Skip to main content

Synthonic Engineering Modelling Tools for Product and Process Design

  • Chapter
  • First Online:
Engineering Crystallography: From Molecule to Crystal to Functional Form

Abstract

A new software implementation built into the Cambridge Crystallographic Data Centre’s (CCDC) Mercury suite is described. VisualHabit is a tool that calculates intermolecular interaction energies for crystal structures using atomistic potentials. Specific types of directed interatomic-interactions, e.g. such as constitute hydrogen bonds, can be quantified in terms of an interaction energy both within the crystal lattice, the intrinsic synthons, and at the terminating surfaces of crystals, thereby mediating their interaction with the surroundings, the extrinsic synthons. Lattice energy is calculated and crystal shape predicted by application of the attachment energy model. The distribution of interaction energy of probe molecules, such as common solvents, with selected crystal surfaces can be interrogated using SystSearch, a systematic search tool, in conjunction with VisualHabit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

(hkl):

Miller plane – two dimensional surface cut through lattice

a, b, c :

unit cell lengths

α:

angle between b and c

β:

angle between a and c

γ:

angle between a and b

E cr :

lattice energy

E sl :

slice energy

E att :

attachment energy

τ :

shape factor

A :

surface area of crystal habit

V :

volume of crystal

CSV:

comma separated value

SYBYL©:

The name of a computational informatics software suite, available from Certara

References

  1. Charpentier JC (2007) Among the trends for a modern chemical engineering: CAPE an efficient tool for process intensification and product design and engineering. In: Plesu V, Agachi PS (eds) 17th European Symposium on Computer Aided Process Engineering, pp 11–18

    Chapter  Google Scholar 

  2. Crom S (2006) Right first time in pharmaceuticals: Six Sigma for continuous and breakthrough improvement. Chim Oggi 24(3):20–21

    Google Scholar 

  3. Desiraju GR (1995) Supramolecular synthons in crystal engineering – a new organic-synthesis. Angew Chem Int Ed Engl 34(21):2311–2327

    Article  CAS  Google Scholar 

  4. Thalladi VR, Goud BS, Hoy VJ, Allen FH, Howard JAK, Desiraju GR (1996) Supramolecular synthons in crystal engineering. Structure simplification, synthon robustness and supramolecular retrosynthesis. Chem Commun 3:401–402

    Article  Google Scholar 

  5. Kitaygorodsky A (1961) Interaction curve of non-bonded carbon and hydrogen atoms and its application. Tetrahedron 14(3–4):230

    Article  Google Scholar 

  6. Williams DE (1966) Nonbonded potential parameters derived from crystalline aromatic hydrocarbons. J Chem Phys 45(10):3770

    Article  CAS  Google Scholar 

  7. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470

    Article  CAS  Google Scholar 

  8. Macrae CF, Edgington PR, McCabe P, Pidcock P, Shields GP, Taylor R, Towler M, van de Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457

    Article  CAS  Google Scholar 

  9. Bruno IJ, Cole JC, Edgington PR, Kessler MK, Macrae CF, McCabe P, Pearson J, Taylor R (2002) New software for searching the Cambridge structural database and visualising crystal structures. Acta Cryst B58:389–397

    Article  CAS  Google Scholar 

  10. Taylor R, Macrae CF (2001) Rules governing the crystal packing of mono- and di-alcohols. Acta Cryst B57:815–827

    Article  CAS  Google Scholar 

  11. Clydesdale G, Roberts KJ, Docherty R (1996) HABIT95 – a program for predicting the morphology of molecular crystals as a function of the growth environment. J Cryst Growth 166(1–4):78–83

    Article  CAS  Google Scholar 

  12. Rosbottom I, Roberts KJ (2017) Crystal growth and morphology of molecular crystals, chapter 7. In: Roberts KJ, Docherty R, Tamura R (eds) Engineering crystallography: from molecule to crystal to functional form. Springer Advanced Study Institute (ASI) Series, 2017, in press

    Google Scholar 

  13. Ramachandran V, Halfpenny P, Roberts KJ (2017) Crystal science fundamentals, chapter 1. In: Roberts KJ, Docherty R, Tamura R (eds) Engineering crystallography: from molecule to crystal to functional form. Springer Advanced Study Institute (ASI) Series, 2017, in press

    Google Scholar 

  14. Authoer (1971) Crystallography and crystal chemistry. Holt Rinchart and Winston Inc., New York

    Google Scholar 

  15. Camacho Corzo D, Ma CY, Ramachandran V, Roberts KJ (2017) Crystallisation route map, chapter 11. In: Roberts KJ, Docherty R, Tamura R (eds) Engineering crystallography: from molecule to crystal to functional form. Springer Advanced Study Institute (ASI) Series, 2017, in press

    Google Scholar 

  16. Hammond RB (2017) Modelling route map: from molecule through the solution state to crystals, Chapter 6. In: Roberts KJ, Docherty R, Tamura R (eds) Engineering crystallography: from molecule to crystal to functional form. Springer Advanced Study Institute (ASI) Series, 2017, in press

    Google Scholar 

  17. Hartman P, Perdok WG (1955) On the relations between structure and morphology of crystals. 1. Acta Crystallogr 8(1):49–52

    Article  CAS  Google Scholar 

  18. Hartman P, Perdok WG (1955) On the relations between structure and morphology of crystals. 2. Acta Crystallogr 8(9):521–524

    Article  CAS  Google Scholar 

  19. Hartman P, Perdok WG (1955) On the relations between structure and morphology of crystals. 3. Acta Crystallogr 8(9):525–529

    Article  CAS  Google Scholar 

  20. Bravais A (1866) Du cristal considere comme un simple assemblage de points. Etude Cristallographiques

    Google Scholar 

  21. Donnay JDH, Harker D (1937) A new law of crystal morphology extending the law of bravais. Am Mineral 22(5):446–467

    CAS  Google Scholar 

  22. Friedel G (1907) Studies on the law of Bravais. Bull Soc Fr Mineral 30:326–455

    Google Scholar 

  23. Clydesdale G, Docherty R, Roberts KJ (1991) A predictive approach to modeling the morphology of organic-crystals based on crystal-structure using the atom-atom method. Cryst Growth, Pts 1 and 2

    Google Scholar 

  24. Bennema P, Meekes H (2004) Two centuries of morphology of crystals: integration of principles of mathematical crystallography, statistical mechanics of surface models and chemistry. In: Liu XY, De Yoreo JJ (eds) Nanoscale structure and assembly at solid-fluid interfaces. Kluwer Academic Publisher, Boston

    Google Scholar 

  25. Roberts KJ, Docherty R, Bennema P, Jetten L (1993) The importance of considering growth-induced conformational change in predicting the morphology of benzophenone. J Phys D Appl Phys 26(8B):B7–B21

    Article  CAS  Google Scholar 

  26. Authoer (1997) Theoretical aspects and computer modelling of the molecular solid state. Wiley, Chichester

    Google Scholar 

  27. Docherty R, Roberts KJ, Saunders V, Black S, Davey RJ (1993) Theoretical-analysis of the polar morphology and absolute polarity of crystalline UREA. Faraday Discuss 95:11–25

    Article  CAS  Google Scholar 

  28. Clydesdale G, Roberts KJ, Docherty R (1994) Modeling the morphology of molecular-crystals in the presence of disruptive tailor-made additives. J Cryst Growth 135(1–2):331–340

    Article  CAS  Google Scholar 

  29. Clydesdale G, Roberts KJ, Lewtas K, Docherty R (1994) Modeling the morphology of molecular-crystals in the presence of blocking tailor-made additives. J Cryst Growth 141(3–4):443–450

    Article  CAS  Google Scholar 

  30. Hammond RB, Pencheva K, Ramachandran V, Roberts KJ (2007) Application of grid-based molecular methods for modeling solvent-dependent crystal growth morphology: aspirin crystallized from aqueous ethanolic solution. Cryst Growth Des 7(9):1571–1574

    Article  CAS  Google Scholar 

  31. Hammond RB, Jeck S, Ma CY, Pencheva K, Roberts KJ, Auffret T (2009) An examination of binding motifs associated with inter-particle interactions between facetted nano-crystals of acetylsalicylic acid and ascorbic acid through the application of molecular grid-based search methods. J Pharm Sci 98(12):4589–4602

    Article  CAS  Google Scholar 

  32. Mayo SL, Olafson BD, Goddard WA (1990) Dreiding – a generic force-field for molecular simulations. J Phys Chem 94(26):8897–8909

    Article  CAS  Google Scholar 

  33. Momany FA, Carruthe LM, RF MG, Scheraga HA (1974) Intermolecular potentials from crystal data .3. Determination of empirical potentials and application to packing configurations and lattice energies in crystals of hydrocarbons, carboxylic-acids, amines, and amides. J Phys Chem 78(16):1595–1620

    Article  CAS  Google Scholar 

  34. Gavezzotti A (1998) The crystal packing of organic molecules: challenge and fascination below 1000 Da. Crystallogr Rev 7(1):5–121

    Article  CAS  Google Scholar 

  35. Clark M, Cramer RD, Vanopdenbosch N (1989) Validation of the general-purpose tripos 5.2 force-field. J Comput Chem 10(8):982–1012

    Article  CAS  Google Scholar 

  36. Govers HAJ (1978) Atom-atom approximation and lattice energies of 2,2′-bis-1,3-dithiole (ttf), 7,7,8,8-tetracyanoquinodimethane (tcnq) and their 1-1 complex (ttf-tcnq). Acta Crystallogr A 34(Nov):960–965

    Article  Google Scholar 

  37. Gasteiger J, Marsili M (1978) New model for calculating atomic charges in molecules. Tetrahedron Lett 34:3181–3184

    Article  Google Scholar 

  38. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity – a rapid access to atomic charges. Tetrahedron 36(22):3219–3228

    Article  CAS  Google Scholar 

  39. Mandar VD, Carstensen JT (1995) Effect of change in shape factor of a single crystal on its dissolution behaviour. Pharm Res 13(1):155–162

    Google Scholar 

  40. Ramachandran V, Murnane D, Hammond RB, Pickering J, Roberts KJ, Soufian M, Forbes B, Jaffari S, Martin GP, Collins E and others (2015) Formulation pre-screening of inhalation powders using computational atom-atom systematic search method. Mol Pharm, 12(1): 18–33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Pickering .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pickering, J., Hammond, R.B., Ramachandran, V., Soufian, M., Roberts, K.J. (2017). Synthonic Engineering Modelling Tools for Product and Process Design. In: Roberts, K., Docherty, R., Tamura, R. (eds) Engineering Crystallography: From Molecule to Crystal to Functional Form. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1117-1_10

Download citation

Publish with us

Policies and ethics