  PubMed  Google Scholar 

  156. Kaech SM et al (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4(12):1191–1198

    Article  CAS  PubMed  Google Scholar 

  157. Shrestha S et al (2014) Tsc 1 promotes the differentiation of memory CD8+ T cells via orchestrating the transcriptional and metabolic programs. Proc Natl Acad Sci U S A 111(41):14858–14863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Oh WJ et al (2010) mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J 29(23):3939–3951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Porstmann T et al (2008) SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 8(3):224–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hagiwara A et al (2012) Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab 15(5):725–738

    Article  CAS  PubMed  Google Scholar 

  161. Duvel K et al (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39(2):171–183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Peterson TR et al (2011) mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146(3):408–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yuan M et al (2012) Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. J Biol Chem 287(35):29579–29588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Blagih J et al (2015) The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42(1):41–54

    Article  CAS  PubMed  Google Scholar 

  165. Faubert B et al (2013) AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 17(1):113–124

    Article  CAS  PubMed  Google Scholar 

  166. Tamas P et al (2006) Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med 203(7):1665–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. MacIver NJ et al (2011) The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J Immunol 187(8):4187–4198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Deberardinis RJ, Lum JJ, Thompson CB (2006) Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J Biol Chem 281(49):37372–37380

    Article  CAS  PubMed  Google Scholar 

  169. Lee WH, Kim SG (2010) AMPK-dependent metabolic regulation by PPAR agonists. PPAR Res 2010

    Google Scholar 

  170. Suzuki T et al (2013) Inhibition of AMPK catabolic action by GSK3. Mol Cell 50(3):407–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Inoki K, Kim J, Guan KL (2012) AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 52:381–400

    Article  CAS  PubMed  Google Scholar 

  172. Carretero J et al (2007) Dysfunctional AMPK activity, signalling through mTOR and survival in response to energetic stress in LKB1-deficient lung cancer. Oncogene 26(11):1616–1625

    Article  CAS  PubMed  Google Scholar 

  173. Rolf J et al (2013) AMPKalpha1: a glucose sensor that controls CD8 T-cell memory. Eur J Immunol 43(4):889–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Fernandez D et al (2006) Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum 54(9):2983–2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Warner LM, Adams LM, Sehgal SN (1994) Rapamycin prolongs survival and arrests pathophysiologic changes in murine systemic lupus erythematosus. Arthritis Rheum 37(2):289–297

    Article  CAS  PubMed  Google Scholar 

  176. Augustine JJ, Bodziak KA, Hricik DE (2007) Use of sirolimus in solid organ transplantation. Drugs 67(3):369–391

    Article  CAS  PubMed  Google Scholar 

  177. Gao Y, Whitaker-Dowling P, Bergman I (2015) Memory antitumor T-cells resist inhibition by immune suppressor cells. Anticancer Res 35(9):4593–4597

    CAS  PubMed  Google Scholar 

  178. Klebanoff CA, Gattinoni L, Restifo NP (2006) CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol Rev 211:214–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Klebanoff CA et al (2005) Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci U S A 102(27):9571–9576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Turner AP et al (2011) Sirolimus enhances the magnitude and quality of viral-specific CD8+ T-cell responses to vaccinia virus vaccination in rhesus macaques. Am J Transplant 11(3):613–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Li Q et al (2012) Regulating mammalian target of rapamycin to tune vaccination-induced CD8(+) T cell responses for tumor immunity. J Immunol 188(7):3080–3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Berezhnoy A et al (2014) Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. J Clin Invest 124(1):188–197

    Article  CAS  PubMed  Google Scholar 

  183. Foretz M et al (2014) Metformin: from mechanisms of action to therapies. Cell Metab 20(6):953–966

    Article  CAS  PubMed  Google Scholar 

  184. Sajan MP et al (2010) AICAR and metformin, but not exercise, increase muscle glucose transport through AMPK-, ERK-, and PDK1-dependent activation of atypical PKC. Am J Physiol Endocrinol Metab 298(2):E179–E192

    Article  CAS  PubMed  Google Scholar 

  185. Jhun BS et al (2005) AICAR suppresses IL-2 expression through inhibition of GSK-3 phosphorylation and NF-AT activation in Jurkat T cells. Biochem Biophys Res Commun 332(2):339–346

    Article  CAS  PubMed  Google Scholar 

  186. Nath N et al (2009) Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol 182(12):8005–8014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bai A et al (2010) AMPK agonist downregulates innate and adaptive immune responses in TNBS-induced murine acute and relapsing colitis. Biochem Pharmacol 80(11):1708–1717

    Article  CAS  PubMed  Google Scholar 

  188. Bai A et al (2010) Novel anti-inflammatory action of 5-aminoimidazole-4-carboxamide ribonucleoside with protective effect in dextran sulfate sodium-induced acute and chronic colitis. J Pharmacol Exp Ther 333(3):717–725

    Article  CAS  PubMed  Google Scholar 

  189. Eikawa S et al (2015) Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci U S A 112(6):1809–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Walker JE (2013) The ATP synthase: the understood, the uncertain and the unknown. Biochem Soc Trans 41(1):1–16

    Article  CAS  PubMed  Google Scholar 

  191. Li Y et al (2006) Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr 38(5–6):283–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Jimenez-Gutierrez LR et al (2014) The cytochrome c oxidase and its mitochondrial function in the whiteleg shrimp Litopenaeus vannamei during hypoxia. J Bioenerg Biomembr 46(3):189–196

    Article  CAS  PubMed  Google Scholar 

  193. Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93(4):266–276

    Article  CAS  PubMed  Google Scholar 

  194. Semenza GL et al (1997) Structural and functional analysis of hypoxia-inducible factor 1. Kidney Int 51(2):553–555

    Article  CAS  PubMed  Google Scholar 

  195. Eguchi H et al (1997) A nuclear localization signal of human aryl hydrocarbon receptor nuclear translocator/hypoxia-inducible factor 1beta is a novel bipartite type recognized by the two components of nuclear pore-targeting complex. J Biol Chem 272(28):17640–17647

    Article  CAS  PubMed  Google Scholar 

  196. Freeburg PB, Abrahamson DR (2004) Divergent expression patterns for hypoxia-inducible factor-1beta and aryl hydrocarbon receptor nuclear transporter-2 in developing kidney. J Am Soc Nephrol 15(10):2569–2578

    Article  CAS  PubMed  Google Scholar 

  197. Schodel J et al (2011) High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117(23):e207–e217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Wenger RH, Stiehl DP, Camenisch G (2005) Integration of oxygen signaling at the consensus HRE. Sci STKE 2005(306):re12

    PubMed  Google Scholar 

  199. Wang GL et al (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Chapman-Smith A, Lutwyche JK, Whitelaw ML (2004) Contribution of the per/Arnt/Sim (PAS) domains to DNA binding by the basic helix-loop-helix PAS transcriptional regulators. J Biol Chem 279(7):5353–5362

    Article  CAS  PubMed  Google Scholar 

  201. Yang J et al (2005) Functions of the per/ARNT/Sim domains of the hypoxia-inducible factor. J Biol Chem 280(43):36047–36054

    Article  CAS  PubMed  Google Scholar 

  202. Ziello JE, Jovin IS, Huang Y (2007) Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med 80(2):51–60

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Makino Y et al (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414(6863):550–554

    Article  CAS  PubMed  Google Scholar 

  204. Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29(5):625–634

    Article  CAS  PubMed  Google Scholar 

  205. Zhang P et al (2014) Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep 6(6):1110–1121

    Article  CAS  PubMed  Google Scholar 

  206. Jiang BH et al (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Phys 271(4 Pt 1):C1172–C1180

    CAS  Google Scholar 

  207. McNamee EN et al (2013) Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. Immunol Res 55(1–3):58–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Vaupel P, Harrison L (2004) Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9(Suppl 5):4–9

    Article  PubMed  Google Scholar 

  209. Tsai AG, Johnson PC, Intaglietta M (2003) Oxygen gradients in the microcirculation. Physiol Rev 83(3):933–963

    Article  CAS  PubMed  Google Scholar 

  210. Chang CH et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162(6):1229–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Gilkes DM, Semenza GL, Wirtz D (2014) Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer 14(6):430–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Gorres KL, Raines RT (2010) Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol 45(2):106–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Ohh M et al (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2(7):423–427

    Article  CAS  PubMed  Google Scholar 

  214. Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5(5):343–354

    Article  CAS  PubMed  Google Scholar 

  215. Hudson CC et al (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22(20):7004–7014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Nakamura H et al (2005) TCR engagement increases hypoxia-inducible factor-1 alpha protein synthesis via rapamycin-sensitive pathway under hypoxic conditions in human peripheral T cells. J Immunol 174(12):7592–7599

    Article  CAS  PubMed  Google Scholar 

  217. Baek JH et al (2007) Spermidine/spermine N(1)-acetyltransferase-1 binds to hypoxia-inducible factor-1alpha (HIF-1alpha) and RACK1 and promotes ubiquitination and degradation of HIF-1alpha. J Biol Chem 282(46):33358–33366

    Article  CAS  PubMed  Google Scholar 

  218. Liu YV et al (2007) RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. Mol Cell 25(2):207–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Liu YV et al (2007) Calcineurin promotes hypoxia-inducible factor 1alpha expression by dephosphorylating RACK1 and blocking RACK1 dimerization. J Biol Chem 282(51):37064–37073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Clambey ET et al (2012) Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci U S A 109(41):E2784–E2793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Hsiao HW et al (2015) Deltex1 antagonizes HIF-1alpha and sustains the stability of regulatory T cells in vivo. Nat Commun 6:6353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Lee JH et al (2015) E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1alpha to maintain regulatory T cell stability and suppressive capacity. Immunity 42(6):1062–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Doedens AL et al (2013) Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. Nat Immunol 14(11):1173–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Chisolm DA, Weinmann AS (2015) TCR-signaling events in cellular metabolism and specialization. Front Immunol 6:292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Hengel RL et al (2003) Cutting edge: L-selectin (CD62L) expression distinguishes small resting memory CD4+ T cells that preferentially respond to recall antigen. J Immunol 170(1):28–32

    Article  CAS  PubMed  Google Scholar 

  226. Yang S et al (2011) The shedding of CD62L (L-selectin) regulates the acquisition of lytic activity in human tumor reactive T lymphocytes. PLoS One 6(7):e22560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Zagzag D et al (2000) Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 88(11):2606–2618

    Article  CAS  PubMed  Google Scholar 

  228. Rapisarda A et al (2004) Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts. Cancer Res 64(19):6845–6848

    Article  CAS  PubMed  Google Scholar 

  229. Rapisarda A et al (2002) Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res 62(15):4316–4324

    CAS  PubMed  Google Scholar 

  230. Rapisarda A et al (2009) Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition. Mol Cancer Ther 8(7):1867–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Koh MY et al (2008) Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1alpha. Mol Cancer Ther 7(1):90–100

    Article  CAS  PubMed  Google Scholar 

  232. Welsh S et al (2004) Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha. Mol Cancer Ther 3(3):233–244

    CAS  PubMed  Google Scholar 

  233. Lang M et al (2016) Arsenic trioxide plus PX-478 achieves effective treatment in pancreatic ductal adenocarcinoma. Cancer Lett 378(2):87–96

    Article  CAS  PubMed  Google Scholar 

  234. Zhao T et al (2015) Inhibition of HIF-1alpha by PX-478 enhances the anti-tumor effect of gemcitabine by inducing immunogenic cell death in pancreatic ductal adenocarcinoma. Oncotarget 6(4):2250–2262

    Article  PubMed  Google Scholar 

  235. Zhang H et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283(16):10892–10903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Huh JR et al (2011) Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORgammat activity. Nature 472(7344):486–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Osada S et al (1997) Identification of an extended half-site motif required for the function of peroxisome proliferator-activated receptor alpha. Genes Cells 2(5):315–327

    Article  CAS  PubMed  Google Scholar 

  238. Krey G et al (1993) Xenopus peroxisome proliferator activated receptors: genomic organization, response element recognition, heterodimer formation with retinoid X receptor and activation by fatty acids. J Steroid Biochem Mol Biol 47(1–6):65–73

    Article  CAS  PubMed  Google Scholar 

  239. Alleva DG et al (2002) Regulation of murine macrophage proinflammatory and anti-inflammatory cytokines by ligands for peroxisome proliferator-activated receptor-gamma: counter-regulatory activity by IFN-gamma. J Leukoc Biol 71(4):677–685

    CAS  PubMed  Google Scholar 

  240. DiRenzo J et al (1997) Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators, and corepressors. Mol Cell Biol 17(4):2166–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Dowell P et al (1997) p300 functions as a coactivator for the peroxisome proliferator-activated receptor alpha. J Biol Chem 272(52):33435–33443

    Article  CAS  PubMed  Google Scholar 

  242. Yuan CX et al (1998) The TRAP220 component of a thyroid hormone receptor- associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc Natl Acad Sci U S A 95(14):7939–7944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Zhu Y et al (1996) Cloning and identification of mouse steroid receptor coactivator-1 (mSRC-1), as a coactivator of peroxisome proliferator-activated receptor gamma. Gene Expr 6(3):185–195

    CAS  PubMed  Google Scholar 

  244. Zhu Y et al (1997) Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor. J Biol Chem 272(41):25500–25506

    Article  CAS  PubMed  Google Scholar 

  245. Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20(5):649–688

    CAS  PubMed  Google Scholar 

  246. Jones DC, Ding X, Daynes RA (2002) Nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) is expressed in resting murine lymphocytes. The PPARalpha in T and B lymphocytes is both transactivation and transrepression competent. J Biol Chem 277(9):6838–6845

    Article  CAS  PubMed  Google Scholar 

  247. Harris SG, Phipps RP (2001) The nuclear receptor PPAR gamma is expressed by mouse T lymphocytes and PPAR gamma agonists induce apoptosis. Eur J Immunol 31(4):1098–1105

    Article  CAS  PubMed  Google Scholar 

  248. Vosper H et al (2001) The peroxisome proliferator-activated receptor delta promotes lipid accumulation in human macrophages. J Biol Chem 276(47):44258–44265

    Article  CAS  PubMed  Google Scholar 

  249. Shi Y, Hon M, Evans RM (2002) The peroxisome proliferator-activated receptor delta, an integrator of transcriptional repression and nuclear receptor signaling. Proc Natl Acad Sci U S A 99(5):2613–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Chinetti G et al (1998) Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 273(40):25573–25580

    Article  CAS  PubMed  Google Scholar 

  251. Delerive P et al (1999) Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ Res 85(5):394–402

    Article  CAS  PubMed  Google Scholar 

  252. Gosset P et al (2001) Peroxisome proliferator-activated receptor gamma activators affect the maturation of human monocyte-derived dendritic cells. Eur J Immunol 31(10):2857–2865

    Article  CAS  PubMed  Google Scholar 

  253. Padilla J et al (2000) Peroxisome proliferator activator receptor-gamma agonists and 15-deoxy-Delta(12,14)(12,14)-PGJ(2) induce apoptosis in normal and malignant B-lineage cells. J Immunol 165(12):6941–6948

    Article  CAS  PubMed  Google Scholar 

  254. Delerive P et al (1999) Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem 274(45):32048–32054

    Article  CAS  PubMed  Google Scholar 

  255. Delerive P et al (2000) Oxidized phospholipids activate PPARalpha in a phospholipase A2-dependent manner. FEBS Lett 471(1):34–38

    Article  CAS  PubMed  Google Scholar 

  256. Peters JM, Hollingshead HE, Gonzalez FJ (2008) Role of peroxisome-proliferator-activated receptor beta/delta (PPARbeta/delta) in gastrointestinal tract function and disease. Clin Sci (Lond) 115(4):107–127

    Article  CAS  Google Scholar 

  257. Yang XY et al (2000) Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. PPARgamma co-association with transcription factor NFAT. J Biol Chem 275(7):4541–4544

    Article  CAS  PubMed  Google Scholar 

  258. Raikwar HP et al (2005) PPARgamma antagonists exacerbate neural antigen-specific Th1 response and experimental allergic encephalomyelitis. J Neuroimmunol 167(1–2):99–107

    Article  CAS  PubMed  Google Scholar 

  259. Raikwar HP et al (2006) PPARgamma antagonists reverse the inhibition of neural antigen-specific Th1 response and experimental allergic encephalomyelitis by Ciglitazone and 15-deoxy-Delta12,14-prostaglandin J2. J Neuroimmunol 178(1–2):76–86

    Article  CAS  PubMed  Google Scholar 

  260. Niino M et al (2001) Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by an agonist of peroxisome proliferator-activated receptor-gamma. J Neuroimmunol 116(1):40–48

    Article  CAS  PubMed  Google Scholar 

  261. Feinstein DL et al (2002) Peroxisome proliferator-activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis. Ann Neurol 51(6):694–702

    Article  CAS  PubMed  Google Scholar 

  262. Klotz L et al (2009) The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J Exp Med 206(10):2079–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Natarajan C, Bright JJ (2002) Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation. Genes Immun 3(2):59–70

    Article  CAS  PubMed  Google Scholar 

  264. Jakobsen MA et al (2006) Peroxisome proliferator-activated receptor alpha, delta, gamma1 and gamma2 expressions are present in human monocyte-derived dendritic cells and modulate dendritic cell maturation by addition of subtype-specific ligands. Scand J Immunol 63(5):330–337

    Article  CAS  PubMed  Google Scholar 

  265. Storer PD et al (2005) Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: implications for multiple sclerosis. J Neuroimmunol 161(1–2):113–122

    Article  CAS  PubMed  Google Scholar 

  266. Kanakasabai S et al (2010) Peroxisome proliferator-activated receptor delta agonists inhibit T helper type 1 (Th1) and Th17 responses in experimental allergic encephalomyelitis. Immunology 130(4):572–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Natarajan C et al (2003) Peroxisome proliferator-activated receptor-gamma-deficient heterozygous mice develop an exacerbated neural antigen-induced Th1 response and experimental allergic encephalomyelitis. J Immunol 171(11):5743–5750

    Article  PubMed  Google Scholar 

  268. Gocke AR et al (2009) Transcriptional modulation of the immune response by peroxisome proliferator-activated receptor-{alpha} agonists in autoimmune disease. J Immunol 182(7):4479–4487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Cunard R et al (2002) Regulation of cytokine expression by ligands of peroxisome proliferator activated receptors. J Immunol 168(6):2795–2802

    Article  CAS  PubMed  Google Scholar 

  270. Xu J, Racke MK, Drew PD (2007) Peroxisome proliferator-activated receptor-alpha agonist fenofibrate regulates IL-12 family cytokine expression in the CNS: relevance to multiple sclerosis. J Neurochem 103(5):1801–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Kapadia R, Yi JH, Vemuganti R (2008) Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci 13:1813–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Cipolletta D et al (2012) PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486(7404):549–553

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Housley WJ et al (2009) PPARgamma regulates retinoic acid-mediated DC induction of Tregs. J Leukoc Biol 86(2):293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Wohlfert EA et al (2007) Peroxisome proliferator-activated receptor gamma (PPARgamma) and immunoregulation: enhancement of regulatory T cells through PPARgamma-dependent and -independent mechanisms. J Immunol 178(7):4129–4135

    Article  CAS  PubMed  Google Scholar 

  275. Lei J et al (2010) Peroxisome proliferator-activated receptor alpha and gamma agonists together with TGF-beta convert human CD4+CD25- T cells into functional Foxp3+ regulatory T cells. J Immunol 185(12):7186–7198

    Article  CAS  PubMed  Google Scholar 

  276. Bassaganya-Riera J et al (2004) Activation of PPAR gamma and delta by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127(3):777–791

    Article  CAS  PubMed  Google Scholar 

  277. Diab A et al (2002) Peroxisome proliferator-activated receptor-gamma agonist 15-deoxy-Delta(12,14)-prostaglandin J(2) ameliorates experimental autoimmune encephalomyelitis. J Immunol 168(5):2508–2515

    Article  CAS  PubMed  Google Scholar 

  278. Mueller C et al (2003) Peroxisome proliferator-activated receptor gamma ligands attenuate immunological symptoms of experimental allergic asthma. Arch Biochem Biophys 418(2):186–196

    Article  CAS  PubMed  Google Scholar 

  279. Beales PE et al (1998) Troglitazone prevents insulin dependent diabetes in the non-obese diabetic mouse. Eur J Pharmacol 357(2–3):221–225

    Article  CAS  PubMed  Google Scholar 

  280. Park SJ et al (2009) Peroxisome proliferator-activated receptor gamma agonist down-regulates IL-17 expression in a murine model of allergic airway inflammation. J Immunol 183(5):3259–3267

    Article  CAS  PubMed  Google Scholar 

  281. Kaiser CC et al (2009) A pilot test of pioglitazone as an add-on in patients with relapsing remitting multiple sclerosis. J Neuroimmunol 211(1–2):124–130

    Article  CAS  PubMed  Google Scholar 

  282. Lewis JD et al (2008) Rosiglitazone for active ulcerative colitis: a randomized placebo-controlled trial. Gastroenterology 134(3):688–695

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Our research is supported by the grants from the Bloomberg-Kimmel Institute, the Melanoma Research Alliance (Established Investigator Award), the National Institutes of Health (RO1AI099300 and RO1AI089830), Department of Defense (PC130767), “Kelly’s Dream” Foundation, the Janey Fund, the Seraph Foundation, gifts from Bill and Betty Topecer and Dorothy Needle, and the Roswell Park Alliance Foundation. FP is a Stewart Trust Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vignali, P.D.A., Barbi, J., Pan, F. (2017). Metabolic Regulation of T Cell Immunity. In: Li, B., Pan, F. (eds) Immune Metabolism in Health and Tumor. Advances in Experimental Medicine and Biology, vol 1011. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1170-6_2

Download citation

Publish with us

Policies and ethics