Skip to main content

Environmental Toxicity of CWAs and Their Metabolites

  • Conference paper
  • First Online:

Abstract

This chapter reviews the environmental toxicity of CWAs and their metabolites as well as mixtures of CWAs. We used Microtox™ to generate EC50 value for 11 compounds. We observed hormetic effects for two compounds namely Triphenylarsine and Triphenylarsine oxide. None of the mixtures tested show sign of synergism. Two compounds can be characterized as very toxic as both α-chloroacetophenone (EC50 = 11.20 μg L−1) and 2-chlorovinylarsinic acid (EC50 = 31.20 μg L−1) demonstrated EC50 values below 1000 μg L−1. Several compounds can be characterized as toxic as 1,2,5-trithiepane (EC50 = 1170 μg L−1), 1,4,5-oxadithiepane (EC50 = 1700 μg L−1), phenarsazinic acid (EC50 = 5330 μg L−1) and 1,4-dithiane (EC50 = 9970 μg L−1) as these compounds demonstrated EC50 values between 1000 μg L−1 and 10,000 μg L−1. An D. magna acute LC50 for, the compound most frequently detected compound (DPA [ox]), was determined to be 100,000 μg L−1. A chronic D. magna LC5019days of 640 μg L−1 was derived for the compound. A 14-day locomotor behaviour test on adult male Zebrafish (Danio rerio) revealed altered behaviour when exposed to concentrations of 1,4,5-oxadithiepane down to 40.3 ± 2.9 μg L−1. A NOECweight and NOECmortality greater than 1533 μg L−1 was determined for 1,4,5-oxadithiepane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altenburger R, Backhaus T, Boedeker W, Faust M, Scholze M, Grimme LH (2000) Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: mixtures composed of similarly acting chemicals. Environ Toxicol Chem 19(9):2341–2347

    Article  CAS  Google Scholar 

  • Amato E, Alcaro L, Corsi I, Della Torre C, Farchi C, Focardi S, Marino G, Tursi A (2006) An integrated ecotoxicological approach to assess the effects of pollutants released by unexploded chemical ordnance dumped in the southern Adriatic (Mediterranean Sea). Mar Biol 149(1):17–23

    Article  CAS  Google Scholar 

  • Baatrup E, Henriksen PG (2015) Disrupted reproductive behavior in unexposed female zebrafish (Danio rerio) paired with males exposed to low concentrations of 17alpha-ethinylestradiol (EE2). Aquat Toxicol 160:197–204

    Article  CAS  Google Scholar 

  • Barsiene J, Butrimaviciene L, Grygiel W, Lang T, Michailovas A, Jackunas T (2014) Environmental genotoxicity and cytotoxicity in flounder (Platichthys flesus), herring (Clupea harengus) and Atlantic cod (Gadus morhua) from chemical munitions dumping zones in the southern Baltic Sea. Mar Environ Res 96:56–67

    Article  CAS  Google Scholar 

  • Barsiene J, Butrimaviciene L, Grygiel W, Stunzenas V, Valskiene R, Greiciunaite J, Stankeviciute M (2016) Environmental genotoxicity assessment along the transport routes of chemical munitions leading to the dumping areas in the Baltic Sea. Mar Pollut Bull 103(1–2):45–53

    Article  CAS  Google Scholar 

  • Bełdowski J, Klusek Z, Szubska M, Turja R, Bulczak AI, Rak D, Brenner M, Lang T, Kotwicki L, Grzelak K, Jakacki J, Fricke N, Östin A, Olsson U, Fabisiak J, Garnaga G, Nyholm JR, Majewski P, Broeg K, Söderström M, Vanninen P, Popiel S, Nawała J, Lehtonen K, Berglind R, Schmidt B (2016) Chemical Munitions Search & Assessment—an evaluation of the dumped munitions problem in the Baltic Sea. Deep-Sea Res II Top Stud Oceanogr 128:85–95

    Article  Google Scholar 

  • Calabrese EJ, Baldwin LA (2002) Defining hormesis. Hum Exp Toxicol 21(2):91–97

    Article  CAS  Google Scholar 

  • Christensen IMA (2015) Toxicity and risks of CWAs found in the Baltic Sea. Aarhus University, Roskilde

    Google Scholar 

  • Christensen IMA, Swayne Storgaard M, Fauser P, Foss Hansen S, Baatrup E, Sanderson H (2016) Acute toxicity of sea-dumped chemical munitions: luminating the environmental toxicity of legacy compounds. Glob Secur Health Sci Policy 1(1):39–50

    Google Scholar 

  • Dabrowska H, Kopko O, Gora A, Waszak I, Walkusz-Miotk J (2014) DNA damage, EROD activity, condition indices, and their linkages with contaminants in female flounder (Platichthys flesus) from the southern Baltic Sea. Sci Total Environ 496:488–498

    Article  CAS  Google Scholar 

  • Davis AP, Wiegers TC, Rosenstein MC, Mattingly CJ (2012) MEDIC: a practical disease vocabulary used at the comparative Toxicogenomics database. Database (Oxford) 2012:bar065

    Google Scholar 

  • Della Torre C, Petochi T, Corsi I, Dinardo MM, Baroni D, Alcaro L, Focardi S, Tursi A, Marino G, Frigeri A, Amato E (2010) DNA damage, severe organ lesions and high muscle levels of as and hg in two benthic fish species from a chemical warfare agent dumping site in the Mediterranean Sea. Sci Total Environ 408(9):2136–2145

    Article  CAS  Google Scholar 

  • Della Torre C, Petochi T, Farchi C, Corsi I, Dinardo MM, Sammarini V, Alcaro L, Mechelli L, Focardi S, Tursi A, Marino G, Amato E (2013) Environmental hazard of yperite released at sea: sublethal toxic effects on fish. J Hazard Mater 248-249:246–253

    Article  CAS  Google Scholar 

  • Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2001) Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquat Toxicol 56(1):13–32

    Article  CAS  Google Scholar 

  • Fulton MH, Key PB (2001) Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ Toxicol Chem 20(1):37–45

    Article  CAS  Google Scholar 

  • Galli R, Rich HW, Scholtz R (1994) Toxicity of organophosphate insecticides and their metabolites to the water flea Daphnia magna, the Microtox test and an acetylcholinesterase inhibition test. Aquat Toxicol 30(3):259–269

    Article  Google Scholar 

  • Greenberg MI, Sexton KJ, Vearrier D (2016) Sea-dumped chemical weapons: environmental risk, occupational hazard. Clin Toxicol 54(2):79–91

    Article  CAS  Google Scholar 

  • Hill AB (1965) Environment and disease – association or causation. Proc R Soc Med Lond 58(5):295–300

    CAS  Google Scholar 

  • International Organization for Standardization, I (2007) Water Quality – determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test)

    Google Scholar 

  • Kroening KK, Solivio MJV, García-López M, Puga A, Caruso JA (2009) Cytotoxicity of arsenic-containing chemical warfare agent degradation products with metallomic approaches for metabolite analysis. Metallomics 1(1):59–66

    Article  CAS  Google Scholar 

  • Lang T, Fricke N, Broeg K, Baude R, Brenner M, Lehtonen K, Turja R, Barsiene J (2013) Health status of cod (Gadus morhua) at dumpsites for chemical warfare agents in the Baltic Sea, (2013)

    Google Scholar 

  • Larsen MG, Hansen KB, Henriksen PG, Baatrup E (2008) Male zebrafish (Danio rerio) courtship behaviour resists the feminising effects of 17alpha-ethinyloestradiol--morphological sexual characteristics do not. Aquat Toxicol 87(4):234–244

    Article  CAS  Google Scholar 

  • Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3:285–290

    CAS  Google Scholar 

  • Mazurek M, Witkiewicz Z, Popiel S et al (2001) Capillary gas chromatography-atomic emission spectroscopy-mass spectrometry analysis of sulphur mustard and transformation products in a block recovered from the Baltic Sea. J Chromatogr A 919:133–145

    Google Scholar 

  • Munro NB, Talmage SS, Griffin GD, Waters LC, Watson AP, King JF, Hauschild V (1999) The sources, fate, and toxicity of chemical warfare agent degradation products. Environ Health Perspect 107(12):933–974

    Article  CAS  Google Scholar 

  • OECD (2000) Guidance document on aquatic toxicity testing of difficult substances and mixtures. OECD (ed) OECD, OECD Environment Directorate, Paris, p 53

    Google Scholar 

  • van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149

    Article  Google Scholar 

  • Sancho E, Ceron JJ, Ferrando MD (2000) Cholinesterase activity and hematological parameters as biomarkers of sublethal molinate exposure in Anguilla anguilla. Ecotoxicol Environ Saf 46(1):81–86

    Article  CAS  Google Scholar 

  • Sanderson H, Fauser P, Thomsen M, Sørensen P (2007) PBT screening profile of chemical warfare agents (CWAs). J Hazard Mater 148(1–2):210–215

    Article  CAS  Google Scholar 

  • Sanderson H, Fauser P, Thomsen M, Sørensen PB (2008) Screening level fish community risk assessment of chemical warfare agents in the Baltic Sea. J Hazard Mater 154(1–3):846–857

    Article  CAS  Google Scholar 

  • Sanderson H, Fauser P, Thomsen M, Vanninen P, Söderström M, Savin Y, Khalikov I, Hirvonen A, Niiranen S, Missaen T, Gress A, Borodin P, Medvedeva N, Polyak Y, Paka V, Zhurbas V, Feller P (2010) Environmental hazards of sea-dumped chemical weapons. Environ Sci Technol 44(12):4389–4394

    Article  CAS  Google Scholar 

  • Sanderson H, Fauser P, Rahbek M, Larsen JB (2014) Review of environmental exposure concentrations of chemical warfare agent residues and associated the fish community risk following the construction and completion of the Nord stream gas pipeline between Russia and Germany. J Hazard Mater 279:518–526

    Article  CAS  Google Scholar 

  • Söderström M (2014) Summary of chemicals analysis of sediment samples. CHEMSEA (ed)

    Google Scholar 

  • Summerfelt RC, Lewis WM (1967) Repulsion of green sunfish by certain chemicals. J Water Pollut Control Fed 39(12):2030–2038

    CAS  Google Scholar 

  • Swayne Storgaard M (2016) The environmental toxicity of chemical warfare agents and their degradation products found in the Baltic Sea. Aarhus University, Aarhus

    Google Scholar 

  • Swayne Storgaard M, Sanderson H, Henriksen PG, Fauser P, Östin A, Baatrup E (2016) Suppressed swimming activity in Zebrafish (Danio rerio) exposed to 1,4,5-oxadithiepane, a sulphur mustard degradation product. Submitted

    Google Scholar 

  • Tsuji S, Tonogai Y, Ito Y, Kanoh S (1986) The influence of rearing temperatures on the toxicity of various environmental pollutants for killifish (Oryzias latipes). Jpn J Toxicol Environ Health 32:46–53

    Article  CAS  Google Scholar 

  • Turja R, Lehtonen K (2012) Biological effects measured on caged mussels and cod, Helsinki

    Google Scholar 

  • UN (2011) Globally harmonized system of classification and labelling of chemicals (GHS). Nations U (ed) United Nations, New York/Geneva, pp 215–241

    Google Scholar 

  • Walker CH, Sibly RM, Hopkin SP, Peakall DB (2012) Principles of ecotoxicology. CRC Press, Boca Raton, pp 163–172

    Google Scholar 

  • Whyte JJ, Jung RE, Schmitt CJ, Tillitt DE (2000) Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Crit Rev Toxicol 30(4):347–570

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NATO Science for Peace project #984589 (MODUM) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Sanderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V.

About this paper

Cite this paper

Storgaard, M.S., Christensen, I., Sanderson, H. (2018). Environmental Toxicity of CWAs and Their Metabolites. In: Bełdowski, J., Been, R., Turmus, E. (eds) Towards the Monitoring of Dumped Munitions Threat (MODUM). NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1153-9_5

Download citation

Publish with us

Policies and ethics