Skip to main content

Abstract

The most fundamental description of an interface is the thermodynamic free energy per unit area, γij governs a range of solid-solid, solid-liquid and solid-vapour interactions. The determination of the solid-vapour free energy is not straight-forward. In this chapter, conventional experimental techniques such as; sessile drop contact angle measurements, capillary rise and Wilhelmy plate is presented. Models for the determination of surface energy from contact angles are discussed. Furthermore, recent developments in inverse gas chromatography and dynamic vapour sorption approaches for the evaluation of the solid surface free energy are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87

    Article  Google Scholar 

  2. Kwok DY, Neumann AW (1999) Contact angle techniques and measurements. In: Milling AJ (ed) Surface characterization methods: principles, techniques and applications. Marcel Dekker Inc., New York

    Google Scholar 

  3. Bartell FE, Osterhof HJ (1927) Determination of the wettability of a solid by a liquid. Ind Eng Chem 19:1277–1280

    Article  CAS  Google Scholar 

  4. Heertjes PM (1971) The determination of interfacial tensions with the Wilhelmy plate method. Chem Eng Sci 26:1479–1480

    Article  CAS  Google Scholar 

  5. Papirer E, Balard H (1999) In: Pefferkorn E (ed) Interfacial phenomena in chromatography. Marcel Dekker Inc, New York

    Google Scholar 

  6. Conder JR, Young CL (1979) Physicochemical measurement by gas chromatography. Wiley, Chichester

    Google Scholar 

  7. Ho R, Heng JYY (2013) A review of inverse gas chormatography and its development as a tool to characterize anisotropic surface properties of pharmaceutical solids. KONA Powder Part J 30:164–180

    Article  CAS  Google Scholar 

  8. Adamson AW (1968) An adsorption model for contact angle and spreading. J Colloid Interface Sci 27:180–187

    Article  CAS  Google Scholar 

  9. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A 324:301–313

    Article  CAS  Google Scholar 

  10. Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53:314–326

    Article  CAS  Google Scholar 

  11. Ellison AH, Zisman WA (1954) Wettability studies on nylon, polyethylene terephthalate and polystyrene. J Phys Chem 58:503–506

    Article  CAS  Google Scholar 

  12. Fowkes FM (1962) Determination of interfacial tensions, contact angles, and dispersion forces in surface by assuming additivity of intermolecular interactions in surfaces. J Phys Chem 66:382

    Article  CAS  Google Scholar 

  13. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Article  CAS  Google Scholar 

  14. van Oss CJ, Good RJ, Chaudhury MK (1988) Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 4:884–891

    Article  Google Scholar 

  15. van Oss CJ (1994) Interfacial forces in aqueous media. Marcel Dekker Inc., New York

    Google Scholar 

  16. Volpe CD, Siboni S (1997) Some reflections on acid–base solid surface free energy theories. J Colloid Interface Sci 195:121–136

    Article  CAS  Google Scholar 

  17. Chen F, Chang WV (1991) Applicability study of a new acid base interaction model in polypeptides and polyamides. Langmuir 7:2401–2404

    Article  CAS  Google Scholar 

  18. Neumann AW, Good RJ, Hope CJ, Sejpal M (1974) An equation-of-state approach to determine surface tensions of low-energy solids from contact angles. J Colloid Interface Sci 49:291–304

    Article  CAS  Google Scholar 

  19. Li D, Neumann AW (1992) Equation of state for interfacial tensions of solid-liquid systems. Adv Colloid Interf Sci 39:299–345

    Article  CAS  Google Scholar 

  20. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Article  CAS  Google Scholar 

  21. Cassie ABD (1948) Contact angles. Discuss Faraday Soc 3:11–16

    Article  Google Scholar 

  22. Chibowski E (2003) Surface free energy of a solid from contact angle hysteresis. Adv Colloid Interf Sci 103:149–172

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Y. Y. Heng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Heng, J.Y.Y. (2017). Determining Surface Energetics of Solid Surfaces. In: Roberts, K., Docherty, R., Tamura, R. (eds) Engineering Crystallography: From Molecule to Crystal to Functional Form. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1117-1_8

Download citation

Publish with us

Policies and ethics