Skip to main content

Solar Radiation in Forests: Theory for Hemispherical Photography

  • Chapter
  • First Online:
Hemispherical Photography in Forest Science: Theory, Methods, Applications

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 28))

Abstract

Solar radiation is not only the main source of energy for life on Earth, but it is also the natural source of light for the optical acquisition of information, such as for vision and photography . Natural sunlight provides the illumination required for taking hemispherical photographs in forests. In turn, such photographs can then be interpreted to provide a description of the plant canopy and its interactions with light, or more generally, its radiation regime. The techniques used for both the acquisition and the analysis of hemispherical photographs are based on the theory of radiation in plant canopies. The goal of this chapter is to present the theoretical foundations describing how solar radiation reaches Earth’s surface and interacts with plant canopies. Different sensors for measuring radiation are described, and the principles of hemispherical photography are reviewed. Finally, a comparison of the techniques used to assess the radiation regime of forest canopies is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber JD, Federer CA (1992) A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia 92:463–474

    Article  PubMed  Google Scholar 

  • Akinoglu BG (2008) Recent advances in the relations between bright sunshine hours and solar irradiation. In: Badescu V (ed) Modeling solar radiation at the Earth surface, recent advances. Springer, Berlin, pp 115–143

    Chapter  Google Scholar 

  • Ameztegui A, Coll L, Benavides R, Valladares F, Paquette A (2012) Understory light predictions in mixed conifer mountain forests: role of aspect-induced variation in crown geometry and openness. For Ecol Manag 276:52–61

    Article  Google Scholar 

  • Anderson MC (1964) Studies of the woodland light climate I. The photographic computation of light condition. J Ecol 52:27–41

    Article  Google Scholar 

  • Angström A (1924) Solar and terrestrial radiation. Q J Roy Meteor Soc 50:121–126

    Article  Google Scholar 

  • Appelbaum J (1987) A solar radiation distribution sensor. Sol Energy 39:1–10

    Article  Google Scholar 

  • Ballaré CL (1999) Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. Trends Plant Sci 4:97–102

    Article  PubMed  Google Scholar 

  • Battaglia MA, Mitchell RJ, Mou PP, Pecot SD (2003) Light transmittance estimates in a longleaf pine woodland. For Sci 49:752–762

    Google Scholar 

  • Beaudet M, Messier C (2002) Variation in canopy openness and light transmission following selection cutting in northern hardwood stands: an assessment based on hemispherical photographs. Agric For Meteorol 110:217–228

    Article  Google Scholar 

  • Beaudet M, Messier C, Canham CD (2002) Predictions of understorey light conditions in northern hardwood forests following parameterization, sensitivity analysis, and tests of the SORTIE light model. For Ecol Manag 165:235–248

    Article  Google Scholar 

  • Berbigier P, Bonnefond JM (1995) Measurement and modelling of radiation transmission within a stand of maritime pine (Pinus pinaster Ait.). Ann Sci For 52:23–42

    Article  Google Scholar 

  • Bohren CF, Clothiaux EE (2006) Fundamentals of atmospheric radiation. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Boivin F, Paquette A, Racine P, Messier C (2011) A fast and reliable method for the delineation of tree crown outlines for the computation of crown openness values and other tree crown parameters. Can J For Res 41:1827–1835

    Article  Google Scholar 

  • Bonhomme R, Chartier P (1972) The interpretation and automatic measurement of hemispherical photographs to obtain sunlit foliage area and gap frequency. Israel J Agric Res 22:53–61

    Google Scholar 

  • Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK (1952) A reversible photoreaction controlling seed germination. Proc Natl Acad Sci U S A 38:662–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brasseur F, de Sloover JR (1976) L’extinction du rayonnement dans les gammes spectrales bleu, rouge et rouge lointain. Comparaison de deux peuplements forestiers de Haute-Ardenne. Bull Soc R Bot Belg 109:319–334

    Google Scholar 

  • Bréda NJJ (2003) Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot 54:2403–2417

    Article  PubMed  Google Scholar 

  • Brunger AP, Hooper FC (1993) Anisotropic sky radiance model based on narrow field of view measurements of shortwave radiance. Sol Energy 51:53–64

    Article  Google Scholar 

  • Burch H, Forster F, Schleppi P (1996) Zum Einfluss des Waldes auf die Hydrologie der Flysch-Einzugsgebiete des Alptals. Schweiz Z Forstwes 147:925–938

    Google Scholar 

  • Butler WL, Norris KH, Siegelman HW, Hendricks SB (1959) Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proc Natl Acad Sci U S A 45:1703–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell GS (1986) Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution. Agric For Meteorol 36:317–321

    Article  Google Scholar 

  • Canham CD (1988) An index for understory light levels in and around canopy gaps. Ecology 69:1634–1638

    Article  Google Scholar 

  • Canham CD, Denslow JS, Platt WJ, Runkle JR, Spies TA, White PS (1990) Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can J For Res 20:620–631

    Article  Google Scholar 

  • Canham CD, Coates KD, Bartemucci P, Quaglia S (1999) Measurement and modeling of spatially explicit variation in light transmission through interior cedar-hemlock forests of British Columbia. Can J For Res 29:1775–1783

    Article  Google Scholar 

  • Canham CD, Murphy LE (2005) SORTIE-ND. Cary Institute of Ecosystem Studies, Millbrook, New York. http://www.sortie-nd.org/

  • Chen JM, Cihlar J (1995) Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index. Appl Opt 34:6211–6222

    Article  CAS  PubMed  Google Scholar 

  • CIE (2003) Spatial distribution of daylight—CIE standard general sky (ISO 15469:2004 (E)/CIE S 011/E:2003). Commission Internationale de l’Éclairage, Vienna, Austria

    Google Scholar 

  • Comeau PG, Gendron F, Letchford T (1998) A comparison of several methods for estimating light under a paper birch mixedwood stand. Can J For Res 28:1843–1850

    Article  Google Scholar 

  • Côté J-F, Widlowski J-L, Fournier RA, Verstraete MM (2009) The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar. Remote Sens Environ 113:1067–1081

    Article  Google Scholar 

  • Côté J-F, Fournier RA, Verstraete MM (2017) Canopy architectural models in support of methods using hemispherical photography. In: Fournier RA, Hall RJ (eds) Hemispherical photography in forest science: theory, methods, applications. Springer, Berlin

    Google Scholar 

  • Dai Q, Sun S (2006) A generalized layered radiative transfer model in the vegetation canopy. Adv Atmos Sci 23:243–257

    Article  Google Scholar 

  • Dai Q, Sun S (2007) A comparison of two canopy radiative models in land surface processes. Adv Atmos Sci 24:421–434

    Article  Google Scholar 

  • de Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ 20:537–557

    Article  Google Scholar 

  • Dickinson RE (1983) Land surface processes and climate—surface albedos and energy-balance. Adv Geophys 25:305–353

    Article  Google Scholar 

  • Dobbertin M, Eilmann B, Bleuler P, Giuggiola A, Pannatier EG, Landholt W, Schleppi P, Rigling A (2010) Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiol 30:346–360

    Article  PubMed  Google Scholar 

  • Drever CR, Lertzman KP (2003) Effects of a wide gradient of retained tree structure on understory light in coastal Douglas-fir forests. Can J For Res 33:137–146

    Article  Google Scholar 

  • Easter MJ, Spies TA (1994) Using hemispherical photography for estimating photosynthetic photon flux density under canopies and in gaps in Douglas-fir forests of the Pacific Northwest. Can J For Res 24:2050–2058

    Article  Google Scholar 

  • Emery K, Myers D (2008) Reference solar spectral irradiance: air mass 1.5. http://rredc.nrel.gov/solar/spectra/am1.5. Accessed 5 Mar 2013

  • Engler A (1924) Heliotropismus und Geotropismus der Bäume und deren waldbauliche Bedeutung. Mitteilungen der Schweizerischen Zentralanstalt für das forstliche Versuchswesen 13:225–283

    Google Scholar 

  • Endler JA (1993) The color of light in forests and its implications. Ecol Monogr 63:1–27

    Article  Google Scholar 

  • Essery R (1998) Boreal forests and snow in climate models. Hydrol Process 12:1561–1567

    Article  Google Scholar 

  • Evans GD, Coombe DE (1959) Hemispherical and woodland canopy photography and the light climate. J Ecol 47:103–113

    Article  Google Scholar 

  • Feldhake CM (2002) Forage frost protection potential of conifer silvopastures. Agric For Meteorol 112:123–130

    Article  Google Scholar 

  • Frazer GW, Fournier RA, Leblanc SG, Walter J-MN (2017) View angle-dependent clumping indices for indirect LAI estimation. In: Fournier RA, Hall RJ (eds) Hemispherical photography in forest science: theory, methods, applications. Springer, Berlin

    Google Scholar 

  • Gates DM (1980) Biophysical ecology. Springer, Berlin

    Book  Google Scholar 

  • Geiger R, Aron RH, Todhunter P (2009) The climate near the ground, 7th edn. Rowman & Littlefield, Lanham

    Google Scholar 

  • Gendron F, Messier C, Comeau PG (1998) Comparison of various methods for estimating the mean growing season percent photosynthetic photon flux density in forests. Agric For Meteorol 92:55–70

    Article  Google Scholar 

  • Goudriaan J (1977) Crop micrometeorology: a simulation study. Dissertation, Center for Agricultural Publishing and Documentation, University of Wageningen, Wageningen

    Google Scholar 

  • Gower ST, Norman JM (1991) Rapid estimation of leaf area index in conifer and broad-leaf plantations. Ecology 72:1896–1900

    Article  Google Scholar 

  • Grant RH, Heisler GM, Gao W (1996) Photosynthetically-active radiation: sky radiance distributions under clear and overcast conditions. Agric For Meteorol 82:267–292

    Article  Google Scholar 

  • Hall RJ, Fournier RA, Côté J-F, Mailly D (2017) Comparison of software tools for analysis of hemispherical photography. In: Fournier RA, Hall RJ (eds) Hemispherical photography in forest science: theory, methods, applications. Springer, Berlin

    Google Scholar 

  • Harrison AW, Coombes CA (1988) Angular distribution of clear sky short wavelength radiance. Sol Energy 40:57–63

    Article  Google Scholar 

  • Hawke MF, Wedderburn ME (1994) Microclimate changes under Pinus radiata agroforestry regimes in New Zealand. Agric For Meteorol 71:133–145

    Article  Google Scholar 

  • Hay JE, McKay DC (1985) Estimating solar irradiance on inclined surfaces: a review and assessment of methodologies. Int J Sol Energy 3:203–240

    Article  Google Scholar 

  • Hill R (1924) A lens for whole sky photographs. Q J R Meteorol Soc 50:227–235

    Article  Google Scholar 

  • Hooper FC, Brunger AP (1980) A model for the angular distribution of sky radiance. J Sol Energy-T ASME 102:196–202

    Article  Google Scholar 

  • Iqbal M (1983) An introduction to solar radiation. Academic Press, Toronto

    Google Scholar 

  • Jacobson MZ (2002) Atmospheric pollution: history, science, and regulation. Cambridge University Press, Cambridge, p 399 pp

    Book  Google Scholar 

  • Jonckheere IGC, Macfarlane C, Walter J-MW (2017) Image Analysis of hemispherical photographs, algorithms and calculation. In: Fournier RA, Hall RJ (eds) Hemispherical photography in forest science: Theory, methods, applications. Springer, New York

    Google Scholar 

  • Kittler R (1994) Some qualities of scattering functions defining sky radiance distributions. Sol Energy 53:511–516

    Article  Google Scholar 

  • Körner C (2007) Climatic treelines: conventions, global patterns, causes. Erdkunde 61:316–324

    Article  Google Scholar 

  • Kucharik CJ, Norman JM, Murdock LM, Gower ST (1997) Characterizing canopy nonrandomness with a multiband vegetation imager (MVI). J Geophys Res 102(D24):29455–29473

    Article  Google Scholar 

  • LaMalfa EM, Ryle R (2008) Differential snowpack accumulation and water dynamics in aspen and conifer communities: implications for water yield and ecosystem function. Ecosystems 11:569–581

    Article  Google Scholar 

  • Lang M, Kuusk A, Mõttus M, Rautiainen M, Nilson T (2010) Canopy gap fraction estimation from digital hemispherical images using sky radiance models and a linear conversion method. Agric For Meteorol 150:20–29

    Article  Google Scholar 

  • Langensiepen M, Burgess S, Lambers H, Mitchell P, Veneklass E (2006) A model for simulating transpiration of Eucalyptus salmonophloia trees. Physiol Plant 127:465–477

    Article  CAS  Google Scholar 

  • Leblanc SG, Fournier RA (2014) Hemispherical photography simulations with an architectural model to assess retrieval of leaf area index. Agric For Meteorol 194:64–76

    Article  Google Scholar 

  • Leblanc SG, Fournier RA (2017) Measurement of forest structure with hemispherical photography. In: Fournier RA, Hall RJ (eds) Hemispherical photography in forest science: theory, methods, applications. Springer, Berlin

    Google Scholar 

  • Leblanc SG, Chen JM, Fernandes R, Deering DW, Conley A (2005) Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agric For Meteorol 129:187–207

    Article  Google Scholar 

  • Lemmon PE (1956) A spherical densiometer for estimating forest overstory density. For Sci 2:314–320

    Google Scholar 

  • Lieffers VJ, Messier C, Stadt KJ, Gendron F, Comeau PG (1999) Predicting and managing light in the understory of boreal forests. Can J For Res 29:796–811

    Article  Google Scholar 

  • Liu BYH, Jordan RC (1961) Daily insolation on surfaces tilted towards the equator. Trans ASHRAE 67:526–541

    Google Scholar 

  • Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. Freeman, New York

    Google Scholar 

  • Machado J-L, Reich PB (1999) Evaluation of several measures of canopy openness as predictors of photosynthetic photon flux density in deeply shaded conifer-dominated forest understory. Can J For Res 29:1438–1444

    Article  Google Scholar 

  • Manetti MC, Amorini E, Becagli C, Pelleri F, Pividori M, Schleppi P, Zingg A, Conedara M (2010) Quality wood production from chestnut (Castanea sativa Mill.) coppice forests—comparison between different silvicultural approaches. Acta Hortic 866:683–692

    Article  Google Scholar 

  • Martin PH, Canham CD, Kobe RK (2010) Divergence from the growth-survival trade-off and extreme high growth rates drive patterns of exotic tree invasions in closed-canopy forests. J Ecol 98:778–789

    Article  Google Scholar 

  • McCree KJ (1972) Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agric For Meteorol 10:443–453

    Article  Google Scholar 

  • Messier C, Puttonen P (1995) Spatial and temporal variation in the light environment of developing Scots pine stands: the basis for a quick and efficient method of characterizing light. Can J For Res 25:343–354

    Article  Google Scholar 

  • Milankovitch M (1941) Kanon der Erdbestrahlungen und seine Anwendung auf das Eiszeitenproblem. Königlich Serbische Akademie, Belgrad

    Google Scholar 

  • Montes F, Rubio A, Barbeito I, Cañellas I (2008) Characterization of the spatial structure of the canopy in Pinus silvestris L. stands in Central Spain from hemispherical photographs. For Ecol Manag 255:580–590

    Article  Google Scholar 

  • Myneni RB (1991) Modeling radiative transfer and photosynthesis in three-dimensional vegetation canopies. Agric For Meteorol 55:323–344

    Article  Google Scholar 

  • Norman JM (1982) Simulation of microclimates. In: Hatfield JL, Thomason IJ (eds) Biometeorology in integrated pest management. Academic Press, New York, pp 65–99

    Chapter  Google Scholar 

  • Pacala SW, Canham CD, Saponara J, Silander JA Jr, Kobe RK, Ribbens E (1996) Forest models defined by field measurements: estimation, error analysis and dynamics. Ecol Monogr 66:1–43

    Article  Google Scholar 

  • Paquette A, Bouchard A, Cogliastro A (2006) Survival and growth of under-planted trees: a meta-analysis across four biomes. Ecol Appl 16:1575–1589

    Article  PubMed  Google Scholar 

  • Paquette A, Bouchard A, Cogliastro A (2007a) Morphological plasticity in seedlings of three deciduous species under shelterwood under-planting management does not correspond to shade tolerance ranks. For Ecol Manag 241:278–287

    Article  Google Scholar 

  • Paquette A, Bouchard A, Cogliastro A (2007b) A less restrictive technique for the estimation of understory light under variable weather conditions. For Ecol Manag 242:800–804

    Article  Google Scholar 

  • Paquette A, Messier C, Périnet P, Cogliastro A (2008) Simulating light availability under different hybrid poplar clones in a mixed intensive plantation system. For Sci 54:481–489

    Google Scholar 

  • Paquette A, Fontaine B, Messier C, Brisson J (2010) Homogeneous light regime in shade-house experiment overestimates carbon gains in Norway maple seedlings. J Hortic For 2:117–121

    Google Scholar 

  • Parent S, Messier C (1996) A simple and efficient method to estimate microsite light availability under a forest canopy. Can J For Res 26:151–154

    Article  Google Scholar 

  • Pearcy RW (1989) Radiation and light measurements. In: Pearcy RW, Ehleringer J, Mooney HA, Rundel PW (eds) Plant physiological ecology: field methods and instrumentation. Chapman & Hall, New York, pp 95–116

    Chapter  Google Scholar 

  • Pelkowski J (2008) Insolation at the Earth’s surface. Rev Acad Colomb Ci Exact 32:25–35

    Google Scholar 

  • Porté A, Bosc A, Champion I, Loustau D (2000) Estimating the foliage area of maritime pine (Pinus pinaster Ait.) branches and crowns with application to modelling the foliage area distribution in the crown. Ann For Sci 57:73–86

    Article  Google Scholar 

  • Posada JM, Lechowicz MJ, Kitajima K (2009) Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content. Ann Bot 103:795–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prescott JA (1940) Evaporation from a water surface in relation to solar radiation. Trans R Soc South Aust 64:114–116

    Google Scholar 

  • Renaud V, Rebetez M (2009) Comparison between open-site and below-canopy climatic conditions in Switzerland during the exceptionally hot summer of 2003. Agric For Meteorol 149:873–880

    Article  Google Scholar 

  • Rich PM (1990) Characterizing plant canopies with hemispherical photographs. In: Goel NS, Norman JM (eds) Instrumentation for studying vegetation canopies for remote sensing in optical and thermal infrared regions. Remote Sens Rev 5:13–29

    Google Scholar 

  • Rich PM, Clark DB, Clark DA, Oberbauer SF (1993) Long-term study of solar radiation regimes in a tropical wet forest using quantum sensors and hemispherical photography. Agric For Meteorol 65:107–127

    Article  Google Scholar 

  • Ross J (1981) The radiation regime and architecture of plant stands. Dr W. Junk publishers, The Hague

    Book  Google Scholar 

  • Roussel L (1972) Photologie forestière. Masson, Paris, p 144 pp

    Google Scholar 

  • Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas-exchange and primary production processes. Ecol Model 42:125–154

    Article  CAS  Google Scholar 

  • Schleppi P, Conedera M, Sedivy I, Thimonier A (2007) Correcting non-linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs. Agric For Meteorol 144:236–242

    Article  Google Scholar 

  • Schütz J, Brang P (1995) L’horizontoscope: un étonnant outil pratique de sylviculture, notamment en haute montagne. Office National des Forêts, Bulletin Technique 28

    Google Scholar 

  • Sellers PJ (1985) Canopy reflectance, photosynthesis and transpiration. Int J Remote Sens 6:1335–1372

    Article  Google Scholar 

  • Sellers PJ, Berry JA, Collatz GJ, Field CB, Hall FG (1992) Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens Environ 42:187–216

    Article  Google Scholar 

  • Siala FMF, Hooper FC (1990) A model for the directional distribution of the diffusive sky radiance with an application to a CPC collector. Sol Energy 44:291–296

    Article  Google Scholar 

  • Sinclair TR, Murphy CE Jr, Knoerr KR (1976) Development and evaluation of simplified models for simulating canopy photosynthesis and transpiration. J Appl Ecol 13:813–829

    Article  Google Scholar 

  • Singhal GS, Renger G, Sopory SK, Irrgang KD, Govindjee (eds) (1999) Concepts in photobiology: photosynthesis and photomorphogenesis. Narosa Publishing House, New Delhi, p 1019 pp

    Google Scholar 

  • Smith WK, Knapp AK, Reiners WA (1989) Penumbral effects on sunlight penetration in plant communities. Ecology 70:1603–1609

    Article  Google Scholar 

  • Smolander S (1984) Measurement of fluctuating irradiance in field studies of photosynthesis. Acta For Fenn 187:1–56

    Google Scholar 

  • Smolander S, Stenberg P (2005) Simple parameterizations of the radiation budget of uniform broadleaved and coniferous canopies. Remote Sens Environ 94:355–363

    Article  Google Scholar 

  • Spencer JW (1971) Fourier series representation of the position of the Sun. Search 2:172

    Google Scholar 

  • Stähli M, Jonas T, Gustafsson D (2009) The role of snow interception in winter-time radiation processes of a coniferous sub-alpine forest. Hydrol Process 23:2498–2512

    Article  Google Scholar 

  • Stanhill G (1970) Some results of helicopter measurements of the albedo of different land surfaces. Sol Energy 13:59–66

    Article  Google Scholar 

  • Steven MD, Unsworth MH (1980) The angular distribution and interception of diffuse solar radiation below overcast skies. Q J R Meteorol Soc 106:57–61

    Article  Google Scholar 

  • Thimonier A, Sedivy I, Schleppi P (2010) Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods. Eur J For Res 129:543–562

    Article  Google Scholar 

  • Timofeyev YM, Vasil’ev AV (2008) Theoretical fundamentals of atmospheric optics. CABI, Cambridge

    Google Scholar 

  • Torres JL, Torres LM (2008) Angular distribution of sky diffuse radiance and luminance. In: Badescu V (ed) Modeling solar radiation at the Earth’s surface: recent advances. Springer, Berlin, pp 427–448

    Chapter  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  • Vida J, Foyo-Moreno I, Alados-Arboledas L (1999) Performance validation of MURAC, a cloudless sky radiance model proposal. Energy 24:705–721

    Article  Google Scholar 

  • Wang S, Chen W, Cihlar J (2002) New calculation methods of diurnal distribution of solar radiation and its interception by canopy over complex terrain. Ecol Model 155:191–204

    Article  Google Scholar 

  • Wang Q, Tenhunen J, Schmidt M, Otieno D, Kolcun O, Droesler M (2005) Diffuse PAR irradiance under clear skies in complex alpine terrain. Agric For Meteorol 128:1–15

    Article  Google Scholar 

  • Wang W-M, Li Z-L, Su H-B (2007) Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agric For Meteorol 143:106–122

    Article  Google Scholar 

  • Way DA, Pearcy RW (2012) Sunflecks in trees and forests: From photosynthetic physiology to global change biology. Tree Physiol 32:1066–1081

    Article  PubMed  Google Scholar 

  • Zlatanov T, Schleppi P, Velichkov I, Hinkov G, Georgieva M, Eggertsson O, Zlatanova M, Vacik H (2013) Structural diversity of abandoned chestnut (Castanea sativa Mill.) dominated forests: Implications for forest management. For Ecol Manag 291:326–335

    Article  Google Scholar 

Download references

Acknowledgements

We thank William F.J. Parsons and Catherine A. Brown for editing the language of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Schleppi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schleppi, P., Paquette, A. (2017). Solar Radiation in Forests: Theory for Hemispherical Photography. In: Fournier, R., Hall, R. (eds) Hemispherical Photography in Forest Science: Theory, Methods, Applications. Managing Forest Ecosystems, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1098-3_2

Download citation

Publish with us

Policies and ethics