Skip to main content

Solid Form Landscape and Design of Physical Properties

  • Chapter
  • First Online:
Engineering Crystallography: From Molecule to Crystal to Functional Form

Abstract

Non-covalent interactions are relatively weak and reversible which means that it is particularly difficult to identify trends and patterns and to establish a hierarchy of molecular-recognition efficiency in a competitive situation, but it is important to note that the seemingly simple act of molecular recognition is achieved by balancing a range of non-covalent forces, and the synthesis of more complex architectures requires a systematic and targeted application of hierarchical self-assembly. In this contribution we illustrate how robust and reliable supramolecular synthetic strategies can be translated into the deliberate design of molecular solids, notably co-crystals, with tunable or desired function. We will focus our attention on energetic materials, pharmaceutically active compounds, and cavitands for host-guest applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aakeröy CB, Spartz CL, Desper J (2015) Systematic study of halogen bonding versus hydrogen bonding within supramolecular synthetic systems. IUCrJ 2:498–510

    Article  Google Scholar 

  2. Aakeröy CB (2015) Is there any point in making co-crystals? Acta Crystallogr Sect B 71:387–391

    Article  Google Scholar 

  3. Aakeröy CB, Wijethunga TK, Desper J (2015) Crystal engineering of energetic materials: Co-crystals of ethylenedinitramine (EDNA) with modified performance and improved chemical stability. Chem Eur J 21:11029–11037

    Article  Google Scholar 

  4. (a) Braga D, Desiraju GR, Miller JS, Orpen AG, Price SL (2002) Innovation in crystal engineering. Cryst Eng Comm 4:500–509; (b) Angeloni A, Crawford PC, Orpen AG, Podesta TJ, Shore BJ (2004) Does hydrogen bonding matter in crystal engineering? Crystal structures of salts of isomeric ions. Chem -A Eur J 10:3783–3791

    Google Scholar 

  5. (a) Lehn JM (1990) Perspectives in supramolecular chemistry—from molecular recognition towards molecular information processing and self-organization. Angew Chem Int Ed Engl 29:1304; (b) Desiraju GR (1989) Crystal engineering: the design of organic solids. Elsevier, Amsterdam; (c) Steed JW, Atwood JL (2000) Supramolecular chemistry: an introduction. Wiley, Chichester

    Google Scholar 

  6. Aakeröy CB (1997) Crystal engineering: strategies and architectures. Acta Crystallogr B53:569

    Article  Google Scholar 

  7. (a) Desiraju GR (2001) Chemistry beyond the molecule. Nature 412:397; (b) Coronado E, Galan-Mascaros JR, Gomez-Garcia CJ, Laukhin V (2000) Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound. Nature 408:447

    Google Scholar 

  8. (a) Muthuraman M, Masse R, Nicoud JF, Desiraju GR (2001) Molecular complexation as a design tool in the crystal engineering of noncentrosymmetric structures. Ideal orientation of chromophores linked by O−H···O and C−H···O hydrogen bonds for nonlinear optics. Chem Mater 13:1473; (b) König O, Burgi HB, Armbruster T, Hulliger J, Weber T, (1997) A study in crystal engineering: structure, crystal growth, and physical properties of a polar perhydrotriphenylene inclusion compound. J Am Chem Soc 119:10632

    Google Scholar 

  9. (a) Kahn O (2000) Chemistry and physics of supramolecular magnetic materials. Acc Chem Res 33:647–657; (b) Miller JS (2000) Organometallic- and organic-based magnets: new chemistry and new materials for the new millennium. Inorg Chem 39:4392

    Google Scholar 

  10. (a) Aoyama Y (1998) Functional organic zeolite analogues. Topics Curr Chem198:131; (b) Bassani DM, Darcos V, Mahony S, Desvergne JP (2000) Supramolecular Catalysis of Olefin [2 + 2] Photodimerization. J Am Chem Soc 122:8795

    Google Scholar 

  11. (a) Aakeröy CB, Chopade PD, Ganser C, Desper J (2011) Facile synthesis and supramolecular chemistry of hydrogen bond/halogenbond-driven multi-tasking tectons. Chem Commun 47:4688–4690; (b) Aakeröy CB, Desper J, Fasulo M, Hussain I, Levin B, Schultheiss N (2008) Ten years of co-crystal synthesis; the good, the bad, and the ugly. CrystEngComm 10:1816–1821; (c) Aakeröy CB, Desper J, Helfrich BA, Metrangolo P, Pilati T, Resnati G, Stevenazzi A (2007) Combining halogen bonds and hydrogen bonds in the modular assembly of heteromeric infinite 1-D chains. Chem Commun 4236–4238; (d) Desiraju GR (2007) Crystal engineering: a holistic view. Angew Chem Int Ed 46:8342–8356; (e) Moulton B, Zaworotko MJ (2001) From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chemical Reviews 101:1629–1658; (f) Thomas JM (2011) Crystal engineering: origins, early adventures and some current trends. CrystEngComm 13:4304–4306

  12. Aakeröy CB, Cooke TI, Nieuwenhuyzen M (1996) The crystal structure of the molecular cocrystal L-malic acid L-tartaric acid (1/1). Supramol Chem 7:153–156

    Article  Google Scholar 

  13. (a) Aakeröy CB, Beatty AM, Nieuwenhuyzen M, Zou M (2000) Organic Assemblies of 2-pyridones with dicarboxylic acids. Tetrahedron 56:6693–6699; (b) Aakeröy CB, Beatty AM, Helfrich BA (2001) “Total synthesis” supramolecular style: design and hydrogen-bond-directed assembly of ternary supermolecules. Angew Chem Int Ed Engl 40:3240–3242; (c) Aakeröy CB, Beatty AM, Helfrich BA (2002) A high-yielding supramolecular reaction. J Am Chem Soc 124:14425–14432; (d) Aakeröy CB, Beatty AM, Helfrich BA, Nieuwenhuyzen M (2003) Combining halogen bonds and hydrogen bonds in the modular assembly of heteromeric infinite 1-D chains. Cryst Growth Des 3:159–165; (e) Aakeröy CB, Salmon DJ (2005) Building co-crystals with molecular sense and supramolecular sensibility. Cryst Eng Comm 7:439–448

    Google Scholar 

  14. (a) Aakeröy CB, Forbes S, Desper J (2009) Using cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drug. J Am Chem Soc 131: 17048–17049; (b) Aakeroy CB, Fasulo ME, Desper J (2007) Cocrystal or salt: does it really matter? Mol Pharm 4:317–322; (c) Aakeröy CB, Grommet AB, Desper J (2011) Co-crystal screening of diclofenac. Pharmaceutics 3:601–614; (d) Aakeröy CB, Forbes S, Desper J (2012) The effect of water molecules in stabilizing co-crystals of active pharmaceutical ingredients. Cryst Eng Comm 14:2435–2443

    Google Scholar 

  15. Robinson JMA, Philp D, Harris KDM, Kariuki BM (2000) Weak interactions in crystal engineering—understanding the recognition properties of the nitro group. New J Chem 24:799–806

    Article  CAS  Google Scholar 

  16. Aakeröy CB, Rajbanshi A, Desper J (2011) Hydrogen-bond driven assembly of a molecular capsule facilitated by supramolecular chelation. ChemCommun 47:11411–11413

    Google Scholar 

  17. Rebek J Jr (2005) Simultaneous encapsulation: molecules held at close range. Angew Chem Int Ed 44:2068

    Article  CAS  Google Scholar 

  18. Castellano RK, Craig SL, Nuckolls C, Rebek J Jr (2000) Detection and mechanistic studies of multicomponent assembly by fluorescence resonance energy transfer. J Am Chem Soc 122:7876

    Article  CAS  Google Scholar 

  19. Chen J, Rebek J Jr (2002) Selectivity in an encapsulated cycloaddition reaction. Org Lett 4:327

    Article  CAS  Google Scholar 

  20. (a) Fujita M, Umemoto K, Yoshizawa M, Fujita N, Kusukawa T, Biradha K (2001) Molecular paneling via coordination. Chem Commun 509; (b) Yoshizawa M, Kusukawa T, Fujita M, Yamaguchi K. (2000) Ship-in-a-bottle synthesis of otherwise labile cyclic trimers of siloxanes in a self-assembled coordination cage. J Am Chem Soc 122:6311; (c) Kang JM, SantamarÌa J, Hilmersson G, Rebek J Jr (1998) Self-assembled molecular capsule catalyzes a diels−alder reaction. J Am Chem Soc 120:7389; (d) Chen J, Körner S, Craig SL, Rudkevich DM, Rebek J Jr (2002) Chemical amplification with encapsulated reagents. Nature 99:2593–2596

    Google Scholar 

  21. (a) Kusukawa T, Fujita M (1999) “Ship-in-a-bottle” formation of stable hydrophobic dimers of cis-azobenzene and -stilbene derivatives in a self-assembled coordination Nanocage. J Am Chem Soc 121:1397; (b) Körner SK, Tucci FC, Rudkevich DM, Heinz T, Rebek J Jr (2000) A self-assembled cylindrical capsule: new supramolecular phenomena through encapsulation. Chem Eur J 6:187

    Google Scholar 

  22. Scarso A, Shivanyuk A, Hayashida O, Rebek J Jr (2003) Asymmetric environments in encapsulation complexes. J Am Chem Soc 125:6239

    Article  CAS  Google Scholar 

  23. Ajami D, Rebek J Jr (2008) Gas behavior in self-assembled capsules. Angew Chem Int Ed 47:6059

    Article  CAS  Google Scholar 

  24. Ajami D, Rebek J Jr (2007) Adaptations of guest and host in expanded self-assembled capsules. Proc Natl Acad Sci U S A 104:16000

    Article  CAS  Google Scholar 

  25. Aakeröy CB, Chopade PD (2011) Oxime decorated cavitands functionalized through solvent-assisted grinding. Org Lett 13:1

    Article  Google Scholar 

  26. Aakeröy CB, Rajbanshi A, Metrangolo P, Resnati G, Parisi MF, Desper J, Pilati T (2012) The quest for a molecular capsule assembled via halogen bonds. CrystEngComm 14:6366–6368

    Article  Google Scholar 

  27. Aakeröy CB, Chopade PD, Quinn CF, Desper J (2014) Structure and thermodynamics of a multimeric cavitand assembly. CrystEngComm 16:3796–3801

    Article  Google Scholar 

  28. (a) Andreeff M, Stone R, Michaeli J, Young CW, Tong WP, Sogoloff H, Ervin T, Kufe D, Rifkind RA, Marks PA (1992) Hexamethylene bisacetamide in myelodysplastic syndrome and acute myelogenous leukemia: a phase II clinical trial with a differentiation- inducing agent. Blood 80:2604–2609; (b) Callery SP, Egorin MJ, Geelhaar LA, Nayar BS (1986) Identification of metabolites of the cell-differentiating agent hexamethylene bisacetamide in humans. Cancer Res 46:4900–4903; (c) Siegel DS, Zhang X, Feinman R, Teitz T, Zelenetz A, Richon VM, Rifkind RA, Marks PA, Michaeli J (1998) Hexamethylene bisacetamide induces programmed cell death (apoptosis) and down-regulates BCL-2 expression in human myeloma cells. Proc Natl Acad Sci USA 95:162–166

    Google Scholar 

  29. (a) Shan N, Zawarotko MJ (2008) The role of cocrystals in pharmaceutical science. Drug Discovery Today 11:440–446; (b) Aakeröy CB, Beatty AM, Helfrich BA, Nieuwenhuyzen M (2003) Do polymorphic compounds make good cocrystallizing agents? A structural case study that demonstrates the importance of synthon flexibility. Cryst Growth Des 3:159–165; (c) Aakeröy CB, Desper J, Helfrich BA (2004) Heteromeric intermolecular interactions as synthetic tools for the formation of binary co-crystals. CrystEngComm 6:19–24; (d) Aakeröy CB, Desper J, Urbina JF (2005) Syntheses and crystal structures of versatile supramolecular reagents based upon [(Benzimidazol-1-yl)methyl]-benzamides. Cryst Growth & Design 5:1283–1293

  30. Lauher JW, Fowler FW, Goroff NS (2008) Single-crystal-to-single-crystal topochemical polymerizations by design. Acc Chem Res 41:1215–1229

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christer B. Aakeröy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Aakeröy, C.B., Sandhu, B. (2017). Solid Form Landscape and Design of Physical Properties. In: Roberts, K., Docherty, R., Tamura, R. (eds) Engineering Crystallography: From Molecule to Crystal to Functional Form. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1117-1_4

Download citation

Publish with us

Policies and ethics