Skip to main content

Abstract

In the previous chapters we presented a linear model that can be considered the age-structured version of the so-called Malthus model. Thus, the criticisms of the latter also apply to the former: exponential growth is no more realistic for age-structured models than it is for unstructured ones, unless we just want to follow the growth of the population for a limited time during which the restrictive assumptions that we have made are satisfied. The golden age dreamed of by Raymond Queneau (ironically limited to the extreme cases of increasing nutrients or to absence of reproduction) has to be replaced by logistic growth and by those models that include intra-specific interactions. In Sect. 1.1.6 of Chap. 1 we have discussed some of the mechanisms through which these interactions occur, and in this chapter we shall formulate a fairly general nonlinear model that enables us to consider the main phenomenology of the single population growth . After presenting some general results on the analysis of this general model, we shall discuss some specific cases in the context of adult juvenile dynamics, corresponding to different intra-specific mechanisms such as competition, the Allee effect and cannibalism . All these effects produce stationary states that may be considered reasonable substitutes for Queneau’s utopian golden age.

XXXI

QU’IL N’Y A PAS EU DE VÉRITABLE AGE D’OR

Il n’aurait pu y avoir age d’or veritable, c’est-à-dire de durée indéfinie, que si la végétation avait pu fournir, sur place, une quantité croissante de nourriture; ou encore si l’homme ne s’était pas reproduit.

R. Queneau, Une Histoire Modèle, 1966

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    XXXI: THERE HAS NOT BEEN A REAL GOLDEN AGE/ There could not have been a real golden age, that is of unlimited duration, except if the vegetation would have been able to provide, on the spot, an increasing amount of food; or else if man had not reproduced.

  2. 2.

    The assumptions on the functions Φ and Ψ are actually stronger than necessary. In fact, here we have assumed that both are strictly monotone, even though it is enough that just one of them is.

References

  1. Bertuzzi, A., Gandolfi, A., Giovenco, M.A.: Mathematical models of the cell cycle with a view to tumor studies. Math. Biosci. 53, 159–188 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cushing, J.M.: Existence and stability of equilibria in age-structured population dynamics. J. Math. Biol. 20, 259–276 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cushing, J.M.: Global branches of equilibrium solutions of the McKendrick equations for age-structured population growth. Comp. Math. Appl. 11, 459–478 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cushing, J.M.: Equilibria in structured populations. J. Math. Biol. 23, 15–39 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cushing, J.M.: Equilibria in systems of interacting age-structured populations. J. Math. Biol. 24, 627–649 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cushing, J.M., Li, J.: On Ebenman’s model for the dynamics of a population with competing juveniles and adults. Bull. Math. Biol. 51, 687–713 (1989)

    Article  MATH  Google Scholar 

  7. Cushing, J.M., Li, J.: Juvenile versus adult competition. J. Math. Biol. 29, 457–473 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cushing, J.M.: A simple model of cannibalism. Math. Biosci. 107, 47–71 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cushing, J.M.: Some delay models for juveniles versus adult competition. In: Busenberg, S., Martelli M. (eds.) Differential Equations Models in Biology, Epidemiology and Ecology, Proceedings Claremont 1990, Lectures Notes in Biomathematics, vol. 92, pp. 177–188. Springer, Berlin-Heidelberg (1991)

    Google Scholar 

  10. Cushing, J.M., Li, J.: Intra-specific competition and density dependent juvenile growth. Bull. Math. Biol. 54, 503–519 (1992)

    Article  MATH  Google Scholar 

  11. Cushing, J.M.: A size-structured model for cannibalism. Theor. Popul. Biol. 42, 347–361 (1992)

    Article  MATH  Google Scholar 

  12. Cushing, J.M.: Oscillations in age-structured population models with an Allee effect. J. Comput. App. Math. 52, 71–80 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cushing, J.M., Li, J.: Oscillations caused by cannibalism in a size-structured population model. Can. Appl. Math. Q. 3, 155–172 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Cushing, J.M., Henson, S.M., Roeger L.: Coexistence of competing juvenile-adult structured populations. J. Biol. Dyn. 1, 201–231 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cushing, J.M.: Backward bifurcations and strong Allee effects in matrix models for the dynamics of structured populations. J. Biol. Dyn. 8, 57–73 (2014)

    Article  MathSciNet  Google Scholar 

  16. Cushing, J.M., Veprauskas, A.: A juvenile-adult population model: climate change, cannibalism, reproductive synchrony, and strong Allee effects. J. Biol. Dyn. 11(sup1), 1–24 (2016)

    Google Scholar 

  17. Diekmann, O., Nisbet, R.M., Gurney, W.S.C., van den Bosch, F.: Simple mathematical models for cannibalism: A critique and a new approach. Math. Biosci. 78, 21–46 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Diekmann, O., Gyllenberg, M., Metz, J.A.J., Nakaoka, S., de Roos, A.M.: Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example. J. Math. Biol. 61, 277–318 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dyson, J., Villella-Bressan, R., Webb, G.F.: Asynchronous exponential growth in an age structured population of proliferating and quiescent cells. Math. Biosci. 177–178, 73–83 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ebenman, B.: Niche differences between age classes and intraspecific competition in age-structured populations. J. Theor. Biol. 124, 25–33 (1987)

    Article  MathSciNet  Google Scholar 

  21. Ebenman, B.: Competition between age classes and population dynamics. J. Theor. Biol. 131, 389–400 (1988)

    Article  MathSciNet  Google Scholar 

  22. Elaydi, S.N., Sacker, R.J.: Population models with Allee effect: A new model. J. Biol. Dyn. 4, 397–408 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Frauenthal, J.C.: Some simple models of cannibalism. Math. Biosci. 63, 87–98 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gandolfi, A., Iannelli, M., Marinoschi, G.: An age-structured model of epidermis growth. J. Math. Biol. 62, 111–141 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gurney, W.S.C., Nisbet, R.M.: Age and density-dependent population dynamics in static and variable environments. Theor. Popul. Biol. 17, 321–344 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gurney, W.S.C., Nisbet, R.M.: The systematic formulation of delay-differential models of age or size structured populations. In: Freedman, H.I., Strobeck, E. (eds.) Population Biology, Lecture Notes in Biomath., vol. 52, pp. 163–172. Springer, Berlin, Heidelberg, New York (1083)

    Google Scholar 

  27. Gurtin, M.E., MacCamy, R.C.: Non-linear age-dependent population dynamics. Arch. Ration. Mech. Anal. 54, 281–300 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gurtin, M.E., MacCamy, R.C.: Some simple models for nonlinear age-dependent population dynamics. Math. Biosci. 43, 199–211 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gurtin, M.E., MacCamy, R.C.: Population dynamics with age dependence. In: Knops, R.J. (ed.) Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol. III, pp. 1–35. Pitman, London (1979)

    Google Scholar 

  30. Gurtin, M.E., Levine, D.S.: On populations that cannibalize their young. SIAM J. Appl. Math. 42, 94–108 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gyllenberg, M.: Nonlinear age-dependent population dynamics in continuously propagated bacterial cultures. Math. Biosci. 62, 45–74 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gyllenberg, M.: Stability of a nonlinear age-dependent population model containing a control variable. SIAM J. Appl. Math. 43, 1418–1438 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gyllenberg, M.: The age structure of populations of cells reproducing by asymmetric division. In: Capasso, V., Grosso, E., Paveri-Fontana, S.L. (eds.) Mathematics in Biology and Medicine. Springer Lecture Notes in Biomathematics, vol. 57, pp. 320–327. Springer, New York (1985)

    Google Scholar 

  34. Gyllenberg, M., Webb, G.F.: A nonlinear structured cell population model of tumor growth with quiescence. J. Math. Biol. 28, 671–694 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Inaba, H.: Age-Structured Population Dynamics in Demography and Epidemiology. Springer, New York (2017)

    Book  Google Scholar 

  36. Metz, J.A.J., Diekmann, O.: The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, vol. 68. Springer, Berlin (1986)

    Google Scholar 

  37. Perthame, B.: Transport equations in biology. Frontiers in Mathematics. Birkhauser, Basel (2007)

    MATH  Google Scholar 

  38. Pruss, J.: Equilibrium solutions of age-specific population dynamics of several species. J. Math. Biol. 11, 64–84 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rorres, C.: Stability of an age specific population with density dependent fertility. Theor. Popul. Biol. 10, 26–46 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  40. Saleem, M.: Predator-prey relationships: egg-eating predators. Math. Biosci. 65, 187–197 (1983)

    Article  MATH  Google Scholar 

  41. Saleem, M.: Egg-eating age-structured predators in interaction with age-structured prey. Math. Biosci. 70, 91–104 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  42. Streifer, W.: Realistic models in population ecology. In: Macfadyen, A. (ed.) Advances in Ecological Research, vo. 8. Academic Press, New York (1974)

    Google Scholar 

  43. Thieme, H.R.: Well-posedness of physiologically structured population models for Daphnia magna. J. Math. Biol. 26, 299–317 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tschumy, W.O.: Competition between juveniles and adults in age-structured populations. Theor. Popul. Biol. 21, 255–268 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  45. Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York and Basel (1985)

    MATH  Google Scholar 

  46. Webb, G.F.: Semigroup methods in populations dynamics: Proliferating cell populations. In: Semigroup Theory and Applications. Lecture Notes in Pure and Applied Mathematics Series, vol. 116, pp. 441–449. Marcel Dekker, New York (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Iannelli, M., Milner, F. (2017). Nonlinear Models. In: The Basic Approach to Age-Structured Population Dynamics. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1146-1_5

Download citation

Publish with us

Policies and ethics