Skip to main content

Stripe Rust Epidemiology

  • Chapter
Stripe Rust

Abstract

Stripe rust, caused by Puccinia striiformis, is a polycyclic disease and its epidemic is mainly dependent upon the disease development rate. Although the pathogen has a heteroecious macrocyclic lifecycle that consists of five spore stages, it almost completely reproduces asexually on its primary hosts of cereal crops and auxiliary hosts of wild grasses. The primary inoculum to cause epidemics on cereal crops is mainly from cereal crops, volunteer plants and grasses. Urediniospores can be disseminated by wind for long distance, and also can be carried on clothes and shoes for unintended introduction. The fungus can survive summer and/or winter as mycelium in host tissue for months and/or as viable urediniospores in the air or host surface for different length of time in different regions depending upon environmental conditions. Stripe rust epidemics are affected by various crop and environmental factors, especially host factors such as cultivar susceptibility and cropping systems, and weather factors such as moisture and temperature. Various models for predicting stripe rust have been developed in different regions of the world based on weather factors or the combination of weather factors and cultivar susceptibility. These models have different degrees of usefulness in the disease management.

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U. S. Department of Agriculture. USDA is an equal opportunity provider and employer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi M, Hedjaroude G, Scholler M, Goodwin SB. Taxonomy of Puccinia striiformis s.l. in Iran. Rostaniha. 2004;5:71–282.

    Google Scholar 

  • Abiev SA, Zhakhanov A, Kencsarina G, Esengulova BZ. Specialization of yellow rust of wheat in South-Eastern Kazakhstan. Bot Mater Gerbariya, Inst Bot Akad Nauk Kaz SSR. 1982;12:96–8.

    Google Scholar 

  • Ahmad S, Afzal M, Noorka IR, Iqbal Z, Akhtar N, Iftkhar Y, Kamran M. Prediction of yield losses in wheat (Triticum aestivum L.) caused by yellow rust in relation to epidemiological factors in Faisalabad. Pak J Bot. 2010;42:401–7.

    Google Scholar 

  • Akanda SI, Mundt CC. Effects of two component wheat cultivar mixtures on stripe rust severity. Phytopathology. 1996;86:347–53.

    Article  Google Scholar 

  • Alexopoulos CJ, Mims CW. Introductory mycology. 3rd ed. New York: Wiley; 1979.

    Google Scholar 

  • Ali S, Gladieux P, Leconte M, Gautier A, Justesen AF, Hovmøller MS, Enjalbert J, de Vallavieille-Pope C. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. PLoS Pathog. 2014a;10:e1003903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali S, Gladieux P, Rahman H, Saqib MS, Fiaz M, Ahmad H, Leconte M, Gautier A, Justesen AF, Hovmøller MS, Enjalbert J, de Vallavieille-Pope C. Inferring the contribution of sexual reproduction, migration and off-season survival to the temporal maintenance of microbial populations: a case study on the wheat fungal pathogen Puccinia striiformis f. sp. tritici. Mol Ecol. 2014b;23:603–17.

    Article  CAS  PubMed  Google Scholar 

  • Allan RE. Club wheat. Robert E. Allan; 2014. ISBN 978-1-4951-0549-4 I-V + 354 pp + i-xviii.

    Google Scholar 

  • Allan RE, Line RF, Peterson CJ, Rubenthaler GL, Morrison KL, Rohde CR. Crew, a multiline wheat cultivar. Crop Sci. 1983;23:1015–6.

    Article  Google Scholar 

  • Allan RE, Peterson CJ, Line RF, Rubenthaler GL, Morris CF. Registration of “Rely” wheat multiline. Crop Sci. 1993;33:213–4.

    Article  Google Scholar 

  • Angus A. Annotated list of plant pests and diseases in Zambia. Parts 1–7 and supplements. Chilanga, Zambia: Mount Makulu Research Station; 1965.

    Google Scholar 

  • Anikster Y. Binucleate basidiospores – a general rule in rust fungi. Trans Br Mycol Soc. 1983;81:624–6.

    Article  Google Scholar 

  • Arthur JC. The grass rusts of South America; based on the Holway collections. Proc Am Philos Soc. 1925;64:131–223.

    Google Scholar 

  • Becker H, Hart H. Das Auftreten und die Verbreitung von Gelbrost im Ostharz und der darn angrenzenden Weizenanbaugebieten. Z Pflanzenkr (Pflanzenpathol) Pflanzenschutz. 1939;49:449–81.

    Google Scholar 

  • Beresford RM. Stripe rust (Puccinia striiformis), a new disease of wheal in New Zealand. Cereal Rusts Bull. 1982;10:35–241.

    Google Scholar 

  • Berlin A, Djurle A, Samils B, Yuen J. Genetic variation in Puccinia graminis collected from oats, rye, and barberry. Phytopathology. 2012;102:1006–12.

    Article  PubMed  Google Scholar 

  • Bhagwat SG, Bhatia CR. Selection for flag leaf stomatal frequency in bread wheat. Plant Breed. 1993;110:129–36.

    Article  Google Scholar 

  • Bockus WW, Bowden RL, Hunger RM, Morrill WL, Murray TD, Smiley RW, editors. Compendium of wheat diseases and pests. 3rd ed. APS Press: St. Paul; 2010.

    Google Scholar 

  • Boshoff WHP, Pretorius ZA, van Niekerk BD. Establishment, distribution, and pathogenicity of Puccinia striiformis f. sp. tritici in South Africa. Plant Dis. 2002;86:485–92.

    Article  Google Scholar 

  • Brown JS, Holmes RJ. Guidelines for use of foliar sprays to control stripe rust of wheat in Australia. Plant Dis. 1983;67:485–7.

    Article  Google Scholar 

  • Brown JKM, Hovmøller MS. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science (Washington, DC). 2002;297:537–41.

    Article  CAS  Google Scholar 

  • Brown Jr WM, Hill JP, Velasco VR. Barley yellow rust in North America. Annu Rev Phytopathol. 2001;39:367–84.

    Article  CAS  PubMed  Google Scholar 

  • Burleigh JR. The winter biology of Puccinia striiformis West. in the Pacific Northwest. Dissertation, Washington State University; 1965.

    Google Scholar 

  • Cao SQ, Luo HS, Jin MA, Jin SL, Duan XY, Zhou YL, Chen WQ, Liu TG, Jia QZ, Zhang B, Huang J, Wang XM, Shang XW, Sun ZY. Intercropping influenced the occurrence of stripe rust and powdery mildew in wheat. Crop Prot. 2015;70:40–6.

    Article  Google Scholar 

  • Carleton MA. A serious new wheat rust in this country. Science. 1915;42:58–9.

    Article  CAS  PubMed  Google Scholar 

  • Carson ML. Virulence frequencies in oat crown rust in the United States from 2001 through 2009. Plant Dis. 2008;92:381–4.

    Article  Google Scholar 

  • Chen XM. Epidemiology of barley stripe rust and races of Puccinia striiformis f. sp. hordei: the first decade in the United States. In: Abstracts of the 11th international cereal rusts and powdery mildews conference, 22–27 August 2004, Norwich; 2004. p. A2.8.

    Google Scholar 

  • Chen XM. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can J Plant Pathol. 2005;27:314–37.

    Article  Google Scholar 

  • Chen XM. Stripe rust, why the disease hit so hard in 2010, 2011. Wheat Life Aug/Sep 2011;56–9.

    Google Scholar 

  • Chen XM. High-temperature adult-plant resistance, key for sustainable control of stripe rust. Am J Plant Sci. 2013;4:608–27.

    Article  Google Scholar 

  • Chen XM. Integration of cultivar resistance and fungicide application for control of wheat stripe rust. Can J Plant Pathol. 2014;36:311–26.

    Article  CAS  Google Scholar 

  • Chen XM, Line RF. Inheritance of stripe rust resistance in wheat cultivars used to differentiate races of Puccinia striiformis in North America. Phytopathology. 1992;82:633–7.

    Article  Google Scholar 

  • Chen XM, Line RF. Gene action in wheat cultivars for durable high-temperature adult-plant resistance and interactions with race-specific, seedling resistance to stripe rust caused by Puccinia striiformis. Phytopathology. 1995;85:567–2572.

    Article  Google Scholar 

  • Chen SM, Lu SY. Studies on epidemics of stripe rust on winter wheat in north-central China. Acta Phytopathol Sin. 1957;3:63–84.

    Google Scholar 

  • Chen FQ, Prehn D, Hayes PM. Mapping genes for resistance to barley stripe rust (Puccinia striiformis f. sp. hordei). Theor Appl Genet. 1994;88:215–9.

    CAS  PubMed  Google Scholar 

  • Chen XM, Line RF, Leung H. Virulence and polymorphic DNA relationships of Puccinia striiformis f. sp. hordei to other rusts. Phytopathology. 1995;85:1335–42.

    Article  CAS  Google Scholar 

  • Chen XM, Moore MK, Milus EA, Long DL, Line RF, Marshall D, Jackson L. Wheat stripe rust epidemics and races of Puccinia striiformis f. sp. tritici in the United States in 2000. Plant Dis. 2002;86:39–46.

    Article  Google Scholar 

  • Chen XM, Penman L, Wan AM, Cheng P. Virulence races of Puccinia striiformis f. sp. tritici in 2006 and 2007 and development of wheat stripe rust and distributions, dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. Can J Plant Pathol. 2010;32:315–33.

    Article  Google Scholar 

  • Chen XM, Wang MN, Wan AM, Cheng P, Cheng JJ. Sexual or asexual reproduction, which one is more important for stripe rust? In: Chen W-Q, et al., editors. Disease risk and food security, Proceedings of the 13th international cereal rusts and powdery mildews conference, Beijing, 28 Aug–1 Sept 2012. Beijing: China Agricultural Science and Technology Press; 2012. p. 36–7.

    Google Scholar 

  • Cheng HX, Wang CM, Shuai KJ, Li YF, Song JF, Wang JM. Meteorological forecast models of wheat pests in Jincheng City, Shanxi Province. Jiangsu Agric Sci. 2010;6:159–63. (in Chinese)

    Google Scholar 

  • Cheng JJ, Li H, Ren B, Zhou CJ, Kang ZS, Huang LL. Effect of canopy temperature on the stripe rust resistance of wheat. New Zealand J Bot. 2015;43:306–15.

    Google Scholar 

  • Cheng P, Chen XM, See D. Grass hosts harbor more diverse isolates of Puccinia striiformis than cereal crops. Phytopathology. 2016;106:362–71.

    Article  CAS  PubMed  Google Scholar 

  • Coakley SM. The effect of climate variability on stripe rust of wheat in the Pacific Northwest. Phytopathology. 1978;68:207–12.

    Article  Google Scholar 

  • Coakley SM, Line RF. Quantitative relationships between climatic variables and stripe rust epidemics on winter wheat. Phytopathology. 1981;71:461–7.

    Article  Google Scholar 

  • Coakley SM, Boyd WS, Line RF. Statistical models for predicting stripe rust on winter wheat in the Pacific Northwest. Phytopathology. 1982;72:1539–42.

    Article  Google Scholar 

  • Coakley SM, Line RF, Boyd WS. Regional models for predicting stripe rust on winter wheat in the Pacific Northwest. Phytopathology. 1983;73:1382–5.

    Article  Google Scholar 

  • Coakley SM, Boyd WS, Line RF. Development of regional models that use meteorological variables for predicting stripe rust disease in winter wheat. J Clim Appl Meteorol. 1984;23:1234–40.

    Article  Google Scholar 

  • Coakley SM, Line RF, McDaniel LR. Predicting stripe rust severity on winter wheat using an improved method for analyzing meteorological and rust data. Phytopathology. 1988;78:543–50.

    Article  Google Scholar 

  • Coram TE, Settles ML, Chen XM. Transcriptome analysis of high-temperature adult-plant resistance conditioned by Yr39 during the wheat-Puccinia striiformis f. sp. tritici interaction. Mol Plant Pathol. 2008a;9:479–93.

    Article  CAS  PubMed  Google Scholar 

  • Coram T, Wang MN, Chen XM. Transcriptome analysis of the wheat-Puccinia striiformis f. sp. tritici interaction. Mol Plant Pathol. 2008b;9:157–69.

    Article  CAS  PubMed  Google Scholar 

  • Craigie JH. Discovery of the function of the pycnia of the rust fungi. Nature. 1927;120:765–7.

    Article  Google Scholar 

  • Craigie JH. On the occurrence of pycnia and aecia in certain rust fungi. Phytopathology. 1928;18:1005–21015.

    Google Scholar 

  • Danial DL, Stubbs RW, Parlevliet JE. Evolution of virulence patterns in yellow rust races and its implications for breeding for resistance in wheat in Kenya. Euphytica. 1994;80:165–70.

    Article  Google Scholar 

  • de Bary A. Neue Untersuchungen über die Uredineen, insbesondere die Entwicklung der Puccinia graminis und den Zusammenhang derselben mit Aecidium Berberidis. Monatsber K Preuss Akad Wiss Berlin. 1866.

    Google Scholar 

  • de Bary A. Neue Untersuchungen iiber Uredineen. Monatsber K Preuss Akad Wiss Berlin. 1867:15–50.

    Google Scholar 

  • Dennis JI. Temperature and wet-period conditions for infection by Puccinia striiformis f. sp. tritici race 104E137A +. Trans Br Mycol Soc. 1987;88:119–21.

    Article  Google Scholar 

  • de Vallavieille-Pope C, Huber L, Leconte M, Goyeau H. Comparative effects of temperature and interrupted wet periods on germination, penetration, and infection of Puccinia recondita f. sp. tritici and P. striiformis on wheat seedlings. Phytopathology. 1995;85:409–15.

    Article  Google Scholar 

  • de Vallavieille-Pope C, Huber L, Leconte M, Bethenod O. Preinoculation effects of light quantity on infection efficiency of Puccinia striiformis and P. triticina on wheat seedlings. Phytopathology. 2002;92:1308–14.

    Article  CAS  PubMed  Google Scholar 

  • de Vallavieille-Pope C, Ali S, Leconte M, Enjalbert J, Delos M, Rouzet J. Virulence dynamics and regional structuring of Puccinia striiformis f. sp. tritici in France between 1984 and 2009. Plant Dis. 2012;96:131–40.

    Article  Google Scholar 

  • Dietz SM, Hendrix JW. Reactions of grasses to stripe rust at Pullman, Washington. Phytopathology. 1962;52:730.

    Google Scholar 

  • Doling DA, Doodson JK. The effect of yellow rust on the yield of spring and winter wheat. Trans Br Mycol Soc. 1968;51:427–34.

    Article  Google Scholar 

  • Dubin HJ, Stubbs RW. Epidemic spread of barley stripe rust in South America. Plant Dis. 1986;70:141–4.

    Article  Google Scholar 

  • Düsünceli F, Cetin L, Albustan S, Beniwal SPS. Occurrence and impact of wheat stripe rust (Puccinia striiformis) in Turkey in 1994/95 crop season. In: Proceedings of the European and Mediterranean cereal rusts powdery mildew conference, Lunteren, vol. 9; 1996. p. 309.

    Google Scholar 

  • Eriksson J. Uber die Spezialisierung des Parasitismus bei den Getreiderostpilzen. Ber Dtsch Bot Ges. 1894;12:292–331.

    Google Scholar 

  • Eriksson J, Henning E. Die Hauptresultate einer neuen Untersuchung über die Getreiderostpilze. Z Pflanzenkr. 1894;4:197–203.

    Google Scholar 

  • Eversmeyer MG, Kramer CL. Epidemiology of wheat leaf rust and stem rust in the central great plains of the USA. Annu Rev Phytopathol. 2000;38:491–513.

    Article  CAS  PubMed  Google Scholar 

  • Fan SQ, Xie XS, Li F, Yin QY, Zheng WY. Forecast model for prevalent stripe rust in winter wheat in Shanxi Province. Chin J Eco-Agric. 2007;15:113–5.

    Google Scholar 

  • Fan ZY, Cao SQ, Luo HS, Jin SL. Prediction model on wheat stripe rust in Gangu County. Gansu Agric Sci Technol. 2008;10:9–21.

    Google Scholar 

  • Gassner G, Straib W. Weitere Untersuchungen über biologisch Rassen und über die Spezialisierungsverhältnisse des Gelbrostes Puccinia glumarum (Schm., Erikss. u. Heen). Ebenda. 1934;21:121–45.

    Google Scholar 

  • Georgievskaja NA. Quelques lois sur Ie developpement de la rouille Jaune du ble. Tr Vses Nauchno Issled Inst Zabtsh Rost Leningrad. 1966;26:55–63. (In Russian)

    Google Scholar 

  • Gladders P, Langton SD, Barrie IA, Hardwick NV, Taylor MC, Paveley ND. The importance of weather and agronomic factors for the overwinter survival of yellow rust (Puccinia striiformis) and subsequent disease risk in commercial wheat crops in England. Ann Appl Biol. 2007;150:371–82.

    Article  Google Scholar 

  • Gustafson P, Raskina O, Ma XF, Nevo E. Chapter 1: Wheat evolution, domestication, and improvement. In: Carver BF, editor. Wheat: science and trade. Ames: Wiley-Blackwell; 2009. p. 5–30.

    Google Scholar 

  • Hakim MS, Mamluk OF. Virulence of wheat yellow rust pathogen in Syria and Lebanon. In: Proceedings of the European and Mediterranean cereal rusts powdery mildew conference, vol. 9; 1996. p. 141.

    Google Scholar 

  • Han DJ, Wang QL, Chen XM, Zeng QD, Wu JH, Xue WB, Zhan GM, Huang LL, Kang ZS. Emerging Yr26-virulent races of Puccinia striiformis f. sp. tritici are threatening wheat production in the Sichuan Basin, China. Plant Dis. 2015;99:754–60.

    Article  Google Scholar 

  • Hart H, Becker H. Beitrage zur Frage des Zwischenwirtes für Puccinia glumarum. Z Pflanzenkr (Pflanzenpathol) Pflanzenschutz. 1939;49:559–66.

    Google Scholar 

  • Hassan SF. Rust problems in Pakistan. In: Tahir M, editor. Wheat research and production in Pakistan, vol. I. Islamabad: PARC; 1978. p. 90–3.

    Google Scholar 

  • Hassebrauk K. Die Gelbrostepidemie 1961 in Deutschland. Nachrichtenbl Dtsch Pflanzenschutzdienst (Berl). 1962;14:22–6.

    Google Scholar 

  • Hassebrauk K. Nomenklatur, geographische Verbreitung und Wirtsbereich des Gelbrostes Puccinia striiformis West. Mitt. Biol. Bundesanst Land=Forstwirtsch, Berlin-Dahlem. 1965;16:1–75.

    Google Scholar 

  • Hassebrauk K. Der Gelbrost1 Puccinia striiformis West. 2 Befallsbild. Morphologie und Biologie der Sporen. Infektion und weitere Entwicklung. Wirkungen auf die Wirtspflanze. 1970;139:1–111.

    Google Scholar 

  • Hassebrauk K, Röbbelen G. Der Gelbrost, Puccinia striiformis West. 4, Epidemiology. Bekämpfungsmassnahmen. Mitt. Biol. Bundesanst. Land= Forstwirtsch. Berlin-Dahlem. 1975;164:1–183.

    Google Scholar 

  • Hendrix JW, Burleigh JR, Tu JC. Oversummering of stripe rust at high elevations in the Pacific Northwest-1963. Plant Dis Rep. 1965;49:275–8.

    Google Scholar 

  • Hermansen JE, Stapel C. Notes on the yellow rust epiphytotic in Denmark in 1972. Cereal Rust Bull. 1973;1:5–8.

    Google Scholar 

  • Hermansen JE, Torp U, Prahm LP. Studies of transport of live spores of cereal mildew and rust fungi across the North Sea. Grana. 1978;17:41–6.

    Article  Google Scholar 

  • Hovmøller MS, Justesen AF, Brown JKM. Clonality and long-distance migration of Puccinia striiformis f. sp. tritici in north-west Europe. Plant Pathol. 2002;51:24–32.

    Article  Google Scholar 

  • Hovmøller MS, Yahyaoui AH, Miles EA, Justesen AF. Rapid global spread of two aggressive strains of a wheat rust fungus. Mol Ecol. 2008;17:3818–26.

    Article  PubMed  Google Scholar 

  • Hovmøller MS, Walter S, Bayles R, Hubbard A, Flath K, Sommerfieldt N, Leconte M, Czembor P, Rodriguez-Algaba J, Thach T, Hansen JG, Lassen P, Justesen AF, Ali S, de Vallavieille-Pope C. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol. 2016;65:402–11.

    Article  Google Scholar 

  • Hu XP, Yang ZW, Li ZQ, Deng ZY, Ke CH. Studies on the prediction of wheat stripe rust epidemics in Hanzhong District of Shaanxi Province. Acta Univ. 2000;28:18–21.

    Google Scholar 

  • Humphrey HB, Hungerford CW, Johnson AG. Stripe rust (Puccinia glumarum) of cereals and grasses in the United States. J Agric Res (Washington, DC). 1924;29:209–27.

    Google Scholar 

  • Hungerford CW, Owens CE. Specialized varieties of Puccinia glumarum and hosts for variety tritici. J Agric Res (Washington, DC). 1923;25:363–401.

    Google Scholar 

  • Jackson HA, Mains EB. Aecial stage of the orange leaf rust of wheat. J Agric Res. 1921;22:152–72.

    Google Scholar 

  • Jin Y. Role of Berberis spp. as alternate hosts in generating new races of Puccinia graminis and P. striiformis. Euphytica. 2011;179:105–8.

    Article  Google Scholar 

  • Jin Y, Szabo LJ, Carson M. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. Phytopathology. 2010;100:432–5.

    Article  PubMed  Google Scholar 

  • Jin Y, Rouse M, Groth J. Population diversity of Puccinia graminis is sustained through sexual cycle on alternate hosts. J Integr Agric. 2014;13:262–4.

    Article  Google Scholar 

  • Jing JX, Shang HS, Li ZQ. The biological effects of ultraviolet ray radiation on wheat stripe rust (Puccinia striiformis West.). Acta Phytopathol Sin. 1993;24:299–304.

    Google Scholar 

  • Johnson R. Genetics of resistance to barley yellow rust. In: First international congress of plant pathology abstract 99, London; 1968.

    Google Scholar 

  • Johnson R, Priestley RH, Taylor EC. Occurence of virulence in Puccinia striiformis for Compair wheat in England. Cereal Rusts Bull. 1978;6:11–3.

    Google Scholar 

  • Kajiwara T, Ueda I, Iwata Y. Untersuchungen uber die Physiologische Spezialisierung des Gerstengebrostes (Puccinia striiformis f. sp. hordei) in Japan. Phytopathol Z. 1964;50:313–28.

    Article  Google Scholar 

  • Kang ZS, Zhao J, Wang ZY, Huang LL. Research progress on the role of sexual hosts for wheat epidemiology in China. In: Abstracts of 14th international cereal rusts and powdery mildews conference, 5–8 July 2015, Helsingør, Denmark; 2015. p. 29.

    Google Scholar 

  • Karki CB. Report on evaluation of Nepalese wheat and barley varieties in the seedling stage on their resistance to yellow rust. Wageningen: Research Institute of Plant Protection, IPO; 1980.

    Google Scholar 

  • Kim KS, Beresford RM. Use of a spectrum model and satellite cloud data in the simulation of wheat stripe rust (Puccinia striiformis) dispersal across the Tasman Sea in 1980. Agric Forest Meteorol. 2008;148:1374–82.

    Article  Google Scholar 

  • Krishnaa G, Sahooa RN, Pargalb S, Guptaa VK, Sinhac P, Bhagatd S, Saharane MS, Singha R, Chattopadhyayd C. Assessing wheat yellow rust disease through hyperspectral remote sensing. In: The international archives of the photogrammetry, remote sensing and spatial information sciences, volume XL-8, 2014 ISPRS Technical Commission VIII Symposium, 09–12 December 2014, Hyderabad; 2014. doi:10.5194/isprsarchives-XL-8-1413-2014.

  • Kuang WG, Liu WC, Ma, ZH, Wang HG. Development of a web-based prediction system for wheat stripe rust. In: Li D, Chen Y, editors. CCTA 2012, Part I, International Federation for Information Processing (IFIP) 2013 AICT 392; 2013. p. 324–35.

    Google Scholar 

  • Kumar J, Nayar SK, Prashar M, Bhardwaj SC, Bhatnagar R. Virulence survey of Puccinia striiformis West in India during 1988–1989. Int Trop Plant Dis. 1993a;11:79–83.

    Google Scholar 

  • Kumar J, Nayar SK, Prashar M, Bhardwaj SC, Bhatnagar R. Virulence survey of Puccinia striiformis in India during 1990-1992. Cereal Rusts Powdery Mildews Bull. 1993b;21:17–24.

    Google Scholar 

  • Kumar K, Holtz MD, Xi K, Turkington TK. Overwintering potential of the stripe rust pathogen (Puccinia striiformis) in central Alberta. Can J Plant Pathol. 2013;35:304–14.

    Article  Google Scholar 

  • Li ZQ, Liu HW. Preliminary study of development patterns of wheat stripe rust in Shaanxi, Gansu, and Qinghai. Acta Univ Agric Boreali-Occident. 1956;1956(4):1–18.

    Google Scholar 

  • Lei Y, Wang MN, Wan AM, Xia CJ, See DR, Zhang M, Chen XM. Virulence and molecular characterization of experimental isolates of the stripe rust pathogen (Puccinia striiformis) indicate somatic recombination. Phytopathology. 2017;107:329–44.

    Google Scholar 

  • Li ZQ, Zeng SM. Wheat rusts in China. Beijing: China Agricultural Press; 2002. p. 379.

    Google Scholar 

  • Liang JM, Liu XF, Li Y, Wan Q, Ma ZH, Luo Y. Population genetic structure and the migration of Puccinia striiformis f. sp. tritici between the Gansu and Sichuan Basin populations of China. Phytopathology. 2016;106:192–201.

    Article  CAS  PubMed  Google Scholar 

  • Line RF. Factors contributing to an epidemic of stripe rust on wheat in the Sacramento Valley of California in 1974. Plant Dis Rep. 1976;60:312–6.

    Google Scholar 

  • Line RF. Stripe rust of wheat and barley in North America: a retrospective historical review. Annu Rev Phytopathol. 2002;40:75–118.

    Article  CAS  PubMed  Google Scholar 

  • Line RF, Qayoum A. Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968–87. US Dep Agric Agric Res Serv Tech Bull. 1992;1788:44pp.

    Google Scholar 

  • Littlefield LJ. Biology of the plant rust: an introduction. Ames: Iowa State University Press; 1981. 103 pp.

    Google Scholar 

  • Liu M, Hambleton S. Taxonomic study of stripe rust, Puccinia striiformis sensu lato, based on molecular and morphological evidence. Fungal Biol. 2010;114:881–99.

    Article  CAS  PubMed  Google Scholar 

  • Lu SY, Li GX. Effects of light and temperature on wheat resistance to stripe rust. Acta Phytopathol Sin. 1958;4:129–35.

    Google Scholar 

  • Lu SY, Yang ZM, Wu WZ, Fan GF, Li WN, Li GX. Study on the stripe rust pathogen on wheat and Gramineae grasses. Acta Phytopathol Sin. 1958;4:137–44.

    Google Scholar 

  • Lu NH, Zhan GM, Chen XM, Wang JF, Huang LL, Kang ZS. Spatial genetic diversity and interregional spread of Puccinia striiformis f. sp. tritici in the Northwest China. Eur J Plant Pathol. 2011;131:685–93.

    Article  Google Scholar 

  • Luig NH. Epidemiology in Australia and New Zealand. In: Roelfs AP, Bushnell WR, editors. The cereal rusts, vol. 2. Diseases, distribution, epidemiology and control. Orlando: Academic; 1985. p. 279–304.

    Google Scholar 

  • Ma LJ, Qiao JX, Kong XY, Zou YP, Xu XM, Chen XM, Hu XP. Effect of low temperaure and wheat winter-hardness on survival of Puccinia striiformis f. sp. tritici. PLoS One. 2015;10:e0130691.

    Google Scholar 

  • Maddison AC, Manners JG. Sunlight and viability of cereal rust uredospores. Trans Br Mycol Soc. 1972;59:429–43.

    Article  Google Scholar 

  • Mains EB. Studies concerning heteroecious rusts. Mycologia. 1933;25:407–71.

    Article  Google Scholar 

  • Manisterski J, Kosman E, Eyal Z. Changes in wheat leaf rust and yellow rust populations in Israel. In: Proceedings of the European and Mediterranean cereal rusts & powdery mildews conference, vol. 9; 1996. p.140.

    Google Scholar 

  • Manners JG. Studies on the physiologic specialization of yellow rust (Puccinia glumarum (Schm.) Erikss. et Henn.) in Great Britain. Ann Appl Biol. 1950;37:187–214.

    Article  Google Scholar 

  • Manners JG. Puccinia striiformis Westend. var. dactylidis var. nov. Trans Br Mycol Soc. 1960;43:65–8.

    Article  Google Scholar 

  • Marshall D, Sutton RL. Epidemiology of stripe rust, virulence of Puccinia striiformis f. sp. hordei, and yield loss in barley. Plant Dis. 1995;79:732–7.

    Article  Google Scholar 

  • McGregor MJC. Some effects of lights on the growth of yellow rust on wheat. In: Proceedings of the European and Mediterranean cereal rusts conference,. Interlaken; 1976. p. 56–66.

    Google Scholar 

  • McGregor AJ, Manners JG. The effect of temperature and light intensity on growth and sporulation of Puccinia striiformis on wheat. Plant Pathol. 1985;34:263–71.

    Article  Google Scholar 

  • Melching JS, Stanton JR, Koogle DL. Deleterious effects of tobacco smoke on germination and infectivity of spores of Puccinia graminis tritici and on germination of spores of Puccinia striiformis, Pyricularia oryzae and an Alternaria species. Phytopathology. 1974;64:1143–7.

    Article  Google Scholar 

  • Mendgen K. Growth of Verticillium lecanii in pustules of stripe rust (Puccinia striiformis). Phytopathol Z. 1981;102:301–9.

    Article  Google Scholar 

  • Munday EJ. The effect of yellow rust and its control on the yield of Joss Cambier Winter Wheat. Plant Pathol. 1973;22:171–6.

    Article  Google Scholar 

  • Milu EA, Kristensen K, Hovmoller MS. Evidence for increased agressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology. 2009;99:89–94.

    Google Scholar 

  • Murray G, Ellison M, Watson PJ, Cullis BR. The relationship between wheat yield and stripe rust as effected by length of epidemic and temperature at grain development stage of crop growth. Plant Pathol. 1994;43:397–405.

    Article  Google Scholar 

  • Nagarajan S, Joshi LM. Epidemiology in the Indian subcontinent. In: Roelfs AP, Bushnell WR, editors. The cereal rusts, vol. 2. Diseases, distribution, epidemiology and control. Orlando: Academic; 1985. p. 371–402.

    Chapter  Google Scholar 

  • Nagarajan S, Singh DV. Long-distance dispersion of rust pathogens. Annu Rev Phytopathol. 1990;28:139–53.

    Article  CAS  PubMed  Google Scholar 

  • Nan ZB. Fungal diseases of cultivated grasses and foreage legumes in loess plateau of eastern Gansu Province. Pratacultural Sci. 1990;7:30–4.

    Google Scholar 

  • Naoumova NAM. Natural fluctuations of temperature and the duration of the incubation period of Puccinia glumarum f. sp. tritici. Zaschita Rasteniy. 1937;12:51–66.

    Google Scholar 

  • Narita T, Mano Y. Researches on the oversummering, overwintering, and source of primary infection of stripe rust in wheat and barley. Spec Rep Plant Dis Insects Forecasting Serv Soc Plant Prot Minist Agric For Jpn. 1962;12:1–36.

    Google Scholar 

  • Nazari K, Torabi M. Distribution of yellow rust (Yr) resistance genes in Iran. Acta Phytopathol Entomol Hung. 2000;35:121–31.

    CAS  Google Scholar 

  • Newton M, Johnson T. Stripe rust, Puccinia glumarum, in Canada. Can J Res. 1936;14:89–108.

    Article  Google Scholar 

  • Newton M, Johnson T, Brown AM. Stripe rust in Canada. Phytopathology. 1933;23:25–6.

    Google Scholar 

  • Nirmala J, Dahl S, Steffenson B, Kannangara CG, von Wettstein D, Chen XM, Kleinhofs A. Proteolysis of the barley receptor-like protein kinase Rpg1 by a proteasome pathway is required for Rpg1 mediated stem rust resistance. Proc Natl Acad Sci U S A. 2007;104:10276–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nirmala J, Drader T, Chen XM, Steffenson B, Kleinhofs A. Stem rust spores elicit rapid RPG1 phosphorylation. Mol Plant-Microbe Int. 2010;23:1635–42.

    Article  CAS  Google Scholar 

  • Niu YC, Li ZQ, Shang HS. The new discovery on geographic distribution of Puccinia striiformis West. f. sp. hordei in China. Acta Univ Agric Boreali-Occident (Suppl). 1991;19:63–5.

    Google Scholar 

  • O’Brien L, Brown JS, Young RM, Pascoe I. Occurrence and distribution of wheat stripe rust in Victoria and susceptibility of commercial wheat cultivars. Aus Plant Pathol. 1980;9:14.

    Article  Google Scholar 

  • Pady SM, Johnston CO, Rogerson CT. Stripe rust of wheat in Kansas in 1957. Plant Dis Rep. 1957;41:959–61.

    Google Scholar 

  • Papastamati K, van den Bosch F. The sensitivity of the epidemic growth rate to weather variables, with an application to yellow rust on wheat. Phytopathology. 2007;97:202–10.

    Article  PubMed  Google Scholar 

  • Park RF. The role of temperature and rainfall in the epidemiology of Puccinia striiformis f. sp. tritici in the summer rainfall area of eastern Australia. Plant Pathol. 1990;39:416–23.

    Article  Google Scholar 

  • Peel MD, Riveland N. Winter wheat production in North Dakota. Ext Bull. 1977;33. http://www.ag.ndsu.edu/pubs/plantsci/smgrains/eb33w.htm

  • Pochard E, Goujon C, Vergara S. Influence de la température, de 1’elairement et du stade de la plante sur l’expression de la sensibilité á la rouille jaune de quelques variétés Francaises de blé. Ann Amelior Plant. 1962;12:45–58.

    Google Scholar 

  • Prasada R, Joshi LM, Singh SD, Misra DF, Goel LB, Kumari K, Sharma SK, Josh PC, Ahmad ST. Occurrence of physiological races of wheat and barley rusts in India during 1962–64 and their sources of resistance. Ind J Agric Sci. 1967;37:273–81.

    Google Scholar 

  • Prashar M, Bhardwaj SC, Jain SK, Datta D. Pathotypic evolution in Puccinia striiformis in India during 1995–2004. Aus J Agric Res. 2007;58:602–4.

    Article  Google Scholar 

  • Pretorius ZA, Boshoff WHP, Kema GHJ. First report of Puccinia striiformis f. sp. tritici on wheat in South Africa. Plant Dis. 1997;81:424.

    Article  Google Scholar 

  • Pretorius ZA, Pienaar L, Prins R. Greenhouse and field assessment of adult plant resistance in wheat to Puccinia striiformis f. sp. tritici. Aus Plant Pathol. 2007;36:552–9.

    Article  Google Scholar 

  • Qayoum A, Line RF. High-temperature adult-plant resistance to stripe rust of wheat. Phytopathology. 1985;75:1121–5.

    Article  Google Scholar 

  • Rapilly F. Yellow rust epidemiology. Annu Rev Phytopathol. 1979;17:59–73.

    Article  Google Scholar 

  • Roelfs AP. Effects of barberry eradication on stem rust in the United States. Plant Dis. 1982;66:177–81.

    Article  Google Scholar 

  • Roelfs AP. Wheat and rye stem rust. In: AP Roelfs, WR Bushnell, editors. The cereal rusts vol. II: Diseases, distribution, epidemiology and control. New York: Academic; 1985. p. 3–37

    Google Scholar 

  • Roelfs AP, Huerta-Espino J, Marshall D. Barley stripe rust in Texas. Plant Dis. 1992;76:538.

    Article  Google Scholar 

  • Russell GE. Deposition of Puccinia striiformis uredospores on adult wheat plants in laboratory experiments. Cereal Rusts Bull. 1975;3:40–3.

    Google Scholar 

  • Saari EE. The Yr9 virulence factor in Puccinia striiformis and South Asia: coevolution or migration from a distant place. In: Proceedings of the European and Mediterranean cereal rusts & powdery mildews conference, vol. 9; 1996. p. 142.

    Google Scholar 

  • Schmitt CG, Hendrix JW, Emge RG, Jones NW. Stripe rust, Puccinia striiformis west. Tech. Rept. 43 Plant Sci. Lab., Fort Detrick; 1964. 111pp.

    Google Scholar 

  • Shaner G, Powelson RL. The oversummering and dispersal of inoculum of Puccinia striiformis in Oregon. Phytopathology. 1973;63:13–7.

    Article  Google Scholar 

  • Sharma KB, Gupta RBL. Control of yellow rust Puccinia striiformis of barley by fungicide. Indian J Mycol Plant Pathol. 1979;9:33–5.

    Google Scholar 

  • Sharma-Poudyal D, Chen XM. Models for predicting potential yield loss of wheat caused by stripe rust in the US Pacific Northwest. Phytopathology. 2011;101:544–54.

    Article  CAS  PubMed  Google Scholar 

  • Sharma-Poudyal D, Chen XM, Rupp RA. Potential oversummering and overwintering regions for the wheat stripe rust pathogen in the contiguous United States. Int J Biometeorol. 2014;58:987–97.

    Article  PubMed  Google Scholar 

  • Sharp EL. Prepenetration and postpenetration environment and development of Puccinia striiformis on wheat. Phytopathology. 1965;55:198–203.

    Google Scholar 

  • Sharp EL. Atmospheric ions and germination of urediospores of Puccinia striiformis. Science. 1967;156:1359–60.

    Article  CAS  PubMed  Google Scholar 

  • Sharp EL, Hehn ER. Overwintering of stripe rust in winter wheat in Montana. Phytopathology. 1963;53:1239–40.

    Google Scholar 

  • Shrum R. Simulation of wheat stripe rust (Puccinia striiformis West.) using EPIDEMIC: a flexible plant disease simulator, Prog. Rep. No. 347. Pennsylvania State University, University Park; 1975.

    Google Scholar 

  • Shurtleff MC, Averre III CW. Glossary of plant-pathological terms. St. Paul: APS; 1997. p. 361.

    Google Scholar 

  • Stakman EC. Epidemiology of cereal rusts. In: Proceedings of the 5th Pacific. Science Congress, 1–14 June 1933. Victoria and Vancouver. University of Toronto Press, Toronto, vol. 4; 1934. p. 3177–84.

    Google Scholar 

  • Straib W. Untersuchungen über das Vorkommen physiologischer Rassen des Gelbrostes (Puccinia glumarum) in den Jahren 1935–1936 und über die Agressivität einiger neuer Formen auf Getreide und Gräsern. Arb Biol Reichsanst Land= Forstwirtsch, Berlin-Dahlem. 1937;22:91–119.

    Google Scholar 

  • Stubbs RW. Influence of light intensity on the reactions of wheat and barley seedlings to Puccinia striiformis. Phytopathology. 1967;57:615–7.

    Google Scholar 

  • Stubbs RW. Artificial mutation in the study of the relationship between races of yellow rust of wheat. In: Proceedings of the 2nd European and Mediterranean cereal rusts conference; 1968. p. 60–2.

    Google Scholar 

  • Stubbs RW. Stripe rust. In: Roelfs AP, Bushnell WR, editors. The cereal rusts, vol. 2, Diseases, distribution, epidemiology and control. Orlando: Academic; 1985. p. 61–101.

    Chapter  Google Scholar 

  • Stubbs R W, Yang HA. Pathogenicity of Puccinia striiformis for wheat cultivars with resistance derived from rye. In: Proceedings of the European and Mediterranean cereal rusts conference, vol. 7; 1988. p. 110–2

    Google Scholar 

  • Stubbs RW, Slovencikova V, Bartos P. Yellow rust resistance of some European wheat cultivars derived from rye. Cereal Rusts Bull. 1977;5:45–7.

    Google Scholar 

  • Sun P, Zeng SM. Modeling the inter-regional disease spread. Z Pflanzenkrankh Pflanzenschutz. 1994;101:545–9.

    Google Scholar 

  • Te Beest DE, Paveley ND, Shaw MW, van den Bosch F. Disease–weather relationships for powdery mildew and yellow rust on winter wheat. Phytopathology. 2008;98:609–17.

    Article  Google Scholar 

  • Thach T, Ali S, Justesen AF, Rodriguez-Algaba J, Hovmøller MS. Recovery and virulence phenotyping of the historic ‘Stubbs collection’ of the yellow rust fungus Puccinia striiformis from wheat. Ann Appl Biol. 2015;167:314–26.

    Article  CAS  Google Scholar 

  • Thach T, Ali S, de Vallavieille-Pope C, Justesen AF, Hovmøller MS. Worldwide population structure of the wheat rust fungus Puccinia striiformis in the past. Fungal Genet Biol. 2016;87:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Tollenaar H. A comparison of Puccinia striiformis f. sp. poae on bluegrass with P. striiformis f. sp. tritici and f. sp. dactylidis. Phytopathology. 1967;57:418–20.

    Google Scholar 

  • Tollenaar H, Houston BR. A study on the epidemiology of stripe rust, Puccinia striiformis West., in California. Can J Bot. 1967;45:291–307.

    Article  Google Scholar 

  • Tranzschel W. Kulturversuche mit uredineen in den Jahren 1911–1913. Vorlauf Mitt Mycol CI. 1914;4:70–1.

    Google Scholar 

  • Tranzschel W. Promežutočnye chozjaeva rzavčiny chlebov i ich der UdSSR. (The alternate hosts of cereal rust fungi and their distribution in the UdSSR). Bull Plant Prot Ser. 1934;2:4–40.

    Google Scholar 

  • Tu JC. The summer biology of Puccinia striiformis West. In Southeastern Washington. Dissertation, Washington State University; 1967.

    Google Scholar 

  • Vallega J. Wheat rust races in South America. Phytopathology. 1955;45:242–6.

    Google Scholar 

  • Wahl I, Anikster Y, Manisteriski J, Segal A. Evolution at the center of origin. In: Roelfs AP, Bushnell WR, editors. The cereal rusts, vol 1, Origins, specificity, structure and physiology. Orlando: Academics; 1984. p. 33–77.

    Google Scholar 

  • Wan AM, Chen XM. Virulence, frequency, and distribution of races of Puccinia striiformis f. sp. tritici and P. striiformis f. sp. hordei identified in the United States in 2008 and 2009. Plant Dis. 2012;96:67–74.

    Google Scholar 

  • Wan AM, Chen XM. Virulence characterization of Puccinia striiformis f. sp. tritici using a new set of Yr single-gene line differentials in the United States in 2010. Plant Dis. 2014;98:1534–42.

    Article  Google Scholar 

  • Wan Q, Liang JM, Luo Y, Ma ZH. Population genetic structure of Puccinia striiformis f. sp. tritici in northwestern China. Plant Dis. 2015;99:1764–74.

    Article  CAS  Google Scholar 

  • Wan AM, Chen XM, Yuen J. Races of Puccinia striiformis f. sp. tritici in the United States in 2011 and 2012 and comparison with races in 2010. Plant Dis. 2016;100:966–75.

    Article  Google Scholar 

  • Wang ZH. On the evolution of the barley-yellow rust pathosystem in Tibet. Acta Phytopathol Sin. 1992;22:151–5.

    Google Scholar 

  • Wang MN, Chen XM. First report of Oregon grape (Mahonia aquifolium) as an alternate host for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) under artificial inoculation. Plant Dis. 2013;97:839.

    Article  Google Scholar 

  • Wang MN, Chen XM. Barberry does not function as an alternate host for Puccinia striiformis f. sp. tritici in the US Pacific Northwest due to teliospore degradation and barberry phenology. Plant Dis. 2015;99:1500–6.

    Article  CAS  Google Scholar 

  • Wang JQ, Dai SK. Preliminary study on over-summering patterns of the wheat stripe rust pathogen in southern Gansu. Acta Phytophylacica Sin. 1965;8:1–8.

    Google Scholar 

  • Wang KN, Hong XW, Wu LR, Xie SX, Meng QY, Chen SM. The analysis of the resistance of varieties in the wheat stripe rust nurseries in 1951–1983. Acta Phytophylacica Sin. 1986;13:112–23.

    Google Scholar 

  • Wang ZH, Peng YL, Yangjin L, Da Z. Difference of pathogenicity between isolates of barley-attacking and wheat-attacking forms of Puccinia striiformis with special reference to the deviation of disease development. Acta Phytopathol Sin. 1989a;19:161–5.

    Google Scholar 

  • Wang ZH, Yangjin L, Da Z, Peng YL. A preliminary study on the physiologic specialization of Puccinia striiformis f. sp. hordei in Tibet. Chin J Plant Prot. 1989b;16:186–92.

    Google Scholar 

  • Wang XJ, Tang CL, Zhang G, Li YC, Wang CF, Liu B, Qu ZP, Zhao J, Han QM, Huang LL, Chen XM, Kang ZS. cDNA-AFLP analysis reveals differential gene expression in compatible reaction of wheat challenged with Puccinia striiformis f. sp. tritici. BMC Genom. 2009;10:289.

    Article  CAS  Google Scholar 

  • Wang MN, Wan AM, Chen XM, Evans CK. Barberry is more important as an alternate host for stem rust than for stripe rust in the U.S. Pacific Northwest. In: Oral presentations, poster abstracts, participants and program of BGRI technical workshop, 13–16 June 2011, St. Paul; 2011. p. 166.

    Google Scholar 

  • Wang MN, Wan AM, Chen XM. Barberry as alternate host is important for Puccinia graminis f. sp. tritici but not for Puccinia striiformis f. sp. tritici in the U. S. Pacific Northwest. Plant Dis. 2015;99:1507–16.

    Article  CAS  Google Scholar 

  • Wang ZY, Zhao J, Chen XM, Peng YL, Ji JJ, Zhao SL, Lu YJ, Huang LL, Kang ZS. Virulence variations of Puccinia striiformis f. sp. tritici isolates collected from Berberis spp. in China. Plant Dis. 2016;100:131–8.

    Article  Google Scholar 

  • Watson IA, De Sousa CNA. Long distance transport of spores of Puccinia graminis tritici in the Southern Hemisphere. Proc Linn Soc NSW. 1983;106:311–21.

    Google Scholar 

  • Wellings CR. Annual report 1982. Plant Breed Inst, University of Sydney, Sydney; 1982. p. 24–7.

    Google Scholar 

  • Wellings CR. Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006. Aust J Agric Res. 2007;58:567–75.

    Article  Google Scholar 

  • Wellings CR. Global status of stripe rust: a review of historical and current threats. Euphytica. 2011;179:129–41.

    Article  Google Scholar 

  • Wellings CR, Burdon JJ. Variability in Puccinia striiformis f. sp. tritici in Australasia. In: Proceedings of the European and Mediterranean cereal rusts & powdery mildews conference, vol. 8; 1992. p. 114.

    Google Scholar 

  • Wellings CR, McIntosh RA. Puccinia striiformis f. sp. tritici in Eastern Australia – possible means of entry and implications for plant quarantine. Plant Pathol. 1987;36:239–41.

    Article  Google Scholar 

  • Wellings CR, McIntosh RA. Puccinia striiformis f. sp. tritici in Australasia: pathogenic changes during the first 10 years. Plant Pathol. 1990;39:316–25.

    Article  Google Scholar 

  • Wellings CR, Wright DG, Keiper F, Loughman R. First detection of wheat stripe rust in Western Australia: evidence for a foreign incursion. Aus Plant Pathol. 2003;32:321–2.

    Article  Google Scholar 

  • Wiik L, Ewaldz T. Impact of temperature and precipitation on yield and plant diseases of winter wheat in southern Sweden 1983–2007. Crop Prot. 2009;28:952–62.

    Article  Google Scholar 

  • Wright RG, Lennard JH. Mitosis in Puccinia striiformis 1. Light microscopy. Trans Br Mycol Soc. 1978;70:91–8.

    Article  Google Scholar 

  • Xia CJ, Wan AM, Wang MN, Jiwan DA, See DR, Chen XM. Secreted protein gene derived-single nucleotide polymorphisms (SP-SNPs) reveal population diversity and differentiation of Puccinia striiformis f. sp. tritici in the United States. Fungal Biol. 2016a;120:729–44.

    Article  PubMed  Google Scholar 

  • Xia CJ, Wang MN, Wan AM, Jiwan DA, See DR, Chen XM. Association analysis of SP-SNPs and avirulence genes in Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen. Am J Plant Sci. 2016b;7:126–37.

    Article  CAS  Google Scholar 

  • Xiao ZQ, Li ZM, Fan M, Zhang Y, Ma SJ. Prediction model on stripe rust influence extent of winter wheat in Longnan mountainous area. Chin J Agrometeorol. 2007;28:350–3.

    Google Scholar 

  • Yang XB, Zeng SM. Detecting patterns of wheat stripe rust pandemics in time and space. Phytopathology. 1992;82:571–6.

    Article  Google Scholar 

  • Young CS, Paveley ND, Vaughan TB, Thomas JM, Lockley KD. Predicting epidemics of yellow rust (Puccinia striiformis) on the upper canopy of wheat from disease observations on lower leaves. Plant Pathol. 2003;52:338–49.

    Article  Google Scholar 

  • Zadoks JC. Yellow rust on wheat studies in epidemiology and physiologic specialization. T Pl Ziekten. 1961;67:69–256.

    Google Scholar 

  • Zadoks JC. Epidemiology of wheat rust in Europe. Pest Articles News Summaries Sect B. Plant Dis Control. 1967;13:29–46.

    Google Scholar 

  • Zadoks JC. Systems analysis and the dynamics of epidemics. Phytopathology. 1971;61:600–10.

    Article  Google Scholar 

  • Zadoks JC. Methodology for epidemiological research. Annu Rev Phytopathol. 1972;10:253–76.

    Article  Google Scholar 

  • Zadoks JC. EPIPRE: a disease and pest management system for winter wheat developed in the Netherlands. OEPP Bull/EPPO Bull. 1981;11:365–9.

    Article  Google Scholar 

  • Zadoks JC, Bouwman JJ. Epidemiology in Europe. In: Roelfs AP, Bushnell WR, editors. The cereal rusts vol. II: Diseases, distribution, Epidemiology and Control. Orlando: Academic; 1985. p. 329–69.

    Chapter  Google Scholar 

  • Zadoks JC, Rijsdijk FH. Epidemiology and forecasting of cereal rust studied by means of a computer simulator named EPISIM. In: Proceedings of the European and Mediterranean cereal rusts conference, vol. 2; 1972. p. 293–6.

    Google Scholar 

  • Zeng SM. On the mathematic analysis of the epiphytotics of wheat stripe rust: I. Rate of epidemic. Acta Phytophyl Sin. 1962;1:35–48.

    Google Scholar 

  • Zeng SM. On the mathematical analysis of the epiphytotics of wheat stripe rust: II. Distance of spread. Acta Phytopathol Sin. 1963;6:141–50.

    Google Scholar 

  • Zeng SM, Luo Y. Long-distance spread and interregional epidemics of wheat stripe rust in China. Plant Dis. 2006;90:980–8.

    Article  Google Scholar 

  • Zeng SM, Luo Y. Systems analysis of wheat stripe rust epidemics in China. Eur J Plant Pathol. 2008;121:425–38.

    Article  Google Scholar 

  • Zhan G, Tian Y, Wang F, Chen X, Guo J, Jiao M, Huang LL, Kang ZS. A novel fungal hyperparasite of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust. PLoS One. 2014;9:e111484.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhan GM, Wang FP, Chen XM, Wan CP, Han QM, Huang LL, Kang ZS. Virulence and molecular diversity of the Puccinia striiformis f. sp. tritici population in Xinjiang in relation to other regions of western China. Plant Dis. 2016;100:99–107.

    Article  CAS  Google Scholar 

  • Zhao J, Wang L, Wang ZY, Chen XM, Zhang HC, Yao JN, Zhan GM, Chen W, Huang LL, Kang ZS. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China. Phytopathology. 2013;103:935–40.

    Article  Google Scholar 

  • Zhao J, Wang MN, Chen XM, Kang ZS. Role of alternate hosts in epidemiology and pathogen variation of cereal rusts. Annu Rev Phytopathol. 2016;54:207–28.

    Article  CAS  PubMed  Google Scholar 

  • Zhu YY, Chen HR, Fan JH, Wang YY, Li Y, Chen JB, Fan JX, Yang SS, Hu LP, Leung H, Mew TW, Teng PS, Wang ZH, Mundt CC. Genetic diversity and disease control in rice. Nature. 2000;406:718–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianming Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chen, X. (2017). Stripe Rust Epidemiology. In: Chen, X., Kang, Z. (eds) Stripe Rust. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1111-9_4

Download citation

Publish with us

Policies and ethics