Advertisement

Environmental Toxicity of CWAs and Their Metabolites

  • Morten Swayne Storgaard
  • Ilias Christensen
  • Hans SandersonEmail author
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

This chapter reviews the environmental toxicity of CWAs and their metabolites as well as mixtures of CWAs. We used Microtox™ to generate EC50 value for 11 compounds. We observed hormetic effects for two compounds namely Triphenylarsine and Triphenylarsine oxide. None of the mixtures tested show sign of synergism. Two compounds can be characterized as very toxic as both α-chloroacetophenone (EC50 = 11.20 μg L−1) and 2-chlorovinylarsinic acid (EC50 = 31.20 μg L−1) demonstrated EC50 values below 1000 μg L−1. Several compounds can be characterized as toxic as 1,2,5-trithiepane (EC50 = 1170 μg L−1), 1,4,5-oxadithiepane (EC50 = 1700 μg L−1), phenarsazinic acid (EC50 = 5330 μg L−1) and 1,4-dithiane (EC50 = 9970 μg L−1) as these compounds demonstrated EC50 values between 1000 μg L−1 and 10,000 μg L−1. An D. magna acute LC50 for, the compound most frequently detected compound (DPA [ox]), was determined to be 100,000 μg L−1. A chronic D. magna LC5019days of 640 μg L−1 was derived for the compound. A 14-day locomotor behaviour test on adult male Zebrafish (Danio rerio) revealed altered behaviour when exposed to concentrations of 1,4,5-oxadithiepane down to 40.3 ± 2.9 μg L−1. A NOECweight and NOECmortality greater than 1533 μg L−1 was determined for 1,4,5-oxadithiepane.

Notes

Acknowledgements

NATO Science for Peace project #984589 (MODUM) for funding.

References

  1. Altenburger R, Backhaus T, Boedeker W, Faust M, Scholze M, Grimme LH (2000) Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: mixtures composed of similarly acting chemicals. Environ Toxicol Chem 19(9):2341–2347CrossRefGoogle Scholar
  2. Amato E, Alcaro L, Corsi I, Della Torre C, Farchi C, Focardi S, Marino G, Tursi A (2006) An integrated ecotoxicological approach to assess the effects of pollutants released by unexploded chemical ordnance dumped in the southern Adriatic (Mediterranean Sea). Mar Biol 149(1):17–23CrossRefGoogle Scholar
  3. Baatrup E, Henriksen PG (2015) Disrupted reproductive behavior in unexposed female zebrafish (Danio rerio) paired with males exposed to low concentrations of 17alpha-ethinylestradiol (EE2). Aquat Toxicol 160:197–204CrossRefGoogle Scholar
  4. Barsiene J, Butrimaviciene L, Grygiel W, Lang T, Michailovas A, Jackunas T (2014) Environmental genotoxicity and cytotoxicity in flounder (Platichthys flesus), herring (Clupea harengus) and Atlantic cod (Gadus morhua) from chemical munitions dumping zones in the southern Baltic Sea. Mar Environ Res 96:56–67CrossRefGoogle Scholar
  5. Barsiene J, Butrimaviciene L, Grygiel W, Stunzenas V, Valskiene R, Greiciunaite J, Stankeviciute M (2016) Environmental genotoxicity assessment along the transport routes of chemical munitions leading to the dumping areas in the Baltic Sea. Mar Pollut Bull 103(1–2):45–53CrossRefGoogle Scholar
  6. Bełdowski J, Klusek Z, Szubska M, Turja R, Bulczak AI, Rak D, Brenner M, Lang T, Kotwicki L, Grzelak K, Jakacki J, Fricke N, Östin A, Olsson U, Fabisiak J, Garnaga G, Nyholm JR, Majewski P, Broeg K, Söderström M, Vanninen P, Popiel S, Nawała J, Lehtonen K, Berglind R, Schmidt B (2016) Chemical Munitions Search & Assessment—an evaluation of the dumped munitions problem in the Baltic Sea. Deep-Sea Res II Top Stud Oceanogr 128:85–95CrossRefGoogle Scholar
  7. Calabrese EJ, Baldwin LA (2002) Defining hormesis. Hum Exp Toxicol 21(2):91–97CrossRefGoogle Scholar
  8. Christensen IMA (2015) Toxicity and risks of CWAs found in the Baltic Sea. Aarhus University, RoskildeGoogle Scholar
  9. Christensen IMA, Swayne Storgaard M, Fauser P, Foss Hansen S, Baatrup E, Sanderson H (2016) Acute toxicity of sea-dumped chemical munitions: luminating the environmental toxicity of legacy compounds. Glob Secur Health Sci Policy 1(1):39–50Google Scholar
  10. Dabrowska H, Kopko O, Gora A, Waszak I, Walkusz-Miotk J (2014) DNA damage, EROD activity, condition indices, and their linkages with contaminants in female flounder (Platichthys flesus) from the southern Baltic Sea. Sci Total Environ 496:488–498CrossRefGoogle Scholar
  11. Davis AP, Wiegers TC, Rosenstein MC, Mattingly CJ (2012) MEDIC: a practical disease vocabulary used at the comparative Toxicogenomics database. Database (Oxford) 2012:bar065Google Scholar
  12. Della Torre C, Petochi T, Corsi I, Dinardo MM, Baroni D, Alcaro L, Focardi S, Tursi A, Marino G, Frigeri A, Amato E (2010) DNA damage, severe organ lesions and high muscle levels of as and hg in two benthic fish species from a chemical warfare agent dumping site in the Mediterranean Sea. Sci Total Environ 408(9):2136–2145CrossRefGoogle Scholar
  13. Della Torre C, Petochi T, Farchi C, Corsi I, Dinardo MM, Sammarini V, Alcaro L, Mechelli L, Focardi S, Tursi A, Marino G, Amato E (2013) Environmental hazard of yperite released at sea: sublethal toxic effects on fish. J Hazard Mater 248-249:246–253CrossRefGoogle Scholar
  14. Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2001) Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquat Toxicol 56(1):13–32CrossRefGoogle Scholar
  15. Fulton MH, Key PB (2001) Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ Toxicol Chem 20(1):37–45CrossRefGoogle Scholar
  16. Galli R, Rich HW, Scholtz R (1994) Toxicity of organophosphate insecticides and their metabolites to the water flea Daphnia magna, the Microtox test and an acetylcholinesterase inhibition test. Aquat Toxicol 30(3):259–269CrossRefGoogle Scholar
  17. Greenberg MI, Sexton KJ, Vearrier D (2016) Sea-dumped chemical weapons: environmental risk, occupational hazard. Clin Toxicol 54(2):79–91CrossRefGoogle Scholar
  18. Hill AB (1965) Environment and disease – association or causation. Proc R Soc Med Lond 58(5):295–300Google Scholar
  19. International Organization for Standardization, I (2007) Water Quality – determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test)Google Scholar
  20. Kroening KK, Solivio MJV, García-López M, Puga A, Caruso JA (2009) Cytotoxicity of arsenic-containing chemical warfare agent degradation products with metallomic approaches for metabolite analysis. Metallomics 1(1):59–66CrossRefGoogle Scholar
  21. Lang T, Fricke N, Broeg K, Baude R, Brenner M, Lehtonen K, Turja R, Barsiene J (2013) Health status of cod (Gadus morhua) at dumpsites for chemical warfare agents in the Baltic Sea, (2013)Google Scholar
  22. Larsen MG, Hansen KB, Henriksen PG, Baatrup E (2008) Male zebrafish (Danio rerio) courtship behaviour resists the feminising effects of 17alpha-ethinyloestradiol--morphological sexual characteristics do not. Aquat Toxicol 87(4):234–244CrossRefGoogle Scholar
  23. Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3:285–290Google Scholar
  24. Mazurek M, Witkiewicz Z, Popiel S et al (2001) Capillary gas chromatography-atomic emission spectroscopy-mass spectrometry analysis of sulphur mustard and transformation products in a block recovered from the Baltic Sea. J Chromatogr A 919:133–145Google Scholar
  25. Munro NB, Talmage SS, Griffin GD, Waters LC, Watson AP, King JF, Hauschild V (1999) The sources, fate, and toxicity of chemical warfare agent degradation products. Environ Health Perspect 107(12):933–974CrossRefGoogle Scholar
  26. OECD (2000) Guidance document on aquatic toxicity testing of difficult substances and mixtures. OECD (ed) OECD, OECD Environment Directorate, Paris, p 53Google Scholar
  27. van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149CrossRefGoogle Scholar
  28. Sancho E, Ceron JJ, Ferrando MD (2000) Cholinesterase activity and hematological parameters as biomarkers of sublethal molinate exposure in Anguilla anguilla. Ecotoxicol Environ Saf 46(1):81–86CrossRefGoogle Scholar
  29. Sanderson H, Fauser P, Thomsen M, Sørensen P (2007) PBT screening profile of chemical warfare agents (CWAs). J Hazard Mater 148(1–2):210–215CrossRefGoogle Scholar
  30. Sanderson H, Fauser P, Thomsen M, Sørensen PB (2008) Screening level fish community risk assessment of chemical warfare agents in the Baltic Sea. J Hazard Mater 154(1–3):846–857CrossRefGoogle Scholar
  31. Sanderson H, Fauser P, Thomsen M, Vanninen P, Söderström M, Savin Y, Khalikov I, Hirvonen A, Niiranen S, Missaen T, Gress A, Borodin P, Medvedeva N, Polyak Y, Paka V, Zhurbas V, Feller P (2010) Environmental hazards of sea-dumped chemical weapons. Environ Sci Technol 44(12):4389–4394CrossRefGoogle Scholar
  32. Sanderson H, Fauser P, Rahbek M, Larsen JB (2014) Review of environmental exposure concentrations of chemical warfare agent residues and associated the fish community risk following the construction and completion of the Nord stream gas pipeline between Russia and Germany. J Hazard Mater 279:518–526CrossRefGoogle Scholar
  33. Söderström M (2014) Summary of chemicals analysis of sediment samples. CHEMSEA (ed)Google Scholar
  34. Summerfelt RC, Lewis WM (1967) Repulsion of green sunfish by certain chemicals. J Water Pollut Control Fed 39(12):2030–2038Google Scholar
  35. Swayne Storgaard M (2016) The environmental toxicity of chemical warfare agents and their degradation products found in the Baltic Sea. Aarhus University, AarhusGoogle Scholar
  36. Swayne Storgaard M, Sanderson H, Henriksen PG, Fauser P, Östin A, Baatrup E (2016) Suppressed swimming activity in Zebrafish (Danio rerio) exposed to 1,4,5-oxadithiepane, a sulphur mustard degradation product. SubmittedGoogle Scholar
  37. Tsuji S, Tonogai Y, Ito Y, Kanoh S (1986) The influence of rearing temperatures on the toxicity of various environmental pollutants for killifish (Oryzias latipes). Jpn J Toxicol Environ Health 32:46–53CrossRefGoogle Scholar
  38. Turja R, Lehtonen K (2012) Biological effects measured on caged mussels and cod, HelsinkiGoogle Scholar
  39. UN (2011) Globally harmonized system of classification and labelling of chemicals (GHS). Nations U (ed) United Nations, New York/Geneva, pp 215–241Google Scholar
  40. Walker CH, Sibly RM, Hopkin SP, Peakall DB (2012) Principles of ecotoxicology. CRC Press, Boca Raton, pp 163–172Google Scholar
  41. Whyte JJ, Jung RE, Schmitt CJ, Tillitt DE (2000) Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Crit Rev Toxicol 30(4):347–570CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2018

Authors and Affiliations

  • Morten Swayne Storgaard
    • 1
  • Ilias Christensen
    • 1
    • 2
  • Hans Sanderson
    • 1
    Email author
  1. 1.Department of Environmental ScienceAarhus UniversityRoskildeDenmark
  2. 2.Department of Environmental EngineeringTechnical University of DenmarkLyngbyDenmark

Personalised recommendations