Skip to main content

MALDI Mass Spectrometry and Infectious Diseases

  • Conference paper
  • First Online:
Molecular Technologies for Detection of Chemical and Biological Agents

Abstract

MALDI mass spectrometry is an emerging technology that has revolutionized the field of diagnostic microbiology. MALDI mass spectrometry has the potential to significantly impact the field of infectious diseases as new technology emerges. In particular, the use of histology-directed MALDI-MS profiling of biofluids and tissues presents a way to potentially perform bacterial typing and monitor host response without an additional culture step to culture the microorganism. MALDI Imaging Mass Spectrometry is another attractive technology to study the pathogen-host interaction within infected tissues. This allows an unprecedented view of the molecular changes associated with infection. Pairing advanced Imaging Mass Spectrometry with emerging analyte identification strategies, the identity of these molecular changes can be determined. Utilizing such technologies could revolutionize the study of microbial pathogenesis and may reveal a number of novel targets for future antimicrobial intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (CDC), C. f. D. C. a. P. Threat Report (2013) | Antimicrobial resistance | CDC. http://www.cdc.gov/drugresistance/threat-report-2013/. Accessed 05 Dec 2014

  2. Doron S, Davidson LE (2011) Antimicrobial stewardship. Mayo Clin Proc 86(11):1113–1123

    Article  Google Scholar 

  3. Clatworthy AE, Pierson E, Hung DT (2011) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3(9):541–548

    Article  Google Scholar 

  4. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert RLB, Scheld M, Spellberg B, Bartlett J (2008) Bad bugs, no drugs: no ESKAPE! An update from the infectious diseases society of America. Clin Infect Dis 48(1):1–12

    Article  Google Scholar 

  5. Norris JL, Caprioli RM (2013) Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 113(4):2309–2342

    Article  CAS  Google Scholar 

  6. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69(23):4751–4760

    Article  CAS  Google Scholar 

  7. Kueger S, Steinhauser D, Willmitzer L, Giavalisco P (2012) High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J 70(1):39–50

    Article  CAS  Google Scholar 

  8. Schoenian I, Spiteller M, Ghaste M, Wirth R, Herz H, Spiteller D (2011) Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci U S A 108(5):1955–1960

    Article  CAS  Google Scholar 

  9. Rath CM, Alexandrov T, Higginbottom SK, Song J, Milla ME, Fischbach MA, Sonnenburg JL, Dorrestein PC (2012) Molecular analysis of model gut microbiotas by imaging mass spectrometry and nanodesorption electrospray ionization reveals dietary metabolite transformations. Anal Chem 84(21):9259–9267

    Article  CAS  Google Scholar 

  10. Sogawa K, Watanabe M, Sato K, Segawa S, Ishii C, Miyabe A, Murata S, Saito T, Nomura F (2011) Use of the MALDI bioTyper system with MALDI-TOF mass spectrometry for rapid identification of microorganisms. Anal Bioanal Chem 400(7):1905–1911

    Article  CAS  Google Scholar 

  11. Valentine N, Wunschel S, Wunschel D, Petersen C, Wahl K (2005) Effect of culture conditions on microorganism identification by matrix-assisted laser desorption ionization mass spectrometry. Appl Environ Microbiol 71(1):58–64

    Article  CAS  Google Scholar 

  12. Jackson KA, Edwards-Jones V, Sutton CW, Fox A (2005) Optimisation of intact cell MALDI method for fingerprinting of methicillin-resistant Staphylococcus aureus. J Microbiol Methods 62(3):273–284

    Article  CAS  Google Scholar 

  13. Toh-Boyo GM, Wulff SS, Basile F (2012) Comparison of sample preparation methods and evaluation of intra- and intersample reproducibility in bacteria MALDI-MS profiling. Anal Chem 84(22):9971–9980

    Article  CAS  Google Scholar 

  14. Coltella L, Mancinelli L, Onori M, Lucignano B, Menichella D, Sorge R, Raponi M, Mancini R, Russo C (2013) Advancement in the routine identification of anaerobic bacteria by MALDI-TOF mass spectrometry. Eur J Clin Microbiol Infect Dis 32(9):1183–1192

    Article  CAS  Google Scholar 

  15. Biswas S, Rolain J-M (2013) Use of MALDI-TOF mass spectrometry for identification of bacteria that are difficult to culture. J Microbiol Methods 92(1):14–24

    Article  CAS  Google Scholar 

  16. Chalupova J, Martin Raus MS, Marek S (2014) Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnol Adv 32(1):230–241

    Article  CAS  Google Scholar 

  17. Drevinek M, Dresler J, Klimentova J, Pisa L, Hubalek M (2012) Evaluation of sample preparation methods for MALDI-TOF MS identification of highly dangerous bacteria. Lett Appl Microbiol 55(1):40–46

    Article  CAS  Google Scholar 

  18. Mather CA, Rivera SF, Butler-Wu SM (2014) Comparison of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization–time of flight mass spectrometry systems for identification of mycobacteria using simplified protein extraction protocols. J Clin Microbiol 52(1):130–138

    Article  CAS  Google Scholar 

  19. Boehme K, Fernandez-No IC, Barros-Velazquez J, Gallardo JM, Calo-Mata P, Canas B (2010) Species differentiation of seafood spoilage and pathogenic gram-negative bacteria by MALDI-TOF mass fingerprinting. J Proteome Res 9(6):3169–3183

    Article  Google Scholar 

  20. Marko DC, Saffert RT, Cunningham SA, Hyman J, Walsh J, Arbefeville S, Howard W, Pruessner J, Safwat N, Cockerill FR, Bossler AD, Patel R, Richter SS (2012) Evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of nonfermenting Gram-negative bacilli isolated from cultures from cystic fibrosis patients. J Clin Microbiol 50(6):2034–2039

    Article  Google Scholar 

  21. Rizzardi K, Wahab T, Jernberg C (2013) Rapid subtyping of Yersinia enterocolitica by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for diagnostics and surveillance. J Clin Microbiol 51(12):4200–4203

    Article  Google Scholar 

  22. Boggs SR, Cazares LH, Drake R (2012) Characterization of a Staphylococcus aureus USA300 protein signature using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Med Microbiol 61(5):640–644

    Article  Google Scholar 

  23. Vlek ALM, Bonten MJM, Boel CHE (2012) Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of Bacteremia. PLoS One 7(3):e32589

    Article  CAS  Google Scholar 

  24. Miller JM (2013) Cost-saving strategies for diagnostic microbiology laboratories. Clin Microbiol Newsl 35(24):195–204

    Article  Google Scholar 

  25. Zilahi G, Artigas A, Martin-Loeches I (2016) What’s new in multidrug-resistant pathogens in the ICU? Ann Intensive Care 6(1):96

    Article  Google Scholar 

  26. Ng PC, Ang IL, Chiu RWK, Li K, Lam HS, Wong RPO, Chui KM, Cheung HM, Ng EWY, Fok TF, Sung JJY, Lo YMD, Poon TCW (2010) Host-response biomarkers for diagnosis of late-onset septicemia and necrotizing enterocolitis in preterm infants. J Clin Investig 120(8):2989–3000

    Article  CAS  Google Scholar 

  27. Narayana JL, Gopal J, Wu H-F (2012) Wound infection kinetics probed by MALDI-MS: rapid profiling of Staphylococcus aureus in mice. Analyst 137(14):3372–3380

    Article  CAS  Google Scholar 

  28. Norris JL, Caprioli RM (2013) Imaging mass spectrometry: a new tool for pathology in a molecular age. Proteomics Clin Appl 7(11-12):733–738

    Article  CAS  Google Scholar 

  29. Norris JL, Tsui T, Gutierrez DB, Caprioli RM (2016) Pathology interface for the molecular analysis of tissue by mass spectrometry. J Pathol Inform 7(13):PMC4837791

    Google Scholar 

  30. Prideaux B, Dartois V, Staab D, Weiner DM, Goh A, Via LE, Barry CE III, Stoeckli M (2011) High-sensitivity MALDI-MRM-MS imaging of Moxifloxacin distribution in Tuberculosis-infected rabbit lungs and granulomatous lesions. Anal Chem 83(6):2112–2118

    Article  CAS  Google Scholar 

  31. Wakeman CA, Moore JL, Noto MJ, Zhang Y, Singleton MD, Prentice BM, Gilston BA, Doster RS, Gaddy JA, Chazin WJ, Capriol RM, Skaar EP (2016) The innate immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction. Nat Commun 7:11951

    Article  CAS  Google Scholar 

  32. Zipperer A, Konnerth MC, Laux C, Berschei A, Janek D, Weidenmaier C, Burian M, Schilling NA, Slavetinsky C, Marschal M, Willmann M, Kalbacher H, Schittek B, Brötz-Oesterhelt H, Grond S, Peschel A, Krismer B (2016) Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535:511–516

    Article  CAS  Google Scholar 

  33. Cheng AG, DeDent AC, Schneewind O, Missiakas DA (2011) A play in four acts: Staphylococcus aureus abscess formation A play in four acts: Staphylococcus aureus abscess formation. Trends Microbiol 19(5):225–232

    Article  CAS  Google Scholar 

  34. Corbin BD, Seeley EH, Raab A, Feldmann J, Miller MR, Torres VJ, Anderson KL, Dattilo BM, Dunman PM, Gerads R, Caprioli RM, Nacken W, Chazin WJ, Skaar EP (2008) Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319(5865):962–965

    Article  CAS  Google Scholar 

  35. Clohessy PA, Golden BE (1995) Calprotectin-mediated zinc chelation as a biostatic mechanism in host defence. Scand J Immunol 42(5):551–556

    Article  CAS  Google Scholar 

  36. Damo SM, Kehl-Fie TE, Sugitani N, Holt ME, Rathi S, Murphy WJ, Zhang Y, Betz C, Hench L, Fritz G, Skaar EP, Chazin WJ (2013) Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. Proc Natl Acad Sci 110(10):3841–3846

    Article  CAS  Google Scholar 

  37. Hood MI, Skaar EP (2012) Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10(8):525–537

    Article  CAS  Google Scholar 

  38. Moore JL, Becker KW, Nicklay JJ, Boyd KL, Skaar EP, Caprioli RM (2013) Imaging mass spectrometry for assessing temporal proteomics: analysis of calprotectin in Acinetobacter baumannii pulmonary infection. Proteomics 14(7-8):820–828

    Article  Google Scholar 

  39. Kehl-Fie TE, Chitayat S, Hood MI, Damo S, Restrepo N, Garcia C, Munro KA, Chazin WJ, Skaar EP (2011) Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe 10(2):158–164

    Article  CAS  Google Scholar 

  40. Damo S, Chazin WJ, Skaa EP, Kehl-Fie TE (2012) Inhibition of bacterial superoxide defense: A new front in the struggle between host and pathogen. Virulence 3(3):325–328

    Article  Google Scholar 

  41. Spraggins JM, Rizzo DJ, Moore JL, Rose KL, Hammer ND, Skaar EP, Caprioli RM (2015) MALDI FTICR IMS of intact proteins: using mass accuracy to link protein images with proteomics data. JASMS 26(6):974–985

    CAS  Google Scholar 

  42. Zubair F, Prentice DM, Norris JL, Laibinis PE, Caprioli RM (2016) Standard reticle slide to objectively evaluate spatial resolution and instrument performance in imaging mass spectrometry. Analy Chem 88(14):7302–7311

    Article  CAS  Google Scholar 

  43. Zavalin A, Yang J, Rm C (2013) Laser beam filtration for high spatial resolution MALDI imaging mass spectrometry. J Am Soc Mass Spectrom 24(7):1153–1156

    Article  CAS  Google Scholar 

  44. Spraggins JM, Rizzo DG, Moore JL, Noto MJ, Skaar EP, Caprioli RM (2016) Next-generation technologies for spatial proteomics: integrating ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis. Proteomics 16(11-12):1678–1689

    Article  CAS  Google Scholar 

  45. Spraggins JM, Capriol RM (2011) High-speed MALDI-TOF imaging mass spectrometry: rapid ion image acquisition and considerations for next generation instrumentation. J Am Soc Mass Spectrom 22(6):1022–1031

    Article  CAS  Google Scholar 

  46. Zavalin A, Todd EM, Rawhouser PD, Yang J, Norris JJL, Caprioli RM (2012) Direct imaging of single cells and tissue at sub-cellular spatial resolution using transmission geometry MALDI MS. J Mass Spectrom 47(11):1473–1481

    Article  Google Scholar 

  47. Lasch P, Jacob D, Grunow R, Schwecke T, Doellinger J (2016) Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) for the identification of highly pathogenic bacteria. Trends Analy Chem 85:103–111

    Article  CAS  Google Scholar 

  48. Debois D, Hamze K, Guerineau V, Le Caer JP, Holland B, Lopez P, Ouazzani J, Seror SJ, Brunelle A, Laprevote O (2008) In situ localisation and quantification of surfactins in a Bacillus subtilis swarming community by imaging mass spectrometry. Proteomics 8(18):3682–3691

    Article  CAS  Google Scholar 

  49. Holland RD, Duffy CR, Rafii F, Sutherland JB, Heinze TM, Holder CL, Voorhees KJ, Lay JO Jr (1999) Identification of bacterial proteins observed in MALDI TOF mass spectra from whole cells. Anal Chem 71(15):3226–3230

    Article  CAS  Google Scholar 

  50. Fenselau C, Demirev P (2001) Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20(4):157–171

    Article  CAS  Google Scholar 

  51. Schey KL, Anderson DM, Rose KL (2013) Spatially-directed protein identification from tissue sections by top-down LC-MS/MS with electron transfer dissociation. Anal Chem 85(14):6767–6774

    Article  CAS  Google Scholar 

  52. Perez KK, Olsen RJ, Musick WL, Cernoch PL, Davis JR, Land GA, Peterson LE, Musser JM (2013) Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch Pathol Lab Med 137(9):1247–1254

    Article  Google Scholar 

  53. Sun W, Sun J, Zou L, Shen K, Zhong D, Zhou D, Sun W, Li J (2016) The successful diagnosis and typing of systemic amyloidosis using a microwave-assisted filter-aided fast sample preparation method and LC/MS/MS analysis. PLoS ONE 10(5):e0127180

    Article  Google Scholar 

  54. Taverna D, Norris JL, Caprioli RM (2015) Histology-directed microwave assisted enzymatic protein digestion for MALDI MS analysis of mammalian tissue. Anal Chem 87(1):670–676

    Article  CAS  Google Scholar 

  55. Lazova R, Seeley EH, Keenan M, Gueorguieva R, Caprioli RM (2012) Imaging mass spectrometry – a new and promising method to differentiate Spitz nevi from Spitzoid malignant melanomas. Am J Dermatopathol 34(1):82–90

    Article  Google Scholar 

  56. Seeley EH, Washington MK, Caprioli RM (2013) Proteomic patterns of colonic mucosal tissues delineate Crohn’s colitis and ulcerative colitis. PROTEOMICS Clin Appl 7(7-8):541–549

    Article  CAS  Google Scholar 

  57. Harris GA, Nicklay JJ, Caprioli RM (2013) A localized in-situ hydrogel-mediated protein digestion and extraction technique for on-tissue analysis. Anal Chem 85(5):2717–2723

    Article  CAS  Google Scholar 

  58. Taverna D, Pollins AC, Nanney LB, Caprioli RM (2016) Histology-guided protein digestion/extraction from formalin-fixed and paraffin-embedded pressure ulcer biopsies. Exp Dermatol 25(2):143–146

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by 5P41 GM103391-06

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric P. Skaar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this paper

Cite this paper

Moore, J.L., Skaar, E.P. (2017). MALDI Mass Spectrometry and Infectious Diseases. In: Banoub, J., Caprioli, R. (eds) Molecular Technologies for Detection of Chemical and Biological Agents. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1113-3_8

Download citation

Publish with us

Policies and ethics