Skip to main content

The Health Status of Fish and Benthos Communities in Chemical Munitions Dumpsites in the Baltic Sea

  • Conference paper
  • First Online:
Book cover Towards the Monitoring of Dumped Munitions Threat (MODUM)

Abstract

The environmental characteristics of the deep basins in the Baltic Sea and their impact on the occurrence of selected biota – benthos and fish communities – are described in chemical munitions dumping site areas. Results of the NATO-funded SfP project MODUM “Towards the Monitoring of Dumped Munitions Threat” (2013–2016) and other related previous activities regarding the impact of chemical warfare agents (CWA) on biodiversity and status of benthic fauna and regarding the health status of Baltic cod (Gadus morhua) are presented and discussed in the light of requirements for monitoring ecological risks associated with dumped CWA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen JH, Halpern BS, Korpinen S, Murra C, Reker J (2015) Baltic Sea biodiversity status vs. cumulative human pressures. Estuar Coast Shelf Sci 161:88–92

    Article  Google Scholar 

  • Anon (1991) Report of the Working Group on the Assessment of Demersal Stocks in the Baltic. ICES C.M. 1991/Assess:16

    Google Scholar 

  • Anon (1994) Report of the Working Group on the Assessment of Demersal Stocks in the Baltic. ICES. C.M. Assess:17

    Google Scholar 

  • Aro E (1989) A review of fish migration patterns in the Baltic. Rapp P-v Réun Cons Int Explor Mer 190:72–96

    Google Scholar 

  • Axenrot T, Hansson S (2004) Seasonal dynamics in pelagic fish abundance in a Baltic Sea coastal area. Estuar Coast Shelf Sci 60:541–547

    Article  Google Scholar 

  • Bagge O, Thurow F, Steffensen E, Bay J (1994) The Baltic cod. Dana 10:1–28

    Google Scholar 

  • Bełdowski J, Klusek Z, Szubska M et al (2016) Chemical Munitions Search & Assessment—an evaluation of the dumped munitions problem in the Baltic Sea. Deep-Sea Res II Top Stud Oceanogr 136:1–132

    Google Scholar 

  • Bleil M, Oeberst R (2000) Laichgebiete des Dorschs in der westlichen Ostsee. Inform Fischwirtsch Fischereiforsch 47(4):186–190

    Google Scholar 

  • Bleil M, Oeberst R (2005a) Die Reproduktion von Dorschen (Gadus morhua L. und Gadus morhua callarias L.) in der Ostsee unter besonderer Berücksichtigung der Arkonasee: Teil 1: Allgemeiner Verlauf des jährlichen Reifeprozesses und der Laichaktivitäten in den verschiedenen Gebieten. Inform Fischwirtsch Fischereiforsch 52:74–82. doi:10.3220/Infn52_74-82_2005

    Google Scholar 

  • Bleil M, Oeberst R (2005b) Die Reproduktion von Dorschen (Gadus morhua L. und Gadus morhua callarias L.) in der Ostsee unter besonderer Berücksichtigung der Arkonasee: Teil 2: Statistische Analysen zum Anteil reproduktiv aktiver Dorsche im Bezug auf gebietsspezifische Unterschiede und Gemeinsamkeiten, sowie deren mögliche Ursachen. Inform Fischwirtsch Fischereiforsch 52:83–90

    Google Scholar 

  • Bonsdorff E (2006) Zoobenthic diversity-gradients in the Baltic Sea: continuous post-glacial succession in a stressed ecosystem. J Exp Mar Biol Ecol 330:383–391

    Article  Google Scholar 

  • Bonsdorff E, Pearson TH (1999) Variation in the sublittoral macrozoobenthos of the Baltic Sea along environmental gradients: a functional-group approach. Aust J Ecol 24:312–326

    Article  Google Scholar 

  • Buchmann K, Kania P (2012) Emerging Pseudoterranova decipiens (Krabbe, 1878) problems in Baltic cod, Gadus morhua L., associated with grey seal colonization of spawning grounds. J Fish Dis 35:861–866. doi:10.1111/j.1365-2761.2012.01409.x

    Article  CAS  Google Scholar 

  • Bucke D, Vethaak AD, Lang T, Mellergaard S (1996) Common diseases and parasites of fish in the North Atlantic: training guide for identification. ICES Tech Mar Environ Sci 19:27

    Google Scholar 

  • Carstensen J, Jesper H, Gustafsson BG, Conley DJ (2014) Deoxygenation of the Baltic Sea during the last century. Proc Natl Acad Sci U S A 111(15):5628–5633

    Article  CAS  Google Scholar 

  • Chabot D, Claireaux G (2008) Environmental hypoxia as a metabolic constraint on fish: the case of Atlantic cod, Gadus morhua. Mar Pollut Bull 57:287–294

    Article  CAS  Google Scholar 

  • Conley DJ, Björck S, Bonsdorff E, Carstensen J, Destouni G et al (2009) Hypoxia-related processes in the Baltic Sea. Environ Sci Technol 43:3412–3420

    Article  CAS  Google Scholar 

  • Dethlefsen V, Watermann B (1982) Diseases of major fish species in western Baltic Sea. ICES CM 1982/E:19, p 20

    Google Scholar 

  • Dethlefsen V, Egidius E, McVicar AH (1986) Methodology of fish disease surveys. Report of an ICES Sea-going Workshop held on RV ‘Anton Dohrn’ 3–12 January 1984. ICES Cooperative Research Report 140, p 33

    Google Scholar 

  • Diaz RJ, Rosenberg R (1995) Marine benthic hypoxia: a review of its ecological effects and behavioural responses of benthic macrofauna. Oceanogr Mar Biol Annu Rev 33:245–303

    Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    Article  CAS  Google Scholar 

  • Draganik B, Grygiel W, Kuczynski J, Radtke K, Wyszynski M (1994) Results of the screening of fish diseases in the southern Baltic. ICES CM 1994/J:20, p 19

    Google Scholar 

  • Eero M, Hjelm J, Behrens J, Buchmann K, Cardinale M, Casini M, Storr-Paulsen M (2015) Eastern Baltic cod in distress: biological changes and challenges for stock assessment. ICES J Mar Sci. doi:10.1093/icesjms/fsv109

  • Elmgren R (2001) Understanding human impact on the Baltic ecosystem: changing views in recent decades. Ambio 30:222–231

    Article  CAS  Google Scholar 

  • Elmgren R, Rosenberg R, Andersin A-B, Evans S, Kangas P, Lassig J, Leppäkoski E, Varmo R (1984) Benthic macro- and meiofauna in the Gulf of Bothnia (Northern Baltic). Finn Mar Res 250:3–18

    Google Scholar 

  • Faber MN (2014) Studies of liver histopathology in cod (Gadus morhua) from chemical warfare agent dumpsites in the Baltic Sea. Master thesis, Humboldt University, Berlin, Germany, p 115

    Google Scholar 

  • Giere O (2009) Meiobenthology. The microscopic motile Fauna of aquatic sediments, 2nd edn. Springer, Berlin

    Google Scholar 

  • Grzelak K, Kotwicki L (2016) Halomonhystera disjuncta – a young-carrying nematode first observed for the Baltic Sea in deep basins with in chemical munitions disposal sites. Deep-Sea Res II 128:131–135

    Article  CAS  Google Scholar 

  • Haarder S, Kania PW, Galatius A, Buchmann K (2014) Increased Contracaecum osculatum infection in Baltic cod (Gadus morhua) livers (1982–2012) associated with increasing grey seal (Halichoerus gryphus) populations. J Wildl Dis 50(3):537–543

    Article  CAS  Google Scholar 

  • HELCOM (2002) Fourth Periodic Assessment of the State of the Marine Environment in the Baltic Sea Area, 1994–1998. Baltic Sea Environment Proceedings 82B

    Google Scholar 

  • HELCOM (2010) Hazardous substances in the Baltic Sea – an integrated thematic assessement of hazardous substances in the Baltic Sea. Baltic Sea Environment Proceedings No. 120B

    Google Scholar 

  • Hinrichsen H-H, Huwer B, Makarchouk A, Petereit C, Schaber M, Voss R (2011) Climate-driven long-term trends in Baltic Sea oxygen concentrations and the potential consequences for eastern Baltic cod (Gadus morhua). ICES J Mar Sci 68(10):2019–2028

    Article  Google Scholar 

  • Horbowy J, Podolska M, Nadolna-Altyn K (2016) Increasing occurrence of anisakid nematodes in the liver of cod (Gadus morhua) from the Baltic Sea: does infection affect the condition and mortality of fish? Fish Res 179:98–103

    Article  Google Scholar 

  • ICES (1989) Methodology of fish disease surveys. Report of an ICES Sea-going Workshop held on RV U/F ‘Argos’ 16–23 April 1988. ICES Cooperative Research Report 166, pp 33

    Google Scholar 

  • ICES (2006) Report of the ICES/BSRP Sea-going Workshop on Fish Disease Monitoring in the Baltic Sea (WKFDM). ICES CM 2006, BCC:02, p 85

    Google Scholar 

  • ICES (2012) Report of the Working Group on Pathology and Diseases of Marine Organisms. ICES CM 2012/SSGHIE:03, 48–61

    Google Scholar 

  • ICES (2015a) Report of the Advisory Committee, 2015. Book 8. Baltic Sea. 8.3.3 Cod (Gadus morhua) eastern Baltic stock in Subdivisions 25–32 (Eastern Baltic Sea) and Subdivision 24

    Google Scholar 

  • ICES (2015b) Report of the Advisory Committee, 2015. Book 8. Baltic Sea. 8.3.2 Cod (Gadus morhua) western Baltic stock in Subdivisions 22–24 (Western Baltic Sea)

    Google Scholar 

  • ICES (2016) Interim Report of the Working Group on Pathology and Diseases of Marine Organisms (WGPDMO). ICES CM 2016/SSGEPI:07

    Google Scholar 

  • Khan R (2005) Prevalence and influence of Loma branchialis (Microspora) on growth and mortality in Atlantic cod (Gadus morhua) in coastal Newfoundland. J Parasitol 91:1230–1232

    Article  CAS  Google Scholar 

  • Korpinen S, Meskia L, Andersen JH, Laamanena M (2012) Human pressures and their potential impact on the Baltic Sea ecosystem. Ecol Indic 15:105–114

    Google Scholar 

  • Kosior M, Grygiel W, Kuczynski J, Radtke K, Wyszynski M (1997) Assessment of the health state of fish of the southern Baltic; observations of externally visible symptoms of diseases. Bull Sea Fish Inst Gdynia Poland 3:3–25

    Google Scholar 

  • Köster FW, Möllmann C, Neuenfeldt S, Vinther M, St. John MA, Tomkiewicz J, Voss R, Hinrichsen H-H, Mac Kenzie B, Kraus G, Schnack D (2003) Fish stock development in the Central Baltic Sea (1974-1999) in relation to variability in the environment. ICES Mar Sci Symp 219:294–306

    Google Scholar 

  • Kotwicki L, Grzelak K, Beldowski J (2016) Benthic communities in the chemical munitions dumping sites of the Baltic deeps with special focus on nematodes. Deep-Sea Res II 128:123–130

    Google Scholar 

  • Laine AO (2003) Distribution of soft-bottom macrofauna in the deep open Baltic Sea in relation to environmental variability. Estuar Coast Shelf Sci 57:87–97

    Article  CAS  Google Scholar 

  • Laine AO, Sandler H, Andersin A-B, Stigzelius J (1997) Longterm changes of macrozoobenthos in the eastern Gotland basin and the Gulf of Finland (Baltic Sea) in relation to the hydrographical regime. J Sea Res 38:135–159

    Article  Google Scholar 

  • Lang T (2002) Fish disease surveys in environmental monitoring: the role of ICES. ICES Mar Sci Symp 215:202–212

    Google Scholar 

  • Lang T, Mellergaard S (1999) The BMB/ICES Sea-going Workshop ‘fish diseases and parasites in the Baltic Sea‘ – introduction and conclusions. ICES J Mar Sci 56:129–133

    Article  Google Scholar 

  • Lang T, Wosniok W (2008) The Fish Disease Index: a method to assess wild fish disease data in the context of marine environmental monitoring. ICES CM 2008/D:01, p 13

    Google Scholar 

  • Lang T, Feist SW, Stentiford GD, Bignell JP, Vethaak AD, Wosniok W (2017) Diseases of dab (Limanda limanda): analysis and assessment of data on externally visible diseases, macroscopic liver neoplasms and liver histopathology in the North Sea, Baltic Sea and off Iceland. Mar Environ Res 124:61–69

    Article  CAS  Google Scholar 

  • Mellergaard S, Lang T (1999) Diseases and parasites of Baltic cod (Gadus morhua) from the Mecklenburg Bight to the Estonian coast. ICES J Mar Sci 56:164–168

    Article  Google Scholar 

  • Morholz V, Naumann M, Nausch G, Krüger S, Gräwe U (2015) Fresh oxygen for the Baltic Sea – an exceptional saline inflow after a decade of stagnation. J Mar Syst 148:152–166

    Article  Google Scholar 

  • Nadolna K, Podolska M (2013) Anisakid larvae in the liver of cod (Gadus morhua) L. from the southern Baltic Sea. J Helminthol. doi:10.1017/S0022149X13000096

  • Neuenfeldt S, Andersen KH, Hinrichsen H-H (2009) Some Atlantic cod Gadus morhua in the Baltic Sea visit hypoxic water briefly but often. J Fish Biol 75:290–294

    Article  CAS  Google Scholar 

  • Nielsen EE, Hansen MM, Ruzzante DE, Meldrup D, Gronkjaer P (2003) Evidence of a hybrid-zone in Atlantic cod (Gadus morhua) in the Baltic and the Danish Belt Sea revealed by individual admixture analysis. Mol Ecol 12:1497–1508

    Article  Google Scholar 

  • Nissling A, Kryvi H, Vallin L (1994) Variation in egg buoyancy of Baltic cod (Gadus morhua) and its implications for egg survival in prevailing conditions in the Baltic Sea. Mar Ecol Prog Ser 110:67–74

    Article  Google Scholar 

  • O’Leary DB, Coughlan J, Dillane E, McCarthy TV, Cross TF (2007) Microsatellite variation in cod (Gadus morhua) throughout its geographic range. J Fish Biol 70:310–335

    Article  Google Scholar 

  • Ojaveer E, Kalejs M (2005) The impact of climate changes on the adaptation of marine fish in the Baltic Sea. ICES J Mar Sci 62(7):1492–1500

    Article  Google Scholar 

  • Ojaveer E, Kalejs M (2008) On ecosystem-based regions in the Baltic Sea. J Mar Syst 74:672–685

    Article  Google Scholar 

  • Ojaveer E, Lehtonen H (2001) Fish stocks in the Baltic Sea: finite or infinite resource? Ambio 30:4–5

    Article  Google Scholar 

  • Ojaveer H, Jaanus A, Mac Kenzie BR, Martin G, Olenin S, Radziejewska T, Telesh I, Zettler ML, Zaiko A (2010) Status of biodiversity in the Baltic Sea. PLoS One 5(9):e12467. doi:10.1371/journal.pone.0012467

    Article  Google Scholar 

  • Olafsson E, Limen H (2002) Recovery of soft-bottoms after anoxic events: laboratory experiments with the amphipod Monoporeia affinis from the Baltic Sea. Ophelia 56(2):121–134

    Article  Google Scholar 

  • Olenin S (1997) Benthic zonation of the eastern Gotland Basin, Baltic Sea. Neth J Aquat Ecol 30:265–282

    Article  CAS  Google Scholar 

  • Ovegård M, Berndt K, Lunneryd S-G (2012) Condition indices of Atlantic cod (Gadus morhua) biased by capturing method. ICES J Mar Sci 69(10):1781–1788

    Article  Google Scholar 

  • Pihl L (1994) Changes in the diet of demersal fish due to eutrophication-induced hypoxia in the Kattegat, Sweden. Can J Fish Aquat Sci 51(2):321–336

    Article  Google Scholar 

  • Powell MD, Speare DJ, Daley J, Lovy J (2005) Differences in metabolic response to Loma salmonae infection in juvenile rainbow trout Oncorhynchus mykiss and brook trout Salvelinus fontinalis. Dis Aquat Org 67:233–237

    Article  Google Scholar 

  • Powell MD, Speare D, Becker JA (2006) Whole body net ion fluxes, plasma electrolyte concentrations and haematology during a Loma salmonae infection in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 29:727–735

    Article  CAS  Google Scholar 

  • Radziejewska T (1989) Large-scale spatial variability in the southern Baltic meiobenthos distribution as influenced by environmental factors. In: Styczyńska-Jurewicz E, Klekowski R (eds) Proceedings of the 21st EMBS, Polish Academy of Sciences, Institute of Oceanology, pp 403–412

    Google Scholar 

  • Samuelsson M (1996) Interannual salinity variations in the Baltic Sea during the period 1954–1990. Cont Shelf Res 16:1463–1477

    Article  Google Scholar 

  • Schaber M, Hinrichsen H-H, Neuenfeldt S, Voss R (2009) Hydroacoustic tracking of individuals in environmental gradients—Baltic cod (Gadus morhua L.) vertical distribution during spawning. Mar Ecol Prog Ser 377:239–253

    Article  Google Scholar 

  • Schaber M, Hinrichsen H-H, Gröger J (2012) Seasonal changes in vertical distribution patterns of cod (Gadus morhua) in the Bornholm Basin, central Baltic Sea. Fish Oceanogr 21(1):33–43

    Article  Google Scholar 

  • Schmidt C (2000) Populationsgenetische Untersuchungen am Ostseedorsch (Gadus morhua L.). Dipl. thesis, University of Kiel

    Google Scholar 

  • Soetaert K, Heip C (1995) Nematode assemblages of the deep sea and shelf break sites in the North Atlantic and Mediterranean Sea. Mar Ecol Prog Ser 125:171–183

    Article  Google Scholar 

  • Sparholt H (1994) Fish species interactions in the Baltic Sea. Dana 10:131–162

    Google Scholar 

  • Stepputtis D (2006) Distribution patterns of Baltic sprat (Sprattus sprattus L.)—causes and consequences. PhD thesis, University of Kiel, p 153

    Google Scholar 

  • Steyaert M, Moodley L, Nadong T (2007) Responses of inter-tidal nematodes to short-term anoxic events. J Exp Mar Biol Ecol 345:175–184

    Article  CAS  Google Scholar 

  • Tahseen Q (2012) Nematodes in aquatic environments: adaptations and survival strategies. Biodivers J 3:13–40

    Google Scholar 

  • Thurow F (1993) Fish and fisheries in the Baltic Sea. ICES Coop Res Rep 186:20–36

    Google Scholar 

  • Tomkiewicz J, Lehmann KM, St. John MA (1998) Oceanographic influences on the distribution of Baltic cod, Gadus morhua, during spawning in the Bornholm Basin of the Baltic Sea. Fish Oceanogr 7:48–62

    Article  Google Scholar 

  • Uzars D (1994) Feeding of cod (Gadus morhua callarias L.) in the Central Baltic in relation to environmental changes. ICES Mar Sci Symp 198:612–623

    Google Scholar 

  • Villnäs A, Norkko A (2011) Benthic diversity gradients and shifting baselines: implications for assessing environmental status. Ecol Appl 21(6):2172–2186

    Article  Google Scholar 

  • Vranken G, Tiré C, Heip C (1989) Effect of temperature and food on hexavalent chromium toxicity to the marine nematode Monhystera disjuncta. Mar Environ Res 27:127–136

    Article  CAS  Google Scholar 

  • Weirup L (2015) Diseases and parasites of Baltic cod (Gadus morhua L.): Spatio-temporal patterns and host effects. Master thesis, University of Hamburg, Germany, p 83

    Google Scholar 

  • Wieland K, Waller U, Schnack D (1994) Development of Baltic cod eggs at different levels of temperature and oxygen content. Dana 10:163–177

    Google Scholar 

  • Wieland K, Jarre-Teichmann A, Horbowa K (2000) Changes in the timing of spawning of Baltic cod: possible causes and implications for recruitment. ICES J Mar Sci 57:452–464

    Article  Google Scholar 

  • Zettler ML, Schiedel D, Glockzin M (2008) Zoobenthos. In: Feistel R, Nausch G, Wasmund N (eds) State and evolution of the Baltic Sea, 1952–2005. A detailed 50-year survey of meteorology and climate, physics, chemistry, biology, and marine environment. Wiley, Haboken, pp 517–541

    Google Scholar 

  • Zimmermann C, Krumme U (2015) Ostseedorsch am Tropf der Nordsee: Gut für die Umwelt ist nicht immer gut für die Fischbestände. Forschungsreport Ernähr Landwirtsch Verbrauchersch (1):40–43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V.

About this paper

Cite this paper

Lang, T., Kotwicki, L., Czub, M., Grzelak, K., Weirup, L., Straumer, K. (2018). The Health Status of Fish and Benthos Communities in Chemical Munitions Dumpsites in the Baltic Sea. In: Bełdowski, J., Been, R., Turmus, E. (eds) Towards the Monitoring of Dumped Munitions Threat (MODUM). NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1153-9_6

Download citation

Publish with us

Policies and ethics