The Health Status of Fish and Benthos Communities in Chemical Munitions Dumpsites in the Baltic Sea

  • Thomas LangEmail author
  • Lech Kotwicki
  • Michał Czub
  • Katarzyna Grzelak
  • Lina Weirup
  • Katharina Straumer
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)


The environmental characteristics of the deep basins in the Baltic Sea and their impact on the occurrence of selected biota – benthos and fish communities – are described in chemical munitions dumping site areas. Results of the NATO-funded SfP project MODUM “Towards the Monitoring of Dumped Munitions Threat” (2013–2016) and other related previous activities regarding the impact of chemical warfare agents (CWA) on biodiversity and status of benthic fauna and regarding the health status of Baltic cod (Gadus morhua) are presented and discussed in the light of requirements for monitoring ecological risks associated with dumped CWA.


  1. Andersen JH, Halpern BS, Korpinen S, Murra C, Reker J (2015) Baltic Sea biodiversity status vs. cumulative human pressures. Estuar Coast Shelf Sci 161:88–92CrossRefGoogle Scholar
  2. Anon (1991) Report of the Working Group on the Assessment of Demersal Stocks in the Baltic. ICES C.M. 1991/Assess:16Google Scholar
  3. Anon (1994) Report of the Working Group on the Assessment of Demersal Stocks in the Baltic. ICES. C.M. Assess:17Google Scholar
  4. Aro E (1989) A review of fish migration patterns in the Baltic. Rapp P-v Réun Cons Int Explor Mer 190:72–96Google Scholar
  5. Axenrot T, Hansson S (2004) Seasonal dynamics in pelagic fish abundance in a Baltic Sea coastal area. Estuar Coast Shelf Sci 60:541–547CrossRefGoogle Scholar
  6. Bagge O, Thurow F, Steffensen E, Bay J (1994) The Baltic cod. Dana 10:1–28Google Scholar
  7. Bełdowski J, Klusek Z, Szubska M et al (2016) Chemical Munitions Search & Assessment—an evaluation of the dumped munitions problem in the Baltic Sea. Deep-Sea Res II Top Stud Oceanogr 136:1–132Google Scholar
  8. Bleil M, Oeberst R (2000) Laichgebiete des Dorschs in der westlichen Ostsee. Inform Fischwirtsch Fischereiforsch 47(4):186–190Google Scholar
  9. Bleil M, Oeberst R (2005a) Die Reproduktion von Dorschen (Gadus morhua L. und Gadus morhua callarias L.) in der Ostsee unter besonderer Berücksichtigung der Arkonasee: Teil 1: Allgemeiner Verlauf des jährlichen Reifeprozesses und der Laichaktivitäten in den verschiedenen Gebieten. Inform Fischwirtsch Fischereiforsch 52:74–82. doi: 10.3220/Infn52_74-82_2005 Google Scholar
  10. Bleil M, Oeberst R (2005b) Die Reproduktion von Dorschen (Gadus morhua L. und Gadus morhua callarias L.) in der Ostsee unter besonderer Berücksichtigung der Arkonasee: Teil 2: Statistische Analysen zum Anteil reproduktiv aktiver Dorsche im Bezug auf gebietsspezifische Unterschiede und Gemeinsamkeiten, sowie deren mögliche Ursachen. Inform Fischwirtsch Fischereiforsch 52:83–90Google Scholar
  11. Bonsdorff E (2006) Zoobenthic diversity-gradients in the Baltic Sea: continuous post-glacial succession in a stressed ecosystem. J Exp Mar Biol Ecol 330:383–391CrossRefGoogle Scholar
  12. Bonsdorff E, Pearson TH (1999) Variation in the sublittoral macrozoobenthos of the Baltic Sea along environmental gradients: a functional-group approach. Aust J Ecol 24:312–326CrossRefGoogle Scholar
  13. Buchmann K, Kania P (2012) Emerging Pseudoterranova decipiens (Krabbe, 1878) problems in Baltic cod, Gadus morhua L., associated with grey seal colonization of spawning grounds. J Fish Dis 35:861–866. doi: 10.1111/j.1365-2761.2012.01409.x CrossRefGoogle Scholar
  14. Bucke D, Vethaak AD, Lang T, Mellergaard S (1996) Common diseases and parasites of fish in the North Atlantic: training guide for identification. ICES Tech Mar Environ Sci 19:27Google Scholar
  15. Carstensen J, Jesper H, Gustafsson BG, Conley DJ (2014) Deoxygenation of the Baltic Sea during the last century. Proc Natl Acad Sci U S A 111(15):5628–5633CrossRefGoogle Scholar
  16. Chabot D, Claireaux G (2008) Environmental hypoxia as a metabolic constraint on fish: the case of Atlantic cod, Gadus morhua. Mar Pollut Bull 57:287–294CrossRefGoogle Scholar
  17. Conley DJ, Björck S, Bonsdorff E, Carstensen J, Destouni G et al (2009) Hypoxia-related processes in the Baltic Sea. Environ Sci Technol 43:3412–3420CrossRefGoogle Scholar
  18. Dethlefsen V, Watermann B (1982) Diseases of major fish species in western Baltic Sea. ICES CM 1982/E:19, p 20Google Scholar
  19. Dethlefsen V, Egidius E, McVicar AH (1986) Methodology of fish disease surveys. Report of an ICES Sea-going Workshop held on RV ‘Anton Dohrn’ 3–12 January 1984. ICES Cooperative Research Report 140, p 33Google Scholar
  20. Diaz RJ, Rosenberg R (1995) Marine benthic hypoxia: a review of its ecological effects and behavioural responses of benthic macrofauna. Oceanogr Mar Biol Annu Rev 33:245–303Google Scholar
  21. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929CrossRefGoogle Scholar
  22. Draganik B, Grygiel W, Kuczynski J, Radtke K, Wyszynski M (1994) Results of the screening of fish diseases in the southern Baltic. ICES CM 1994/J:20, p 19Google Scholar
  23. Eero M, Hjelm J, Behrens J, Buchmann K, Cardinale M, Casini M, Storr-Paulsen M (2015) Eastern Baltic cod in distress: biological changes and challenges for stock assessment. ICES J Mar Sci. doi: 10.1093/icesjms/fsv109
  24. Elmgren R (2001) Understanding human impact on the Baltic ecosystem: changing views in recent decades. Ambio 30:222–231CrossRefGoogle Scholar
  25. Elmgren R, Rosenberg R, Andersin A-B, Evans S, Kangas P, Lassig J, Leppäkoski E, Varmo R (1984) Benthic macro- and meiofauna in the Gulf of Bothnia (Northern Baltic). Finn Mar Res 250:3–18Google Scholar
  26. Faber MN (2014) Studies of liver histopathology in cod (Gadus morhua) from chemical warfare agent dumpsites in the Baltic Sea. Master thesis, Humboldt University, Berlin, Germany, p 115Google Scholar
  27. Giere O (2009) Meiobenthology. The microscopic motile Fauna of aquatic sediments, 2nd edn. Springer, BerlinGoogle Scholar
  28. Grzelak K, Kotwicki L (2016) Halomonhystera disjuncta – a young-carrying nematode first observed for the Baltic Sea in deep basins with in chemical munitions disposal sites. Deep-Sea Res II 128:131–135CrossRefGoogle Scholar
  29. Haarder S, Kania PW, Galatius A, Buchmann K (2014) Increased Contracaecum osculatum infection in Baltic cod (Gadus morhua) livers (1982–2012) associated with increasing grey seal (Halichoerus gryphus) populations. J Wildl Dis 50(3):537–543CrossRefGoogle Scholar
  30. HELCOM (2002) Fourth Periodic Assessment of the State of the Marine Environment in the Baltic Sea Area, 1994–1998. Baltic Sea Environment Proceedings 82BGoogle Scholar
  31. HELCOM (2010) Hazardous substances in the Baltic Sea – an integrated thematic assessement of hazardous substances in the Baltic Sea. Baltic Sea Environment Proceedings No. 120BGoogle Scholar
  32. Hinrichsen H-H, Huwer B, Makarchouk A, Petereit C, Schaber M, Voss R (2011) Climate-driven long-term trends in Baltic Sea oxygen concentrations and the potential consequences for eastern Baltic cod (Gadus morhua). ICES J Mar Sci 68(10):2019–2028CrossRefGoogle Scholar
  33. Horbowy J, Podolska M, Nadolna-Altyn K (2016) Increasing occurrence of anisakid nematodes in the liver of cod (Gadus morhua) from the Baltic Sea: does infection affect the condition and mortality of fish? Fish Res 179:98–103CrossRefGoogle Scholar
  34. ICES (1989) Methodology of fish disease surveys. Report of an ICES Sea-going Workshop held on RV U/F ‘Argos’ 16–23 April 1988. ICES Cooperative Research Report 166, pp 33Google Scholar
  35. ICES (2006) Report of the ICES/BSRP Sea-going Workshop on Fish Disease Monitoring in the Baltic Sea (WKFDM). ICES CM 2006, BCC:02, p 85Google Scholar
  36. ICES (2012) Report of the Working Group on Pathology and Diseases of Marine Organisms. ICES CM 2012/SSGHIE:03, 48–61Google Scholar
  37. ICES (2015a) Report of the Advisory Committee, 2015. Book 8. Baltic Sea. 8.3.3 Cod (Gadus morhua) eastern Baltic stock in Subdivisions 25–32 (Eastern Baltic Sea) and Subdivision 24Google Scholar
  38. ICES (2015b) Report of the Advisory Committee, 2015. Book 8. Baltic Sea. 8.3.2 Cod (Gadus morhua) western Baltic stock in Subdivisions 22–24 (Western Baltic Sea)Google Scholar
  39. ICES (2016) Interim Report of the Working Group on Pathology and Diseases of Marine Organisms (WGPDMO). ICES CM 2016/SSGEPI:07Google Scholar
  40. Khan R (2005) Prevalence and influence of Loma branchialis (Microspora) on growth and mortality in Atlantic cod (Gadus morhua) in coastal Newfoundland. J Parasitol 91:1230–1232CrossRefGoogle Scholar
  41. Korpinen S, Meskia L, Andersen JH, Laamanena M (2012) Human pressures and their potential impact on the Baltic Sea ecosystem. Ecol Indic 15:105–114Google Scholar
  42. Kosior M, Grygiel W, Kuczynski J, Radtke K, Wyszynski M (1997) Assessment of the health state of fish of the southern Baltic; observations of externally visible symptoms of diseases. Bull Sea Fish Inst Gdynia Poland 3:3–25Google Scholar
  43. Köster FW, Möllmann C, Neuenfeldt S, Vinther M, St. John MA, Tomkiewicz J, Voss R, Hinrichsen H-H, Mac Kenzie B, Kraus G, Schnack D (2003) Fish stock development in the Central Baltic Sea (1974-1999) in relation to variability in the environment. ICES Mar Sci Symp 219:294–306Google Scholar
  44. Kotwicki L, Grzelak K, Beldowski J (2016) Benthic communities in the chemical munitions dumping sites of the Baltic deeps with special focus on nematodes. Deep-Sea Res II 128:123–130Google Scholar
  45. Laine AO (2003) Distribution of soft-bottom macrofauna in the deep open Baltic Sea in relation to environmental variability. Estuar Coast Shelf Sci 57:87–97CrossRefGoogle Scholar
  46. Laine AO, Sandler H, Andersin A-B, Stigzelius J (1997) Longterm changes of macrozoobenthos in the eastern Gotland basin and the Gulf of Finland (Baltic Sea) in relation to the hydrographical regime. J Sea Res 38:135–159CrossRefGoogle Scholar
  47. Lang T (2002) Fish disease surveys in environmental monitoring: the role of ICES. ICES Mar Sci Symp 215:202–212Google Scholar
  48. Lang T, Mellergaard S (1999) The BMB/ICES Sea-going Workshop ‘fish diseases and parasites in the Baltic Sea‘ – introduction and conclusions. ICES J Mar Sci 56:129–133CrossRefGoogle Scholar
  49. Lang T, Wosniok W (2008) The Fish Disease Index: a method to assess wild fish disease data in the context of marine environmental monitoring. ICES CM 2008/D:01, p 13Google Scholar
  50. Lang T, Feist SW, Stentiford GD, Bignell JP, Vethaak AD, Wosniok W (2017) Diseases of dab (Limanda limanda): analysis and assessment of data on externally visible diseases, macroscopic liver neoplasms and liver histopathology in the North Sea, Baltic Sea and off Iceland. Mar Environ Res 124:61–69CrossRefGoogle Scholar
  51. Mellergaard S, Lang T (1999) Diseases and parasites of Baltic cod (Gadus morhua) from the Mecklenburg Bight to the Estonian coast. ICES J Mar Sci 56:164–168CrossRefGoogle Scholar
  52. Morholz V, Naumann M, Nausch G, Krüger S, Gräwe U (2015) Fresh oxygen for the Baltic Sea – an exceptional saline inflow after a decade of stagnation. J Mar Syst 148:152–166CrossRefGoogle Scholar
  53. Nadolna K, Podolska M (2013) Anisakid larvae in the liver of cod (Gadus morhua) L. from the southern Baltic Sea. J Helminthol. doi: 10.1017/S0022149X13000096
  54. Neuenfeldt S, Andersen KH, Hinrichsen H-H (2009) Some Atlantic cod Gadus morhua in the Baltic Sea visit hypoxic water briefly but often. J Fish Biol 75:290–294CrossRefGoogle Scholar
  55. Nielsen EE, Hansen MM, Ruzzante DE, Meldrup D, Gronkjaer P (2003) Evidence of a hybrid-zone in Atlantic cod (Gadus morhua) in the Baltic and the Danish Belt Sea revealed by individual admixture analysis. Mol Ecol 12:1497–1508CrossRefGoogle Scholar
  56. Nissling A, Kryvi H, Vallin L (1994) Variation in egg buoyancy of Baltic cod (Gadus morhua) and its implications for egg survival in prevailing conditions in the Baltic Sea. Mar Ecol Prog Ser 110:67–74CrossRefGoogle Scholar
  57. O’Leary DB, Coughlan J, Dillane E, McCarthy TV, Cross TF (2007) Microsatellite variation in cod (Gadus morhua) throughout its geographic range. J Fish Biol 70:310–335CrossRefGoogle Scholar
  58. Ojaveer E, Kalejs M (2005) The impact of climate changes on the adaptation of marine fish in the Baltic Sea. ICES J Mar Sci 62(7):1492–1500CrossRefGoogle Scholar
  59. Ojaveer E, Kalejs M (2008) On ecosystem-based regions in the Baltic Sea. J Mar Syst 74:672–685CrossRefGoogle Scholar
  60. Ojaveer E, Lehtonen H (2001) Fish stocks in the Baltic Sea: finite or infinite resource? Ambio 30:4–5CrossRefGoogle Scholar
  61. Ojaveer H, Jaanus A, Mac Kenzie BR, Martin G, Olenin S, Radziejewska T, Telesh I, Zettler ML, Zaiko A (2010) Status of biodiversity in the Baltic Sea. PLoS One 5(9):e12467. doi: 10.1371/journal.pone.0012467 CrossRefGoogle Scholar
  62. Olafsson E, Limen H (2002) Recovery of soft-bottoms after anoxic events: laboratory experiments with the amphipod Monoporeia affinis from the Baltic Sea. Ophelia 56(2):121–134CrossRefGoogle Scholar
  63. Olenin S (1997) Benthic zonation of the eastern Gotland Basin, Baltic Sea. Neth J Aquat Ecol 30:265–282CrossRefGoogle Scholar
  64. Ovegård M, Berndt K, Lunneryd S-G (2012) Condition indices of Atlantic cod (Gadus morhua) biased by capturing method. ICES J Mar Sci 69(10):1781–1788CrossRefGoogle Scholar
  65. Pihl L (1994) Changes in the diet of demersal fish due to eutrophication-induced hypoxia in the Kattegat, Sweden. Can J Fish Aquat Sci 51(2):321–336CrossRefGoogle Scholar
  66. Powell MD, Speare DJ, Daley J, Lovy J (2005) Differences in metabolic response to Loma salmonae infection in juvenile rainbow trout Oncorhynchus mykiss and brook trout Salvelinus fontinalis. Dis Aquat Org 67:233–237CrossRefGoogle Scholar
  67. Powell MD, Speare D, Becker JA (2006) Whole body net ion fluxes, plasma electrolyte concentrations and haematology during a Loma salmonae infection in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 29:727–735CrossRefGoogle Scholar
  68. Radziejewska T (1989) Large-scale spatial variability in the southern Baltic meiobenthos distribution as influenced by environmental factors. In: Styczyńska-Jurewicz E, Klekowski R (eds) Proceedings of the 21st EMBS, Polish Academy of Sciences, Institute of Oceanology, pp 403–412Google Scholar
  69. Samuelsson M (1996) Interannual salinity variations in the Baltic Sea during the period 1954–1990. Cont Shelf Res 16:1463–1477CrossRefGoogle Scholar
  70. Schaber M, Hinrichsen H-H, Neuenfeldt S, Voss R (2009) Hydroacoustic tracking of individuals in environmental gradients—Baltic cod (Gadus morhua L.) vertical distribution during spawning. Mar Ecol Prog Ser 377:239–253CrossRefGoogle Scholar
  71. Schaber M, Hinrichsen H-H, Gröger J (2012) Seasonal changes in vertical distribution patterns of cod (Gadus morhua) in the Bornholm Basin, central Baltic Sea. Fish Oceanogr 21(1):33–43CrossRefGoogle Scholar
  72. Schmidt C (2000) Populationsgenetische Untersuchungen am Ostseedorsch (Gadus morhua L.). Dipl. thesis, University of KielGoogle Scholar
  73. Soetaert K, Heip C (1995) Nematode assemblages of the deep sea and shelf break sites in the North Atlantic and Mediterranean Sea. Mar Ecol Prog Ser 125:171–183CrossRefGoogle Scholar
  74. Sparholt H (1994) Fish species interactions in the Baltic Sea. Dana 10:131–162Google Scholar
  75. Stepputtis D (2006) Distribution patterns of Baltic sprat (Sprattus sprattus L.)—causes and consequences. PhD thesis, University of Kiel, p 153Google Scholar
  76. Steyaert M, Moodley L, Nadong T (2007) Responses of inter-tidal nematodes to short-term anoxic events. J Exp Mar Biol Ecol 345:175–184CrossRefGoogle Scholar
  77. Tahseen Q (2012) Nematodes in aquatic environments: adaptations and survival strategies. Biodivers J 3:13–40Google Scholar
  78. Thurow F (1993) Fish and fisheries in the Baltic Sea. ICES Coop Res Rep 186:20–36Google Scholar
  79. Tomkiewicz J, Lehmann KM, St. John MA (1998) Oceanographic influences on the distribution of Baltic cod, Gadus morhua, during spawning in the Bornholm Basin of the Baltic Sea. Fish Oceanogr 7:48–62CrossRefGoogle Scholar
  80. Uzars D (1994) Feeding of cod (Gadus morhua callarias L.) in the Central Baltic in relation to environmental changes. ICES Mar Sci Symp 198:612–623Google Scholar
  81. Villnäs A, Norkko A (2011) Benthic diversity gradients and shifting baselines: implications for assessing environmental status. Ecol Appl 21(6):2172–2186CrossRefGoogle Scholar
  82. Vranken G, Tiré C, Heip C (1989) Effect of temperature and food on hexavalent chromium toxicity to the marine nematode Monhystera disjuncta. Mar Environ Res 27:127–136CrossRefGoogle Scholar
  83. Weirup L (2015) Diseases and parasites of Baltic cod (Gadus morhua L.): Spatio-temporal patterns and host effects. Master thesis, University of Hamburg, Germany, p 83Google Scholar
  84. Wieland K, Waller U, Schnack D (1994) Development of Baltic cod eggs at different levels of temperature and oxygen content. Dana 10:163–177Google Scholar
  85. Wieland K, Jarre-Teichmann A, Horbowa K (2000) Changes in the timing of spawning of Baltic cod: possible causes and implications for recruitment. ICES J Mar Sci 57:452–464CrossRefGoogle Scholar
  86. Zettler ML, Schiedel D, Glockzin M (2008) Zoobenthos. In: Feistel R, Nausch G, Wasmund N (eds) State and evolution of the Baltic Sea, 1952–2005. A detailed 50-year survey of meteorology and climate, physics, chemistry, biology, and marine environment. Wiley, Haboken, pp 517–541Google Scholar
  87. Zimmermann C, Krumme U (2015) Ostseedorsch am Tropf der Nordsee: Gut für die Umwelt ist nicht immer gut für die Fischbestände. Forschungsreport Ernähr Landwirtsch Verbrauchersch (1):40–43Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2018

Authors and Affiliations

  • Thomas Lang
    • 1
    Email author
  • Lech Kotwicki
    • 2
  • Michał Czub
    • 2
  • Katarzyna Grzelak
    • 2
  • Lina Weirup
    • 1
  • Katharina Straumer
    • 1
  1. 1.Thünen-Institut für FischereiökologieCuxhavenGermany
  2. 2.Institute of Oceanology Polish Academy of SciencesSopotPoland

Personalised recommendations