Skip to main content

Techniques for Crystal Optical Characterisation: Chiroptical Spectroscopy

  • Chapter
  • First Online:
Engineering Crystallography: From Molecule to Crystal to Functional Form

Abstract

Solid state can provide unique and novel chemistry which is different from traditional solution chemistry. However, very few solid-state chirality measurements have been reported to date, as chiroptical spectra are inevitably accompanied by artifact signals originated from macroscopic anisotropies of a sample which are unique to the solid state. We have developed chiroptical spectrophotometers which overcome these problems. In this article, principle and instrumentation of Universal Chiroptical Spectrophotometers (UCS-1, UCS-2 and UCS-3) are described. These instruments measure artifact signals as well, which are then removed to obtain true chirality information. UCS-2 and -3 can measure both diffuse reflectance and transmittance CD (circular dichroism) as they have a horizontal sample stage, ideal for soft materials such as gels or powder crystallines. Some examples of the application are presented. The principle of multichannel (MC) CD which is based on an entirely new idea to detect directly true CD, free from artefact signals, is also briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braga D, Giaffreda SL, Grepioni F, Pettersen A, Maini PL, Curzi M, Polito M (2006) Mechanochemical preparation of molecular and supramolecular organometallic materials and coordination networks. Dalton Trans:1249–1263 and references in the review articles

    Google Scholar 

  2. Friscic T, Trask AV, Jones W, Motherwell WDS (2006) Screening for inclusion compounds and systematic construction of three-component solids by liquid-assisted grinding. Angew Chem Int Ed 45:7546–7550

    Article  CAS  Google Scholar 

  3. Toda F, Tanaka K, Miyamoto H, Koshima H, Miyahata I, Hirotsu K (1997) Formation of racemic compound crystals by mixing of two enantiomeric crystals in the solid state. Liquid transport of molecules from crystal to crystal. J Chem Soc Perkin Trans 9:1877–1885

    Article  Google Scholar 

  4. (a) Pedireddi VR, Jones W, Chorlton AP, Docherty R (1996) From solution and by solid state grinding. Chem Commun:987–988; (b) Trask AV, Motherwell WDS, Jones W (2004) Solvent-drop grinding: green polymorph control of cocrystallisation. Chem Commun 7:890–891

    Google Scholar 

  5. Nichols PJ, Raston CL, Steed JW (2001) Engineering of porous pi-stacked solids using mechanochemistry. Chem Commun 1062–1063

    Google Scholar 

  6. (a) Braga D, Maini L, Polito M, Mirolo L, Grepioni F (2002) Mechanochemical assembly of hydrogen bonded organic-organometallic solid compounds. Chem Commun 24:2960–2961; (b) Braga D (2003) Crystal engineering, Where from? Where to? Chem Commun:2751–2754; (c) Braga D, Maini L, Polito M, Mirolo L, Grepioni F (2003) Assembly of hybrid organic–organometallic materials through mechanochemical acid–base reactions. Chem Eur J 9:4362–4370; (d) Braga D, Maini L, de Sanctis G, Rubini K, Grepioni F, Chierotti MR, Gobetto R (2003) Mechanochemical preparation of hydrogen-bonded adducts between the Diamine 1,4-Diazabicyclo[2.2.2]octane and Dicarboxylic acids of variable chain length: an X-ray diffraction and solid-state NMR study. Chem Eur J 9:5538–5548; (e) Braga D, Giaffreda SL, Grepioni F, Polito M (2004) Mechanochemical and solution preparation of the coordination polymers Ag[N(CH2CH2)3N]2[CH3COO].5H2O and Zn[N(CH2CH2)3N]Cl2. CrystEngComm 6:458–462; (f) Braga D, Curzi M, Grepioni F, Polito M (2005) Mechanochemical and solution reactions between AgCH3COO and [H2NC6H10NH2] yield three isomers of the coordination network {Ag[H2NC6H10NH2]+}. Chem Commun:2915–2917

    Google Scholar 

  7. Chadwick K, Davey R, Cross W (2007) How does grinding produce co-crystals? Insights from the case of benzophenone and diphenylamine. Cryst Eng Com 9:732–734

    Article  CAS  Google Scholar 

  8. (a) Kuroda R, Imai Y, Tajima N (2002) Generation of a co-crystal phase with novel coloristic properties via solid state grinding procedures. Chem Commun 23:2848–2849; (b) Kuroda R, Imai Y, Sato T (2001) Chirality recognition in solvent-free solid-state crystallization: chiral adduct formation by Bis-β-naphthol derivatives and Benzoquinone crystals. Chirality 13:588–592; (c) Imai Y, Tajima N, Sato T, Kuroda R (2002) Molecular recognition in solid-state crystallization: colored chiral adduct formations of 1,1′-Bi-2-naphthol derivatives and Benzoquinone with a third component. Chirality 14:604–609; (d) Kuroda R, Higashiguchi K, Hasebe S, Imai Y (2004) Crystal to crystal transformation in the solid state. Cryst Eng Comm 6:463–468; (e) Imai Y, Tajima N, Sato T, Kuroda R (2006) Visualization of molecular Recognition: a novel system based on charge-transfer complexes composed of 1,1′-Bi-2-naphthol derivatives and p-Benzoquinone. Organic Lett 8:2941–2944; (f) Cheung EY, Kitchin SJ, Harris KDM, Imai Y, Tajima N, Kuroda R (2003) Direct structure determination of a multicomponent molecular crystal prepared by a solid state grinding procedure. J Am Chem Soc 125:14658–14659; (g) Kuroda R, Sato T, Imai Y (2008) Varied charge-transfer complex crystals formed between diols and benzoquinone in the solid and solution states. Cryst Eng Comm 10:1881–1890

    Google Scholar 

  9. Nakamura A, Sato T, Kuroda R (2004) Formation of racemic crystals of transition metal complexes by grinding 1:1 mixtures of enantiomeric crystals. Chem Commun 24:2858–2859

    Google Scholar 

  10. (a) MacGillivray LR, Reid JL, Ripmeester JA (2000) Supramolecular control of reactivity in the solid state using linear molecular templates. J Am Chem Soc 122:7817–7818; (b) Gao X, Caronna T, Friscic T, MacGillivray LR (2004) Supramolecular construction of molecular ladders in the solid state. Angew Chem Int Ed 43:232–236

    Google Scholar 

  11. Tanaka K, Toda F (2000) Solvent-free organic synthesis. Chem Rev 100:1025–1074

    Article  CAS  Google Scholar 

  12. Sekiya R, Kuroda R (2011) Controlling stereoselectivity of solid-state photoreactions by co-crystal formation. Chem Commun 47:10097–10099

    Article  CAS  Google Scholar 

  13. Harada T, Kuroda R (2002) Circular Dichroism measurement of a protein in dried thin films. Chem Lett 31:326–327

    Article  Google Scholar 

  14. Babenko V, Harada T, Yagi H, Goto Y, Kuroda R, Dzwolak W (2011) Chiral superstructures of insulin amyloid fibrils. Chirality 23:638–646

    Article  CAS  Google Scholar 

  15. Harada T, Kuroda R (2011) CD measurements of β-amyloid (1-40) and (1-42) in the condensed phase. Biopolymers 95:127–134

    Article  CAS  Google Scholar 

  16. Kuroda R (1975) Stereochemistry of transition metal complexes. Ph D thesis, University of Tokyo

    Google Scholar 

  17. Kuroda R, Saito Y (1976) Solid-state circular dichroism spectra of Tris(diamine)cobalt(III) complexes: decomposition into E and A2 components. Bull Chem Soc Japan 49:433–434

    Article  CAS  Google Scholar 

  18. Livolant F, Mickols W, Maestre MF (1988) Differential polarization microscopy (cd and linear dichroism) of polytene chromosomes and nucleoli from the dipteran sarcophaga footpad. Biopolymers 27:1761–1769

    Article  CAS  Google Scholar 

  19. Safar J, Roller PP, Ruben GC, Gajdusek DC, Gibbs CJ Jr (1993) Secondary structure of proteins associated in thin films. Biopolymers 33:1461–1476

    Article  CAS  Google Scholar 

  20. Lang J, Liu M (1999) Layer-by-layer assembly of DNA films and their interactions with dyes. J Phys Chem B 103:11393–11397

    Article  CAS  Google Scholar 

  21. McCaffery AJ, Mason SF (1963) The oxalate and tartrate complexes of chromium(III). Trans Faraday Soc 59:1–11

    Article  CAS  Google Scholar 

  22. Norden B, Grenthe I (1972) Circular Dichroism of dihedral rare earth carboxylates Chirally stabilized in single crystal. Acta Chem Scand 26:407–409

    Article  CAS  Google Scholar 

  23. Judkins RR, Royer DJ (1974) Optical rotatory strength of tris-bidentate cobalt(III) complexes. Inorg Chem 13:945–950

    Article  CAS  Google Scholar 

  24. Shindo Y (1995) Application of polarized modulation technique in polymer science. Opt Eng 34:3369–3384

    Article  CAS  Google Scholar 

  25. Kuroda R (2000) Solid-state CD: application to inorganic and organic chemistry. in Circular dichroism: principles and applications 159–184, Second Edition, Ed. Berova N, Nakanishi K, Woody RW, Wiley: New York

    Google Scholar 

  26. Kuroda R (2004) Circular Dichroism in the solid state. In: Inoue Y, Ramamurthy V (eds) Chiral photochemistry. Marcel Dekker Inc, New York, pp 385–414

    Chapter  Google Scholar 

  27. Shindo Y, Nishio M, Maeda S (1990) Comments on differential polarization microscopy (CD and linear dichroism). Biopolymers 30:405–413

    Article  CAS  Google Scholar 

  28. Kuroda R, Honma T (2000) CD spectra of solid-state samples. Chirality 12:269–277

    Article  CAS  Google Scholar 

  29. (a) Schellman JA (1988) Polarization modulation spectroscopy. In: Samori B, Thulstrup EW (eds) Polarized spectroscopy of ordered systems. Kluwer Academic, Dordrecht, pp 231–274; (b) Jensen HP, Schellman JA, Troxell T (1978) Modulation techniques in polarization spectroscopy. Appl Spectrosc 32:192–200; (c) Schellman J, Jensen HP (1987) Optical spectroscopy of oriented molecules. Chem Rev 87:1359–1399; (d) Shindo Y, Nakagawa M, Ohmi Y (1985) On the problems of CD spectropolarimeters.II: artifacts in CD spectrometers. Appl Spectosc 39:860–868; (e) Shindo Y, Ohmi Y (1985) New polarization-modulation spectrometer for ... Instrument design, analysis, and evaluation. Rev Sci Instrum 56:2237–2242

    Google Scholar 

  30. (a) Kuroda R, Harada T, Shindo Y (2001) A solid-state dedicated circular dichroism spectrophotometer: development and application. Rev Sci Instrum 72:3802–3810; (b) Japanese Patent No. 3,942,800 28 April 2000 and Japanese Patent No. 4,010,760 13 October 2000

    Google Scholar 

  31. Harada T, Hayakawa H, Kuroda R (2008) Vertical-type chiroptical spectrophotometer (I): instrumentation and application to diffuse reflectance circular dichroism measurement. Rev Sci Instrum 79:373103

    Article  Google Scholar 

  32. Harada T, Miyoshi Y, Kuroda R (2009) High performance diffuse reflectance circular dichroism spectrophotometer. Rev Sci Instrum 80:046101

    Article  Google Scholar 

  33. Braga D, Maini L, Polito M, Grepioni F (2002) Unexpected solid–solid reaction upon preparation of KBr pellets and its exploitation in supramolecular cation complexation. Chem Commun 20:2302–2303

    Article  Google Scholar 

  34. Kuroda R (2014) Formation and interconversion of crystals in the solid state, ISCD-26, Prague

    Google Scholar 

  35. Bilotti I, Biscarini P, Castiglioni E, Ferranti F, Kuroda R (2002) Reflectance circular Dichroism of solid state chiral coordination compounds. Chirality 14:750–756

    Article  CAS  Google Scholar 

  36. (a) Kuroda R (2010) Chirality recognition, generation, enhancement and measurement in the solid state. ISCD-22, Sapporo; (b) Harada T, Takahashi H, Kuroda R, to be submitted

    Google Scholar 

  37. Kuroda R, Harada T (2012) Solid-state Chiroptical spectroscopy. Principles and applications. In: Berova N, Polavarapu P, Nakanishi K, Woody RW (eds) Comprehensive chiroptical spectroscopy. Wiley, Hoboken, pp 91–114

    Google Scholar 

  38. Japanese patent, No. 2008–98471 and WO 2009-JP56950; US Patent No.12/935,853

    Google Scholar 

  39. Shindo Y, Kani K, Horinaka J, Kuroda R, Harada T (2001) The application of polarization modulation method to investigate the optical homogeneity of polymer films. J Plast Film Sheeting 17:164–183

    CAS  Google Scholar 

  40. Harada T, Shindo Y, Kuroda R (2002) Crystal chirality of the non-chiral inorganic salt, α-Ni(H2O)6・SO4. Chem Phys Lett 360:217–222

    Article  CAS  Google Scholar 

  41. Harada T, Sato T, Kuroda R (2005) Intrinsic birefringence of a chiral sodium chlorate crystal: is cubic crystal truly optically neutral? Chem Phys Lett 413:445–449

    Article  CAS  Google Scholar 

  42. Harada T, Sato T, Kuroda R (2008) Inversion of the sign of the solid-state circular dichroism at low temperature. Chem Phys Lett 456:268–271

    Article  CAS  Google Scholar 

  43. Koo EH, Lansbury PT, Kelly JW (1999) Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc Natl Acad Sci U S A 96:9989–9990

    Article  CAS  Google Scholar 

  44. Tran PB, Miller RJ (1999) Aggregates in neurodegenerative disease: crowds and power? Trends Neurosci 22:194–197

    Article  CAS  Google Scholar 

  45. Hu HY, Li Q, Cheng HC, Du HN (2001) β-sheet structure formation of proteins in solid state as revealed by circular dichroism spectroscopy. Biopolymers 62:15–21

    Article  CAS  Google Scholar 

  46. Kuroda R, Harada T, to be submitted

    Google Scholar 

  47. Asano N, Harada T, Sato T, Tajima N, Kuroda R (2009) Supramolecular chirality measured by diffuse reflectance circular dichroism spectroscopy. Chem Commun 8:899–901

    Article  Google Scholar 

  48. Kortüm G, Braun W, Herzog G (1963) Principles and techniques of diffuse-reflectance spectroscopy. Angew Chem Int Ed 2:333–341

    Article  Google Scholar 

  49. Childers JW, Röhl R, Palmer RA (1986) Direct comparison of the capabilities of photoacoustic and diffuse reflectance spectroscopies in the ultraviolet, visible and near-infrared regions. Anal Chem 58:2629–2636

    Article  CAS  Google Scholar 

  50. Castiglioni E, Albertini P (2000) An integrating sphere to measure CD from difficult samples. Chirality 12:291–294

    Article  CAS  Google Scholar 

  51. Lagorio MG (2004) Why do marbles become paler on grinding? Reflectance spectroscopy, color, and particle size. J Chem Educ 81:1607–1611

    Article  CAS  Google Scholar 

  52. Nishiguchi N, Kinuta T, Nakano Y, Harada T, Tajima N, Sato T, Fujiki M, Kuroda R, Matsubara Y, Imai Y (2011) Control of solid-state chiral optical properties of a supramolecular organic Fluorophore containing of 4-(2-arylethynyl)-benzoic acid. Chem Asian J 6:1092–1098

    Article  CAS  Google Scholar 

  53. Kimoto T, Amako T, Tajima N, Kuroda R, Fujiki M, Imai Y (2013) Control of solid-state circularly polarized luminescence of binaphthyl organic fluorophores through environmental changes. Asian J Org Chem 2:404–410

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiko Kuroda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kuroda, R. (2017). Techniques for Crystal Optical Characterisation: Chiroptical Spectroscopy. In: Roberts, K., Docherty, R., Tamura, R. (eds) Engineering Crystallography: From Molecule to Crystal to Functional Form. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1117-1_24

Download citation

Publish with us

Policies and ethics