Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 976))

Abstract

Parkinson’s disease (PD) is a common neurodegenerative disorder, which involves degeneration of dopaminergic neurons that are present in the substantia nigra pars compacta (SNpc) region. Many factors have been identified that could lead to Parkinson’s disease; however, almost all of them are directly or indirectly dependent on Ca2+ signaling. Importantly, though disturbances in Ca2+ homeostasis have been implicated in Parkinson’s disease and other neuronal diseases, the identity of the calcium channel remains elusive. Members of the transient receptor potential canonical (TRPC) channel family have been identified as a new class of Ca2+ channels, and it could be anticipated that these channels could play important roles in neurodegenerative diseases, especially in PD. Thus, in this chapter we have entirely focused on TRPC channels and elucidated its role in PD.

Pramod Sukumaran and Yuyang Sun contributed equally

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albers DS, Beal MF (2000) Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J Neural Transm Suppl 59:133–154

    CAS  PubMed  Google Scholar 

  2. Ambudkar IS, Bandyopadhyay BC, Liu X, Lockwich TP, Paria B, Ong HL (2006) Functional organization of TRPC-Ca2+ channels and regulation of calcium microdomains. Cell Calcium 40(5–6):495–504. doi:10.1016/j.ceca.2006.08.011

    Article  CAS  PubMed  Google Scholar 

  3. Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34(4–5):325–337

    Article  CAS  PubMed  Google Scholar 

  4. Badger JL, Cordero-Llana O, Hartfield EM, Wade-Martins R (2014) Parkinson’s disease in a dish – using stem cells as a molecular tool. Neuropharmacology 76(Pt A):88–96. doi:10.1016/j.neuropharm.2013.08.035

    Article  CAS  PubMed  Google Scholar 

  5. Becker EB, Oliver PL, Glitsch MD, Banks GT, Achilli F, Hardy A, Nolan PM, Fisher EM, Davies KE (2009) A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proc Natl Acad Sci U S A 106(16):6706–6711. doi:10.1073/pnas.0810599106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529. doi:10.1038/nrm1155

    Article  CAS  PubMed  Google Scholar 

  7. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21. doi:10.1038/35036035. 35036035 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Bollimuntha S, Ebadi M, Singh BB (2006) TRPC1 protects human SH-SY5Y cells against salsolinol-induced cytotoxicity by inhibiting apoptosis. Brain Res 1099(1):141–149. doi:10.1016/j.brainres.2006.04.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bollimuntha S, Selvaraj S, Singh BB (2011) Emerging roles of canonical TRP channels in neuronal function. Adv Exp Med Biol 704:573–593. doi:10.1007/978-94-007-0265-3_31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bollimuntha S, Singh BB, Shavali S, Sharma SK, Ebadi M (2005) TRPC1-mediated inhibition of 1-methyl-4-phenylpyridinium ion neurotoxicity in human SH-SY5Y neuroblastoma cells. J Biol Chem 280(3):2132–2140. doi:10.1074/jbc.M407384200

    Article  CAS  PubMed  Google Scholar 

  11. Cali T, Ottolini D, Brini M (2011) Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson’s disease. Biofactors 37(3):228–240. doi:10.1002/biof.159

    Article  CAS  PubMed  Google Scholar 

  12. Chen BT, Rice ME (2001) Novel Ca2+ dependence and time course of somatodendritic dopamine release: substantia nigra versus striatum. J Neurosci 21(19):7841–7847

    CAS  PubMed  Google Scholar 

  13. Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11(10):465–469

    Article  CAS  PubMed  Google Scholar 

  14. Chung YH, Sun Ahn H, Kim D, Hoon Shin D, Su Kim S, Yong Kim K, Bok Lee W, Ik Cha C (2006) Immunohistochemical study on the distribution of TRPC channels in the rat hippocampus. Brain Res 1085(1):132–137. doi:10.1016/j.brainres.2006.02.087

    Article  CAS  PubMed  Google Scholar 

  15. Dhar M, Wayman GA, Zhu M, Lambert TJ, Davare MA, Appleyard SM (2014) Leptin-induced spine formation requires TrpC channels and the CaM kinase cascade in the hippocampus. J Neurosci 34(30):10022–10033. doi:10.1523/JNEUROSCI.2868-13.2014

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fendt M, Schmid S, Thakker DR, Jacobson LH, Yamamoto R, Mitsukawa K, Maier R, Natt F, Husken D, Kelly PH, McAllister KH, Hoyer D, van der Putten H, Cryan JF, Flor PJ (2008) mGluR7 facilitates extinction of aversive memories and controls amygdala plasticity. Mol Psychiatry 13(10):970–979. doi:10.1038/sj.mp.4002073

    Article  CAS  PubMed  Google Scholar 

  17. Fiorio Pla A, Maric D, Brazer S-C, Giacobini P, Liu X, Chang YH, Ambudkar IS, Barker JL (2005) Canonical transient receptor potential 1 plays a role in basic fibroblast growth factor (bFGF)/FGF receptor-1-induced Ca2+ entry and embryonic rat neural stem cell proliferation. J Neurosci 25(10):2687–2701. doi:10.1523/JNEUROSCI.0951-04.2005

    Article  PubMed  Google Scholar 

  18. Flanagan KA, Webb W, Stowers L (2011) Analysis of male pheromones that accelerate female reproductive organ development. PLoS ONE 6(2):e16660. doi:10.1371/journal.pone.0016660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, Blum R, Dietrich A, Freichel M, Flockerzi V, Birnbaumer L, Konnerth A (2008) TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59(3):392–398. doi:10.1016/j.neuron.2008.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Herman B, Gores GJ, Nieminen AL, Kawanishi T, Harman A, Lemasters JJ (1990) Calcium and pH in anoxic and toxic injury. Crit Rev Toxicol 21(2):127–148. doi:10.3109/10408449009089876

    Article  CAS  PubMed  Google Scholar 

  21. Hirschler-Laszkiewicz I, Tong Q, Conrad K, Zhang W, Flint WW, Barber AJ, Barber DL, Cheung JY, Miller BA (2009) TRPC3 activation by erythropoietin is modulated by TRPC6. J Biol Chem 284(7):4567–4581. doi:10.1074/jbc.M804734200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoozemans JJ, van Haastert ES, Eikelenboom P, de Vos RA, Rozemuller JM, Scheper W (2007) Activation of the unfolded protein response in Parkinson’s disease. Biochem Biophys Res Commun 354(3):707–711. doi:10.1016/j.bbrc.2007.01.043

    Article  CAS  PubMed  Google Scholar 

  23. Hoozemans JJ, van Haastert ES, Nijholt DA, Rozemuller AJ, Scheper W (2012) Activation of the unfolded protein response is an early event in Alzheimer’s and Parkinson’s disease. Neurodegener Dis 10(1–4):212–215. doi:10.1159/000334536

    Article  CAS  PubMed  Google Scholar 

  24. Huang J, Du W, Yao H, Wang Y (2011) TRPC channels in neuronal survival. In: Zhu MX (ed) TRP channels. CRC Press, Boca Raton

    Google Scholar 

  25. Huang WC, Young JS, Glitsch MD (2007) Changes in TRPC channel expression during postnatal development of cerebellar neurons. Cell Calcium 42(1):1–10. doi:10.1016/j.ceca.2006.11.002

    Article  CAS  PubMed  Google Scholar 

  26. Javitch JA, D'Amato RJ, Strittmatter SM, Snyder SH (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci U S A 82(7):2173–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jayadev S, Petranka JG, Cheran SK, Biermann JA, Barrett JC, Murphy E (1999) Reduced capacitative calcium entry correlates with vesicle accumulation and apoptosis. J Biol Chem 274(12):8261–8268

    Article  CAS  PubMed  Google Scholar 

  28. Kazuno AA, Munakata K, Nagai T, Shimozono S, Tanaka M, Yoneda M, Kato N, Miyawaki A, Kato T (2006) Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics. PLoS Genet 2(8):e128. doi:10.1371/journal.pgen.0020128

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kimchi T, Xu J, Dulac C (2007) A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448(7157):1009–1014. doi:10.1038/nature06089

    Article  CAS  PubMed  Google Scholar 

  30. Kiselyov K, van Rossum DB, Patterson RL (2010) TRPC channels in pheromone sensing. Vitam Horm 83:197–213. doi:10.1016/S0083-6729(10)83008-0

    Article  CAS  PubMed  Google Scholar 

  31. Klipec WD, Burrow KR, O’Neill C, Cao JL, Lawyer CR et al (2016) Loss of the trpc4 gene is associated with a reduction in cocaine self-administration and reduced spontaneous ventral tegmental area dopamine neuronal activity, without deficits in learning for natural rewards. Behav Brain Res 306:117–127

    Google Scholar 

  32. Komuro H, Kumada T (2005) Ca2+ transients control CNS neuronal migration. Cell Calcium 37:387–393

    Google Scholar 

  33. Löf C, Viitanen T, Sukumaran P, Törnquist K (2011) TRPC2: of mice but not men. Adv Exp Med Biol 704:125–134. doi:10.1007/978-94-007-0265-3_6

    Article  PubMed  Google Scholar 

  34. Lee JI, Verhagen Metman L, Ohara S, Dougherty PM, Kim JH, Lenz FA (2007) Internal pallidal neuronal activity during mild drug-related dyskinesias in Parkinson’s disease: decreased firing rates and altered firing patterns. J Neurophysiol 97(4):2627–2641. doi:10.1152/jn.00443.2006

    Article  CAS  PubMed  Google Scholar 

  35. Li H, Huang J, Du W, Jia C, Yao H, Wang Y (2012) TRPC6 inhibited NMDA receptor activities and protected neurons from ischemic excitotoxicity. J Neurochem 123(6):1010–1018. doi:10.1111/jnc.12045

    Article  CAS  PubMed  Google Scholar 

  36. Li HS, Xu XZ, Montell C (1999) Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron 24(1):261–273

    Article  CAS  PubMed  Google Scholar 

  37. Li M, Chen C, Zhou Z, Xu S, Yu Z (2012) A TRPC1-mediated increase in store-operated Ca2+ entry is required for the proliferation of adult hippocampal neural progenitor cells. Cell Calcium 51(6):486–496. doi:10.1016/j.ceca.2012.04.014

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, Guo Y, Tang J, Jiang J, Chen Z (2014) New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophys Sin 46:629–640

    Google Scholar 

  39. Mattson MP, Guthrie PB, Kater SB (1989) Intrinsic factors in the selective vulnerability of hippocampal pyramidal neurons. Prog Clin Biol Res 317:333–351

    CAS  PubMed  Google Scholar 

  40. Montecinos-Oliva C, Schuller A, Parodi J, Melo F, Inestrosa NC (2014) Effects of tetrahydrohyperforin in mouse hippocampal slices: neuroprotection, long-term potentiation and TRPC channels. Curr Med Chem 21(30):3494–3506

    Article  CAS  PubMed  Google Scholar 

  41. Moon HE, Paek SH (2015) Mitochondrial dysfunction in Parkinson’s disease. Exp Neurobiol 24(2):103–116. doi:10.5607/en.2015.24.2.103

    Article  PubMed  PubMed Central  Google Scholar 

  42. Morelli MB, Amantini C, Liberati S, Santoni M, Nabissi M (2013) TRP channels: new potential therapeutic approaches in CNS neuropathies. CNS Neurol Disord Drug Targets 12(2):274–293

    Article  CAS  PubMed  Google Scholar 

  43. Nagarajan A, Ning Y, Reisner K, Buraei Z, Larsen JP et al (2014) Progressive degeneration of dopaminergic neurons through TRP channel-induced cell death. J Neurosci 34:5738–5746

    Google Scholar 

  44. Naziroglu M (2011) TRPM2 cation channels, oxidative stress and neurological diseases: where are we now? Neurochem Res 36(3):355–366. doi:10.1007/s11064-010-0347-4

    Article  CAS  PubMed  Google Scholar 

  45. Nevet A, Morris G, Saban G, Fainstein N, Bergman H (2004) Discharge rate of substantia nigra pars reticulata neurons is reduced in non-parkinsonian monkeys with apomorphine-induced orofacial dyskinesia. J Neurophysiol 92(4):1973–1981. doi:10.1152/jn.01036.2003

    Article  PubMed  Google Scholar 

  46. O’Bryant SE, Hobson V, Hall JR, Waring SC, Chan W, Massman P, Lacritz L, Cullum CM, Diaz-Arrastia R (2009) Brain-derived neurotrophic factor levels in Alzheimer’s disease. J Alzheimers Dis 17(2):337–341. doi:10.3233/JAD-2009-1051doi:052G70T078857553 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ovey IS, Naziroglu M (2015) Homocysteine and cytosolic GSH depletion induce apoptosis and oxidative toxicity through cytosolic calcium overload in the hippocampus of aged mice: involvement of TRPM2 and TRPV1 channels. Neuroscience 284:225–233. doi:10.1016/j.neuroscience.2014.09.078

    Article  CAS  PubMed  Google Scholar 

  48. Paschen W (2000) Role of calcium in neuronal cell injury: which subcellular compartment is involved? Brain Res Bull 53(4):409–413

    Article  CAS  PubMed  Google Scholar 

  49. Patel JC, Witkovsky P, Avshalumov MV, Rice ME (2009) Mobilization of calcium from intracellular stores facilitates somatodendritic dopamine release. J Neurosci 29(20):6568–6579. doi:10.1523/JNEUROSCI.0181-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Phelan KD, Shwe UT, Abramowitz J, Wu H, Rhee SW, Howell MD, Gottschall PE, Freichel M, Flockerzi V, Birnbaumer L, Zheng F (2013) Canonical transient receptor channel 5 (TRPC5) and TRPC1/4 contribute to seizure and excitotoxicity by distinct cellular mechanisms. Mol Pharmacol 83(2):429–438. doi:10.1124/mol.112.082271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281(19):13588–13595. doi:10.1074/jbc.M512205200

    Article  CAS  PubMed  Google Scholar 

  52. Putney JW (2005) Physiological mechanisms of TRPC activation. Pflugers Arch Eur J Physiol 451(1):29–34. doi:10.1007/s00424-005-1416-4

    Article  CAS  Google Scholar 

  53. Putney JW Jr (2003) Capacitative calcium entry in the nervous system. Cell Calcium 34(4–5):339–344. doi:S014341600300143X [pii]

    Article  CAS  PubMed  Google Scholar 

  54. Rivlin-Etzion M, Marmor O, Heimer G, Raz A, Nini A, Bergman H (2006) Basal ganglia oscillations and pathophysiology of movement disorders. Curr Opin Neurobiol 16(6):629–637. doi:10.1016/j.conb.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  55. Rodriguez-Santiago M, Mendoza-Torres M, Jimenez-Bremont JF, Lopez-Revilla R (2007) Knockout of the trcp3 gene causes a recessive neuromotor disease in mice. Biochem Biophys Res Commun 360(4):874–879. doi:10.1016/j.bbrc.2007.06.150

    Article  CAS  PubMed  Google Scholar 

  56. Roedding AS, Tong SY, Au-Yeung W, Li PP, Warsh JJ (2013) Chronic oxidative stress modulates TRPC3 and TRPM2 channel expression and function in rat primary cortical neurons: relevance to the pathophysiology of bipolar disorder. Brain Res 1517:16–27. doi:10.1016/j.brainres.2013.04.025

    Article  CAS  PubMed  Google Scholar 

  57. Selvaraj S, Sun Y, Singh BB (2010) TRPC channels and their implication in neurological diseases. CNS Neurol Disord Drug Targets 9(1):94–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Selvaraj S, Sun Y, Watt JA, Wang S, Lei S, Birnbaumer L, Singh BB (2012) Neurotoxin-induced ER stress in mouse dopaminergic neurons involves downregulation of TRPC1 and inhibition of AKT/mTOR signaling. J Clin Invest 122(4):1354–1367. doi:10.1172/JCI61332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Selvaraj S, Watt JA, Singh BB (2009) TRPC1 inhibits apoptotic cell degeneration induced by dopaminergic neurotoxin MPTP/MPP(+). Cell Calcium 46(3):209–218. doi:10.1016/j.ceca.2009.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Streifel KM, Gonzales AL, De Miranda B, Mouneimne R, Earley S, Tjalkens R (2014) Dopaminergic neurotoxicants cause biphasic inhibition of purinergic calcium signaling in astrocytes. PLoS ONE 9:e110996

    Google Scholar 

  61. Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29(3):645–655

    Article  PubMed  Google Scholar 

  62. Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278(40):39014–39019. doi:10.1074/jbc.M306705200

    Article  PubMed  Google Scholar 

  63. Su B, Ji Y-S, X-l S, Liu X-H, Chen Z-Y (2014) Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission. J Biol Chem 289(3):1213–1226. doi:10.1074/jbc.M113.526129

    Article  CAS  PubMed  Google Scholar 

  64. Sun Y, Sukumaran P, Bandyopadhyay BC, Singh BB (2014) Physiological function and characterization of TRPCs in neurons. Cell 3(2):455–475. doi:10.3390/cells3020455

    Article  CAS  Google Scholar 

  65. Sun Y, Sukumaran P, Schaar A, Singh BB (2015) TRPM7 and its role in neurodegenerative diseases. Channels (Austin) 9(5):253–261. doi:10.1080/19336950.2015.1075675

    Article  Google Scholar 

  66. Tong Q, Hirschler-Laszkiewicz I, Zhang W, Conrad K, Neagley DW, Barber DL, Cheung JY, Miller BA (2008) TRPC3 is the erythropoietin-regulated calcium channel in human erythroid cells. J Biol Chem 283(16):10385–10395. doi:10.1074/jbc.M710231200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tornquist K, Sukumaran P, Kemppainen K, Lof C, Viitanen T (2014) Canonical transient receptor potential channel 2 (TRPC2): old name-new games. Importance in regulating of rat thyroid cell physiology. Pflugers Arch Eur J Physiol 466(11):2025–2034. doi:10.1007/s00424-014-1509-z

    Article  CAS  Google Scholar 

  68. Wang GX, Poo MM (2005) Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 434(7035):898–904. doi:10.1038/nature03478

    Article  CAS  PubMed  Google Scholar 

  69. Wichmann T, Soares J (2006) Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. J Neurophysiol 95(4):2120–2133. doi:10.1152/jn.01013.2005

    Article  PubMed  Google Scholar 

  70. Wu D, Huang W, Richardson PM, Priestley JV, Liu M (2008) TRPC4 in rat dorsal root ganglion neurons is increased after nerve injury and is necessary for neurite outgrowth. J Biol Chem 283(1):416–426. doi:10.1074/jbc.M703177200

    Article  CAS  PubMed  Google Scholar 

  71. Wu X, Zagranichnaya TK, Gurda GT, Eves EM, Villereal ML (2004) A TRPC1/TRPC3-mediated increase in store-operated calcium entry is required for differentiation of H19-7 hippocampal neuronal cells. J Biol Chem 279(42):43392–43402. doi:10.1074/jbc.M408959200

    Article  CAS  PubMed  Google Scholar 

  72. Yildirim E, Birnbaumer L (2007) TRPC2: molecular biology and functional importance. Handb Exp Pharmacol 179:53–75. doi:10.1007/978-3-540-34891-7_3

    Article  CAS  Google Scholar 

  73. Yoshida I, Monji A, Tashiro K, Nakamura K, Inoue R, Kanba S (2006) Depletion of intracellular Ca2+ store itself may be a major factor in thapsigargin-induced ER stress and apoptosis in PC12 cells. Neurochem Int 48(8):696–702. doi:10.1016/j.neuint.2005.12.012

    Article  CAS  PubMed  Google Scholar 

  74. Yuruker V, Naziroglu M, Senol N (2015) Reduction in traumatic brain injury-induced oxidative stress, apoptosis, and calcium entry in rat hippocampus by melatonin: possible involvement of TRPM2 channels. Metab Brain Dis 30(1):223–231. doi:10.1007/s11011-014-9623-3

    Article  CAS  PubMed  Google Scholar 

  75. Zhou FM (2010) A transient receptor potential channel regulates basal ganglia output. Rev Neurosci 21:95–118

    Google Scholar 

  76. Zhou FW, Matta SG, Zhou FM (2008) Constitutively active TRPC3 channels regulate basal ganglia output neurons. J Neurosci 28(2):473–482. doi:10.1523/JNEUROSCI.3978-07.2008

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zuccato C, Cattaneo E (2007) Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol 81(5–6):294–330 . doi:10.1016/j.pneurobio.2007.01.003doi:S0301-0082(07)00015-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  78. Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5(6):311–322 . doi:10.1038/nrneurol.2009.54doi:nrneurol.2009.54 [pii]

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the grant support from the NIH (DE017102; DE024300; GM113123) awarded to B.B.S, and the assistance of John Lee, School of Medicine and Health Sciences, in making the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brij B. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sukumaran, P., Sun, Y., Schaar, A., Selvaraj, S., Singh, B.B. (2017). TRPC Channels and Parkinson’s Disease. In: Wang, Y. (eds) Transient Receptor Potential Canonical Channels and Brain Diseases. Advances in Experimental Medicine and Biology, vol 976. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1088-4_8

Download citation

Publish with us

Policies and ethics