Skip to main content

Viedma Ripening and Its Role in the Chiral Separation of Optical Isomers

  • Chapter
  • First Online:
Engineering Crystallography: From Molecule to Crystal to Functional Form

Abstract

It has recently been observed that a mixture of two enantiomeric crystals subjected to attrition in a solution containing a racemizing agent undergoes symmetry breaking, with only one of the enantiomers eventually remaining in solid form. This process is believed to occur due to the interplay between racemization in solution, attrition, agglomeration and crystal growth and dissolution caused by the crystal size dependence of solubility. This process is called Viedma ripening and is one of the most fascinating and complex crystallisation processes. In this work, we present a commented review of the most recent literature on Viedma ripening and related topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Viedma C (2005) Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling. Phys Rev Lett 94(6):065504

    Article  Google Scholar 

  2. Noorduin WL, Izumi T, Millemaggi A, Leeman M, Meekes H, Van Enckevort WJP, Kellogg RM, Kaptein B, Vlieg E, Blackmond DG (2008) Emergence of a single solid chiral state from a nearly racemic amino acid derivative. J Am Chem Soc 130(4):1158–1159

    Article  CAS  Google Scholar 

  3. Viedma C (2007) Chiral symmetry breaking and complete chiral purity by thermodynamic-kinetic feedback near equilibrium: implications for the origin of biochirality. Astrobiology 7(2):312–319

    Article  CAS  Google Scholar 

  4. Noorduin WL, Meekes H, van Enckevort WJP, Millemaggi A, Leeman M, Kaptein B, Kellogg RM, Vlieg E (2008) Complete deracemization by attrition-enhanced Ostwald ripening elucidated. Angewandte Chemie-International Edition 47(34):6445–6447

    Article  CAS  Google Scholar 

  5. Cheung PSM, Gagnon J, Surprenant J, Tao Y, Xu HW, Cuccia LA (2008) Complete asymmetric amplification of ethylenediammonium sulfate using an abrasion/grinding technique. Chem Commun 44(8):987–989

    Article  Google Scholar 

  6. Tsogoeva SB, Wei S, Freund M, Mauksch M (2009) Generation of highly enantioenriched crystalline products in reversible asymmetric reactions with racemic or achiral catalysts. Angew Chem 121(3):598–602

    Article  Google Scholar 

  7. Wei S, Mauksch M, Tsogoeva SB (2009) Autocatalytic enantiomerisation at the crystal surface in deracemisation of scalemic conglomerates. Chem Eur J 15(39):10255–10262

    Article  CAS  Google Scholar 

  8. Viedma C, Ortiz JE, Torres TD, Izumi T, Blackmond DG (2008) Evolution of solid phase homochirality for a proteinogenic amino acid. J Am Chem Soc 130(46):15274–15275

    Article  CAS  Google Scholar 

  9. Van der Meijden MW, Leeman M, Gelens E, Noorduin WL, Meekes H, van Enckevort WJP, Kaptein B, Vlieg E, Kellogg RM (2009) Attrition-enhanced deracemization in the synthesis of clopidogrel – a practical application of a new discovery. Org Process Res Dev 13(6):1195–1198

    Article  Google Scholar 

  10. Noorduin WL, Kaptein B, Meekes H, van Enckevort WJP, Kellogg RM, Vlieg E (2009) Fast attrition-enhanced deracemization of naproxen by a gradual in situ feed. Angew Chem Int Ed 48(25):4581–4583

    Article  CAS  Google Scholar 

  11. Spix L, Meekes H, Blaauw RH, van Enckevort WJ, Vlieg E (2012) Complete deracemization of proteinogenic glutamic acid using viedma ripening on a metastable conglomerate. Cryst Growth Des 12(11):5796–5799

    Article  Google Scholar 

  12. Spix L, Alfring A, Meekes H, van Enckevort WJP, Vlieg E (2014) Formation of a salt enables complete deracemization of a racemic compound through viedma ripening. Crys Growth Des 14(0):1744–1748

    Article  CAS  Google Scholar 

  13. Kaptein B, Noorduin WL, Meekes H, van Enckevort WJP, van Enckevort WJP, Kellogg RM, Vlieg E (2008) Attrition-enhanced deracemization of an amino acid derivative that forms an epitaxial racemic conglomerate. Angew Chem Int Ed 47(38):7226–7229

    Article  CAS  Google Scholar 

  14. Noorduin WL, van Enckevort WJP, Meekes H, Kaptein B, Kellogg RM, Tully JC, McBride JM, Vlieg E (2010) The driving mechanism behind attrition-enhanced deracemization. Angew Chem Int Ed 49(45):8435–8438

    Article  CAS  Google Scholar 

  15. Suwannasang K, Flood AE, Rougeot C, Coquerel G (2013) Using programmed heating-cooling cycles with racemization in solution for complete symmetry breaking of a conglomerate forming system. Cryst Growth Des 13(8):3498–3504

    Article  CAS  Google Scholar 

  16. Noorduin WL, van der Asdonk P, Bode AC, Meekes H, van Enckevort WJP, Vlieg E, Kaptein B, van der Meijden MW, Kellogg RM, Deroover G (2010) Scaling up attrition-enhanced deracemization by use of an industrial bead mill in a route to clopidogrel (Plavix). Org Process Res Dev 14(4):908–911

    Article  CAS  Google Scholar 

  17. Noorduin WL, van der Asdonk P, Meekes H, van Enckevort WJP, Kaptein B, Leeman M, Kellogg RM, Vlieg E (2009) Complete chiral resolution using additive-induced crystal size bifurcation during grinding. Angew Chem 121(18):3328–3330

    Article  Google Scholar 

  18. Skrdla PJ (2011) Kinetics and thermodynamics of efficient chiral symmetry breaking in nearly racemic mixtures of conglomerate crystals. Cryst Growth Des 11(5):1957–1965

    Article  CAS  Google Scholar 

  19. McBride JM, Tully JC (2008) Physical chemistry: did life grind to a start? Nature 452(7184):161–162

    Article  CAS  Google Scholar 

  20. Noorduin WL, Meekes H, Bode AAC, van Enckevort WJP, Kaptein B, Kellogg RM, Vlieg E (2008) Explanation for the emergence of a single chiral solid state during attritionenhanced ostwald ripening: survival of the fittest. Cryst Growth Des 8(5):1675–1681

    Article  CAS  Google Scholar 

  21. Uwaha M (2004) A model for complete chiral crystallization. J Phys Soc Jpn 73(10):2601–2603

    Article  CAS  Google Scholar 

  22. Uwaha M (2008) Simple models for chirality conversion of crystals and molecules by grinding. J Phys Soc Jpn 77(8):083802

    Article  Google Scholar 

  23. Saito Y, Hyuga H (2005) Chirality selection in crystallization. J Phys Soc Jpn 74(2):535–537

    Article  CAS  Google Scholar 

  24. Wattis J (2011) Mathematical models of the homochiralisation of crystals by grinding. Orig of Life Evol Biosph 41:133–173

    Article  CAS  Google Scholar 

  25. Cartwright JHE, Piro O, Tuval I (2007) Ostwald ripening, chiral crystallization, and the common-ancestor effect. Phys Rev Lett 98(16):165501

    Article  Google Scholar 

  26. Uwaha M, Katsuno H (2009) Mechanism of chirality conversion by grinding crystals: Ostwald Ripening vs crystallization of chiral clusters. J Phys Soc Jpn 78(2):023601

    Article  Google Scholar 

  27. Uwaha M (2011) Steady chirality conversion by grinding crystals–Supercritical and subcritical bifurcations. J Cryst Growth 318(1):89–92

    Article  CAS  Google Scholar 

  28. Katsuno H, Uwaha M (2009) Monte Carlo simulation of a cluster model for the chirality conversion of crystals with grinding. J Cryst Growth 311(17):4265–4269

    Article  CAS  Google Scholar 

  29. Saito Y, Hyuga H (2008) Chiral crystal growth under grinding. J Phys Soc Japn 77(11):113001

    Article  Google Scholar 

  30. Saito Y, Hyuga H (2010) Crystal chirality selected by mutual antagonism. J Phys Soc Jpn 79(8):083002

    Article  Google Scholar 

  31. Saito Y, Hyuga H (2011) Grinding-induced homochirality in crystal growth. J Cryst Growth 318(1):93–98

    Article  CAS  Google Scholar 

  32. Hatch HW, Stillinger FH, Debenedetti PG (2010) Chiral symmetry breaking in a microscopic model with asymmetric autocatalysis and inhibition. J Chem Phys 133(22):224502

    Article  Google Scholar 

  33. Ricci F, Stillinger FH, Debenedetti PG (2013) A computational investigation of attrition-enhanced chiral symmetry breaking in conglomerate crystals. J Chem Phys 139(17):174503

    Article  Google Scholar 

  34. Iggland M, Mazzotti M (2011) A population balance model for chiral resolution via Viedma ripening. Cryst Growth Des 11(10):4611–4622

    Article  CAS  Google Scholar 

  35. Gherase D, Conroy D, Matar OK, Blackmond DG (2014) Experimental and theoretical study of the emergence of single chirality in attrition-enhanced deracemization. Cryst Growth Des 14(3):928–937

    Article  CAS  Google Scholar 

  36. Iggland M, MazzottI M (2012) Population balance modeling with size-dependent solubility: Ostwald ripening. Cryst Growth Des 3:1489–1500

    Article  Google Scholar 

  37. Iggland M, Mazzotti M (2013) Solid state deracemisation through growth, dissolution and solution-phase racemisation. Cryst Eng Comm 15:2319–2328

    Article  CAS  Google Scholar 

  38. Iggland M, Mazzotti M (2014) Population balance modeling with size-dependent solubility: Ostwald ripening. Cryst Growth Des 14:2488–2493

    Article  CAS  Google Scholar 

  39. Iggland M, Fernández-Ronco MP, Senn R, Kluge J, Mazzotti M (2014) Complete solid state deracemization by high pressure homogenization. Chem Eng Sci 111:106–111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Mazzotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Iggland, M., Maggioni, G.M., Mazzotti, M. (2017). Viedma Ripening and Its Role in the Chiral Separation of Optical Isomers. In: Roberts, K., Docherty, R., Tamura, R. (eds) Engineering Crystallography: From Molecule to Crystal to Functional Form. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1117-1_20

Download citation

Publish with us

Policies and ethics