Skip to main content

Unique Ferromagnetic Properties Observed in All-Organic Radical Liquid Crystals

  • Chapter
  • First Online:
Engineering Crystallography: From Molecule to Crystal to Functional Form
  • 2117 Accesses

Abstract

We discovered that all-organic rod-like liquid crystalline (LC) compounds (1) with a stable nitroxide radical unit in the central core position exhibit unique intermolecular ferromagnetic interactions, which was referred to as ‘magneto-LC effects’, induced by low magnetic fields in the various LC phases. The origin of magneto-LC effects was interpreted in terms of the generation of a sort of spin glass-like inhomogeneous ferromagnetic interactions (the average spin-spin exchange interaction constant \( \overline{J} \) > 0). By measuring the electric field dependence of EPR spectra of the ferroelectric LC phase which can simultaneously show ‘positive magneto-LC effect’, two magnetic bistable states, anisotropy in spin-spin dipole interactions, and ‘magneto-electric effect’ were observed for the first time in a surface-stabilized liquid crystal cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bilinov LM (1983) Electro-optical and magneto-optical properties of liquid crystals. John Wiley & Sons, New York

    Google Scholar 

  2. Chamdrasekhar S (ed) (1992) Liquid crystal, second edn. Cambridge University Press, Cambridge

    Google Scholar 

  3. Demus D, Goodby J, Gray GW, Spiess HW, Vill V (eds) (1999) Physical properties of liquid crystals. Wiley-VCH, Weinheim

    Google Scholar 

  4. Dierking I (2003) Textures of liquid crystals. Wiley-VCH, Weinheim

    Book  Google Scholar 

  5. Serrano JL (1996) Metallomesogens: synthesis, properties, and applications. Wiley-VCH, Weinheim

    Google Scholar 

  6. Dunmur D, Toriyama K (1999) In: Demus D, Gooby J, Gray GW, Spies HW, Vill V (eds) Physical properties of liquid crystals. Wiley-VCH, Weinheim, p 102

    Google Scholar 

  7. Kaszynski P (1999) In: Lahti PM (ed) Magnetic properties of organic materials. Marcel Dekker, New York, p 305

    Google Scholar 

  8. Griesar K, Haase W (1999) In: Lahti PM (ed) Magnetic properties of organic materials. Marcel Dekker, New York, p 325

    Google Scholar 

  9. Binnemans K, Gröller-Walrand C (2002) Lanthanide-containing liquid crystals and surfactants. Chem Rev 102:2303

    Article  CAS  Google Scholar 

  10. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442:759

    Article  CAS  Google Scholar 

  11. Rao CNR, Serrao CR (2007) New routes to multiferroics. J Mater Chem 17:4931

    Article  CAS  Google Scholar 

  12. Felser C, Fecher GH, Balke B (2007) Spintronics: a challenge for materials science and solid-state chemistry. Angew Chem Int Ed 46:668

    Article  CAS  Google Scholar 

  13. Seki S (2012) Magnetoelectric response in low-dimensional frustrated spin systems. Springer, Tokyo

    Book  Google Scholar 

  14. Rikken GLJA, Raupach E (1997) Observation of magneto-chiral dichroism. Nature 390:493

    Article  CAS  Google Scholar 

  15. Rikken GLJA, Raupach E (2000) Enantioselective magnetochiral photochemistry. Nature 405:932

    Article  CAS  Google Scholar 

  16. Train C, Gheorghe R, Krstic V, Chamoreau LM, Ovanesyan NS, Rikken GLJA, Gruselle M, Verdaguer M (2008) Strong magneto-chiral dichroism in enantiopure chiral ferromagnets. Nat Mater 7:729

    Article  CAS  Google Scholar 

  17. Likhtenshtein GI, Yamauchi J, Nakatsuji S, Smirnov AI, Tamura R (2008) Ntroxides: application in chemistry, biomedicine, and materials science. Wiley-VCH, Weinheim, p 303

    Book  Google Scholar 

  18. Tamura R, Uchida Y, Ikuma N (2008) Paramagnetic all-organic chiral liquid crystals. J Mater Chem 18:2872

    Article  CAS  Google Scholar 

  19. Tamura R, Ikuma N, Shimono S (2009) In: Nalwa HS (ed) Soft nanomaterials, vol 1. American Scientific Publishers, Stevenson Ranch, p 257

    Google Scholar 

  20. Tamura R, Uchida Y, Suzuki K (2012) In: Li Q (ed) Liquid crystals beyond display. Wiley, Hoboken, p 83

    Chapter  Google Scholar 

  21. Tamura R, Uchida Y, Suzuki K (2012) In: Kokorin AI (ed) Nitroxides: theory experiment and application. INTECH, Rijeka, p 191

    Google Scholar 

  22. Tamura R, Suzuki K, Uchida Y, Noda Y (2013) EPR characterization of diamagnetic and magnetic organic soft materials using nitroxide spin probe techniques. In: Electron Paramag Reson, vol 23, p 1

    Google Scholar 

  23. Tamura R, Uchida Y, Suzuki K (2014) In: Gooby JW, Collings PJ, Kato T, Tschierske C, Gleeson HF, Raynes R (eds) Handbook of liquid crystals, vol 8, 2nd edn. Wiley-VCH, Weinheim, p 837

    Google Scholar 

  24. Ikuma N, Tamura R, Shimono S, Kawame N, Tamada O, Sakai N, Yamauchi J, Yamamoto Y (2004) Magnetic properties of all-organic liquid crystals containing a chiral five-membered cyclic nitroxide unit within the rigid core. Angew Chem Int Ed 43:3677

    Article  CAS  Google Scholar 

  25. Ikuma N, Tamura R, Shimono S, Uchida Y, Masaki K, Yamauchi J, Aoki Y, Nohira H (2006) Ferroelectric properties of paramagnetic, all-organic, chiral nitroxyl radical liquid crystals. Adv Mater 8:477

    Article  Google Scholar 

  26. Uchida Y, Ikuma N, Tamura R, Shimono S, Noda Y, Yamauchi J, Aoki Y, Nohira H (2008) Unusual intermolecular magnetic interaction observed in all-organic radical liquid crystal. J Mater Chem 18:2950

    Article  CAS  Google Scholar 

  27. Uchida Y, Suzuki K, Tamura R, Ikuma N, Shimono S, Noda Y, Yamauchi J (2010) Anisotropic and inhomogeneous magnetic interactions observed in all-organic nitroxide radical liquid crystals. J Am Chem Soc 132:9746

    Article  CAS  Google Scholar 

  28. Suzuki K, Uchida Y, Tamura R, Shimono S, Yamauchi J (2012) Observation of positive and negative magneto-LC effects in all-organic nitroxide radical liquid crystals by EPR spectroscopy. J Mater Chem 22:6799

    Article  CAS  Google Scholar 

  29. Ikuma N, Tamura R, Masaki K, Uchida Y, Shimono S, Yamauchi J, Aoki Y, Nohira H (2006) Paramagnetic FLCs containing an organic radical component. Ferroelectrics 343:119

    Article  CAS  Google Scholar 

  30. Ikuma N, Uchida Y, Tamura R, Suzuki K, Yamauchi J, Aoki Y, Nohira H (2009) Preparation and properties of C 2-symmetric organic radical compounds showing ferroelectric liquid crystal properties. Mol Cryst Liq Cryst 509:108

    Article  Google Scholar 

  31. Uchida Y, Tamura R, Ikuma N, Yamauchi J, Aoki Y, Nohira H (2008) Synthesis and characterization of novel radical liquid crystals showing ferroelectricity. Ferroelectrics 365:158

    Article  CAS  Google Scholar 

  32. Vorobiev AK, Chumakova NA, Pompgailo DA, Uchida Y, Suzuki Y, Noda Y (2014) Determination of structural characterization of all-organic radical liquid crystals based on analysis of the dipole-dipole broadened EPR spectra. J Phys Chem B 118:1932

    Article  CAS  Google Scholar 

  33. Uchida Y, Suzuki K, Tamura R (2012) Magneto-LC effects in hydrogen-bonded all-organic radical liquid crystal. J Phys Chem B 116:9791

    Article  CAS  Google Scholar 

  34. Suzuki K, Uchida Y, Tamura R, Noda Y, Ikuma N, Shimono S, Yamauchi J (2013) Influence of applied electric fields on the positive magneto-LC effects observed in the ferroelectric liquid crystalline phase of a chiral nitroxide radical compound. Soft Matter 9:4687

    Article  CAS  Google Scholar 

  35. Suzuki K, Uchida Y, Tamura R, Noda Y, Ikuma N, Shimono S, Yamauchi J (2013) Electric field dependence of molecular orientation and anisotropic magnetic interactions in the ferroelectric liquid crystalline phase of an organic radical compound by EPR spectroscopy. Adv Sci Tech 82:50

    Article  CAS  Google Scholar 

  36. Tamura R, Uchida Y, Suzuki K (2015) In: Tamura R, Miyata M (eds) Advances in organic crystal chemistry: comprehensive reviews. Springer, Tokyo, p 689

    Google Scholar 

  37. Aurich HG (1989) In: Breuer E, Aurich HG, Nielsen A (eds) Nitrones nitronates and nitroxides. Wiley, Chichester, p 313

    Chapter  Google Scholar 

  38. Dvolaitzky M, Billard J, Polydy F (1974) Note des membres et correspondants et notes presentees ou transmises par leurs soins. C R Acad Sci Paris Ser C 279:533

    CAS  Google Scholar 

  39. Dvolaitzky M, Taupin C, Polydy F (1976) Nitroxides piperidineques: synthesis de nouvelles sondes paramagnetiques. Tetrahedron Lett 18:1469

    Google Scholar 

  40. Dvolaitzky M, Billard J, Polydy F (1976) Smectic E, C and A free radicals. Tetrahedron 32:1835

    Google Scholar 

  41. Allgaier J, Finkelmann H (1994) Synthesis and magnetic properties of mesogenic side-chain polymers containing stable radicals. Macromol Chem Phys 195:1017

    Article  CAS  Google Scholar 

  42. Greve S, Vill V, Friedrichsen W (2002) Novel Nitronyl Nitroxides: Synthesis and Properties. Z Naturforsch 57b:677

    Google Scholar 

  43. Nakatsuji S, Mizumoto M, Ikemoto H, Akutsu H, Yamada J (2002) Preparation and properties of organic radical compounds with mesogen cores. Eur J Org Chem 2002:1912

    Article  Google Scholar 

  44. Kogo R, Araoka F, Uchida Y, Tamura R, Ishikawa K, Takezoe H (2010) Second harmonic generation in a paramagnetic all-organic chiral smectic liquid crystal. Appl Phys Express 3:041701

    Article  Google Scholar 

  45. Mandel SK, Nath TK, Das A, Kremer RK (2006) Magnetic glassy phase in Zn0.85Fe0.15O diluted magnetic semiconducting nanoparticles. Appl Phys Lett 89:162502

    Article  Google Scholar 

  46. Schneider J, Handstein A, Zaveta K (1984) Temperature and field dependence of the magnetization in crystalline and amorphous metallic alloys. J Magn Magn Mater 42:73

    Article  CAS  Google Scholar 

  47. Uchida Y, Tamura R, Ikuma N, Shimono S, Yamauchi J, Shimbo Y, Takezoe H, Aoki Y, Nohira H (2009) Magnetic-field-induced molecular alignment in an achiral liquid crystal spin-labeled by a nitroxyl group in the mesogen core. J Mater Chem 19:415

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Tamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tamura, R. (2017). Unique Ferromagnetic Properties Observed in All-Organic Radical Liquid Crystals. In: Roberts, K., Docherty, R., Tamura, R. (eds) Engineering Crystallography: From Molecule to Crystal to Functional Form. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1117-1_25

Download citation

Publish with us

Policies and ethics