Skip to main content

TRPC Channels and Programmed Cell Death

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 976))

Abstract

Neurotrophins, including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), bind to their high-affinity receptors to promote neuronal survival during brain development. One of the key downstream pathways is the phospholipase C (PLC) pathway, which not only plays a central role in calcium release from internal store but also in activation of TRPC channels coupled with neurotrophin receptors. TRPC channels are required for the neurotrophin-mediated neuronal protective effects. In addition, activation of TRPC channels is able to protect neurons in the absence of neurotrophin. In some circumstances, TRPC channels coupled with metabotropic glutamate receptor may mediate the excitotoxicity by calcium overload. One of the key questions in the field is the channel gating mechanisms; understanding of which would help design compounds to modulate the channel properties. The development and identification of TRPC channel agonists or blockers are promising and may unveil new therapeutic drugs for the treatment of neurodegenerative diseases and epilepsy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amaral MD, Pozzo-Miller L (2007) TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J Neurosci 27(19):5179–5189. doi:10.1523/JNEUROSCI.5499-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64(2):238–258. doi:10.1124/pr.111.005108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Banfield MJ, Naylor RL, Robertson AG, Allen SJ, Dawbarn D, Brady RL (2001) Specificity in Trk receptor: neurotrophin interactions: the crystal structure of TrkB-d5 in complex with neurotrophin-4/5. Structure 9(12):1191–1199

    Article  CAS  PubMed  Google Scholar 

  4. Barbacid M (1994) The Trk family of neurotrophin receptors. J Neurobiol 25(11):1386–1403. doi:10.1002/neu.480251107

    Article  CAS  PubMed  Google Scholar 

  5. Becker EB, Oliver PL, Glitsch MD, Banks GT, Achilli F, Hardy A, Nolan PM, Fisher EM, Davies KE (2009) A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proc Natl Acad Sci U S A 106(16):6706–6711. doi:10.1073/pnas.0810599106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cahalan MD (2009) STIMulating store-operated Ca(2+) entry. Nat Cell Biol 11(6):669–677. doi:10.1038/ncb0609-669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carpenter G, Cohen S (1990) Epidermal growth factor. J Biol Chem 265(14):7709–7712

    CAS  PubMed  Google Scholar 

  8. Carpenter G, King L Jr, Cohen S (1978) Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro. Nature 276(5686):409–410

    Article  CAS  PubMed  Google Scholar 

  9. Carpenter G, Lembach KJ, Morrison MM, Cohen S (1975) Characterization of the binding of 125-I-labeled epidermal growth factor to human fibroblasts. J Biol Chem 250(11):4297–4304

    CAS  PubMed  Google Scholar 

  10. Choi DW (1992) Excitotoxic cell death. J Neurobiol 23(9):1261–1276. doi:10.1002/neu.480230915

    Article  CAS  PubMed  Google Scholar 

  11. Cohen S (1962) Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem 237:1555–1562

    CAS  PubMed  Google Scholar 

  12. Cohen S (1965) The stimulation of epidermal proliferation by a specific protein (EGF). Dev Biol 12(3):394–407

    Article  CAS  PubMed  Google Scholar 

  13. Cowan WM (2001) Viktor Hamburger and Rita Levi-Montalcini: the path to the discovery of nerve growth factor. Annu Rev Neurosci 24:551–600. doi:10.1146/annurev.neuro.24.1.551

    Article  CAS  PubMed  Google Scholar 

  14. Crowley C, Spencer SD, Nishimura MC, Chen KS, Pitts-Meek S, Armanini MP, Ling LH, McMahon SB, Shelton DL, Levinson AD et al (1994) Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76(6):1001–1011

    Article  CAS  PubMed  Google Scholar 

  15. Davare MA, Fortin DA, Saneyoshi T, Nygaard S, Kaech S, Banker G, Soderling TR, Wayman GA (2009) Transient receptor potential canonical 5 channels activate Ca2+/calmodulin kinase Igamma to promote axon formation in hippocampal neurons. J Neurosci 29(31):9794–9808. doi:10.1523/JNEUROSCI.1544-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de la Rosa EJ, de Pablo F (2000) Cell death in early neural development: beyond the neurotrophic theory. Trends Neurosci 23(10):454–458

    Article  PubMed  Google Scholar 

  17. Dolmetsch RE, Pajvani U, Fife K, Spotts JM, Greenberg ME (2001) Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294(5541):333–339. doi:10.1126/science.1063395

    Article  CAS  PubMed  Google Scholar 

  18. Duenas AM, Goold R, Giunti P (2006) Molecular pathogenesis of spinocerebellar ataxias. Brain 129(Pt 6):1357–1370. doi:10.1093/brain/awl081

    Article  PubMed  Google Scholar 

  19. Duman RS, Voleti B (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 35(1):47–56. doi:10.1016/j.tins.2011.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ernfors P, Lee KF, Jaenisch R (1994) Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368(6467):147–150. doi:10.1038/368147a0

    Article  CAS  PubMed  Google Scholar 

  21. Ernfors P, Lee KF, Kucera J, Jaenisch R (1994) Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77(4):503–512

    Article  CAS  PubMed  Google Scholar 

  22. Fiorio Pla A, Maric D, Brazer SC, Giacobini P, Liu X, Chang YH, Ambudkar IS, Barker JL (2005) Canonical transient receptor potential 1 plays a role in basic fibroblast growth factor (bFGF)/FGF receptor-1-induced Ca2+ entry and embryonic rat neural stem cell proliferation. J Neurosci 25(10):2687–2701. doi:10.1523/JNEUROSCI.0951-04.2005

    Article  PubMed  Google Scholar 

  23. Ghosh A, Greenberg ME (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268(5208):239–247

    Article  CAS  PubMed  Google Scholar 

  24. Greka A, Navarro B, Oancea E, Duggan A, Clapham DE (2003) TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6(8):837–845. doi:10.1038/nn1092

    Article  CAS  PubMed  Google Scholar 

  25. Gschwind A, Fischer OM, Ullrich A (2004) The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 4(5):361–370. doi:10.1038/nrc1360

    Article  CAS  PubMed  Google Scholar 

  26. Hanson SM, Sansom MS, Becker EB (2015) Modeling suggests TRPC3 hydrogen bonding and not phosphorylation contributes to the ataxia phenotype of the moonwalker mouse. Biochemistry 54(26):4033–4041. doi:10.1021/acs.biochem.5b00235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hardingham GE, Arnold FJ, Bading H (2001) Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat Neurosci 4(3):261–267. doi:10.1038/85109

    Article  CAS  PubMed  Google Scholar 

  28. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5(5):405–414. doi:10.1038/nn835

    CAS  PubMed  Google Scholar 

  29. Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, Blum R, Dietrich A, Freichel M, Flockerzi V, Birnbaumer L, Konnerth A (2008) TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59(3):392–398. doi:10.1016/j.neuron.2008.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 99(11):7461–7466. doi:10.1073/pnas.102596199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hong C, Seo H, Kwak M, Jeon J, Jang J, Jeong EM, Myeong J, Hwang YJ, Ha K, Kang MJ, Lee KP, Yi EC, Kim IG, Jeon JH, Ryu H, So I (2015) Increased TRPC5 glutathionylation contributes to striatal neuron loss in Huntington's disease. Brain 138(Pt 10):3030–3047. doi:10.1093/brain/awv188

    Article  PubMed  PubMed Central  Google Scholar 

  32. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736. doi:10.1146/annurev.neuro.24.1.677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642. doi:10.1146/annurev.biochem.72.121801.161629

    Article  CAS  PubMed  Google Scholar 

  34. Jia Y, Zhou J, Tai Y, Wang Y (2007) TRPC channels promote cerebellar granule neuron survival. Nat Neurosci 10(5):559–567. doi:10.1038/nn1870

    Article  CAS  PubMed  Google Scholar 

  35. Jones KR, Farinas I, Backus C, Reichardt LF (1994) Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76(6):989–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim DS, Ryu HJ, Kim JE, Kang TC (2013) The reverse roles of transient receptor potential canonical channel-3 and -6 in neuronal death following pilocarpine-induced status epilepticus. Cell Mol Neurobiol 33(1):99–109. doi:10.1007/s10571-012-9875-6

    Article  CAS  PubMed  Google Scholar 

  37. Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ (2003) Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426(6964):285–291. doi:10.1038/nature02162

    Article  CAS  PubMed  Google Scholar 

  38. Klockgether T (2000) Recent advances in degenerative ataxias. Curr Opin Neurol 13(4):451–455

    Article  CAS  PubMed  Google Scholar 

  39. Li HS, Xu XZ, Montell C (1999) Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron 24(1):261–273

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Jia YC, Cui K, Li N, Zheng ZY, Wang YZ, Yuan XB (2005) Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434(7035):894–898. doi:10.1038/nature03477

    Article  CAS  PubMed  Google Scholar 

  41. Liu X, Bandyopadhyay BC, Singh BB, Groschner K, Ambudkar IS (2005) Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3. J Biol Chem 280(22):21600–21606. doi:10.1074/jbc.C400492200

    Article  CAS  PubMed  Google Scholar 

  42. Lockshin RA, William CM (1965) Programmed cell death. 3. Neural control of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol 11:601–610

    Article  CAS  PubMed  Google Scholar 

  43. Lucas P, Ukhanov K, Leinders-Zufall T, Zufall F (2003) A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40(3):551–561

    Article  CAS  PubMed  Google Scholar 

  44. Minke B (1977) Drosophila mutant with a transducer defect. Biophys Struct Mech 3(1):59–64

    Article  CAS  PubMed  Google Scholar 

  45. Montell C (2005) TRP channels in drosophila photoreceptor cells. J Physiol 567(Pt 1):45–51. doi:10.1113/jphysiol.2005.092551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Montell C, Jones K, Hafen E, Rubin G (1985) Rescue of the drosophila phototransduction mutation trp by germline transformation. Science 230(4729):1040–1043

    Article  CAS  PubMed  Google Scholar 

  47. Moran MM, Xu H, Clapham DE (2004) TRP ion channels in the nervous system. Curr Opin Neurobiol 14(3):362–369. doi:10.1016/j.conb.2004.05.003

    Article  CAS  PubMed  Google Scholar 

  48. Nagahara AH, Tuszynski MH (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10(3):209–219. doi:10.1038/nrd3366

    Article  CAS  PubMed  Google Scholar 

  49. Nagarajan A, Ning Y, Reisner K, Buraei Z, Larsen JP, Hobert O, Doitsidou M (2014) Progressive degeneration of dopaminergic neurons through TRP channel-induced cell death. J Neurosci 34(17):5738–5746. doi:10.1523/JNEUROSCI.4540-13.2014

    Article  PubMed  PubMed Central  Google Scholar 

  50. Narayanan KL, Irmady K, Subramaniam S, Unsicker K, von Bohlen und Halbach O (2008) Evidence that TRPC1 is involved in hippocampal glutamate-induced cell death. Neurosci Lett 446 (2–3):117–122. doi:10.1016/j.neulet.2008.09.034

    Article  CAS  PubMed  Google Scholar 

  51. Narayanan KL, Subramaniam S, Bengston CP, Irmady K, Unsicker K, von Bohlen und Halbach O (2014) Role of transient receptor potential channel 1 (TRPC1) in glutamate-induced cell death in the hippocampal cell line HT22. J Mol Neurosci 52 (3):425–433. doi:10.1007/s12031-013-0171-9

    Article  CAS  PubMed  Google Scholar 

  52. Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501. doi:10.1146/annurev.ne.14.030191.002321

    Article  CAS  PubMed  Google Scholar 

  53. Phelan KD, Mock MM, Kretz O, Shwe UT, Kozhemyakin M, Greenfield LJ, Dietrich A, Birnbaumer L, Freichel M, Flockerzi V, Zheng F (2012) Heteromeric canonical transient receptor potential 1 and 4 channels play a critical role in epileptiform burst firing and seizure-induced neurodegeneration. Mol Pharmacol 81(3):384–392. doi:10.1124/mol.111.075341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Phelan KD, Shwe UT, Abramowitz J, Wu H, Rhee SW, Howell MD, Gottschall PE, Freichel M, Flockerzi V, Birnbaumer L, Zheng F (2013) Canonical transient receptor channel 5 (TRPC5) and TRPC1/4 contribute to seizure and excitotoxicity by distinct cellular mechanisms. Mol Pharmacol 83(2):429–438. doi:10.1124/mol.112.082271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Poduslo JF, Curran GL (1996) Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res Mol Brain Res 36(2):280–286

    Article  CAS  PubMed  Google Scholar 

  56. Raju TN (2000) The Nobel chronicles. 1986: Stanley Cohen (b 1922); Rita Levi-Montalcini (b 1909). Lancet 355(9202):506

    Article  CAS  PubMed  Google Scholar 

  57. Riccio A, Li Y, Moon J, Kim KS, Smith KS, Rudolph U, Gapon S, Yao GL, Tsvetkov E, Rodig SJ, Van't Veer A, Meloni EG, Carlezon WA Jr, Bolshakov VY, Clapham DE (2009) Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 137(4):761–772. doi:10.1016/j.cell.2009.03.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Riedel H, Dull TJ, Schlessinger J, Ullrich A (1986) A chimaeric receptor allows insulin to stimulate tyrosine kinase activity of epidermal growth factor receptor. Nature 324(6092):68–70. doi:10.1038/324068a0

    Article  CAS  PubMed  Google Scholar 

  59. Robinson DR, Wu YM, Lin SF (2000) The protein tyrosine kinase family of the human genome. Oncogene 19(49):5548–5557. doi:10.1038/sj.onc.1203957

    Article  CAS  PubMed  Google Scholar 

  60. Ryder EF, Cepko CL (1994) Migration patterns of clonally related granule cells and their progenitors in the developing chick cerebellum. Neuron 12(5):1011–1028

    Article  CAS  PubMed  Google Scholar 

  61. Sawamura S, Hatano M, Takada Y, Hino K, Kawamura T, Tanikawa J, Nakagawa H, Hase H, Nakao A, Hirano M, Rotrattanadumrong R, Kiyonaka S, Mori MX, Nishida M, Hu Y, Inoue R, Nagata R, Mori Y (2016) Screening of transient receptor potential canonical channel activators identifies novel neurotrophic piperazine compounds. Mol Pharmacol 89(3):348–363. doi:10.1124/mol.115.102863

    Article  CAS  PubMed  Google Scholar 

  62. Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26(3):619–631

    Article  CAS  PubMed  Google Scholar 

  63. Schwartz PM, Borghesani PR, Levy RL, Pomeroy SL, Segal RA (1997) Abnormal cerebellar development and foliation in BDNF−/− mice reveals a role for neurotrophins in CNS patterning. Neuron 19(2):269–281

    Article  CAS  PubMed  Google Scholar 

  64. Selvaraj S, Sun Y, Watt JA, Wang S, Lei S, Birnbaumer L, Singh BB (2012) Neurotoxin-induced ER stress in mouse dopaminergic neurons involves downregulation of TRPC1 and inhibition of AKT/mTOR signaling. J Clin Invest 122(4):1354–1367. doi:10.1172/JCI61332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Selvaraj S, Watt JA, Singh BB (2009) TRPC1 inhibits apoptotic cell degeneration induced by dopaminergic neurotoxin MPTP/MPP(+). Cell Calcium 46(3):209–218. doi:10.1016/j.ceca.2009.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M (1994) The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78(3):409–424

    Article  CAS  PubMed  Google Scholar 

  67. Skaper SD (2012) The neurotrophin family of neurotrophic factors: an overview. Methods Mol Biol 846:1–12. doi:10.1007/978-1-61779-536-7_1

    Article  CAS  PubMed  Google Scholar 

  68. Sossin WS, Barker PA (2007) Something old, something new: BDNF-induced neuron survival requires TRPC channel function. Nat Neurosci 10(5):537–538. doi:10.1038/nn0507-537

    Article  CAS  PubMed  Google Scholar 

  69. Sotelo C (2002) The chemotactic hypothesis of Cajal: a century behind. Prog Brain Res 136:11–20

    Article  PubMed  Google Scholar 

  70. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278(40):39014–39019. doi:10.1074/jbc.M306705200

    Article  PubMed  Google Scholar 

  71. Su Z, Zhou X, Haynes WJ, Loukin SH, Anishkin A, Saimi Y, Kung C (2007) Yeast gain-of-function mutations reveal structure-function relationships conserved among different subfamilies of transient receptor potential channels. Proc Natl Acad Sci U S A 104(49):19607–19612. doi:10.1073/pnas.0708584104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tai Y, Feng S, Ge R, Du W, Zhang X, He Z, Wang Y (2008) TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway. J Cell Sci 121(Pt 14):2301–2307. doi:10.1242/jcs.026906

    Article  CAS  PubMed  Google Scholar 

  73. Taroni F, DiDonato S (2004) Pathways to motor incoordination: the inherited ataxias. Nat Rev Neurosci 5(8):641–655. doi:10.1038/nrn1474

    Article  CAS  PubMed  Google Scholar 

  74. Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J et al (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309(5967):418–425

    Article  CAS  PubMed  Google Scholar 

  75. Urfer R, Tsoulfas P, O'Connell L, Shelton DL, Parada LF, Presta LG (1995) An immunoglobulin-like domain determines the specificity of neurotrophin receptors. EMBO J 14(12):2795–2805

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ushiro H, Cohen S (1980) Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes. J Biol Chem 255(18):8363–8365

    CAS  PubMed  Google Scholar 

  77. Wang GX, Poo MM (2005) Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 434(7035):898–904. doi:10.1038/nature03478

    Article  CAS  PubMed  Google Scholar 

  78. Weick JP, Austin Johnson M, Zhang SC (2009) Developmental regulation of human embryonic stem cell-derived neurons by calcium entry via transient receptor potential channels. Stem Cells 27(12):2906–2916. doi:10.1002/stem.212

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wiesmann C, Ultsch MH, Bass SH, de Vos AM (1999) Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature 401(6749):184–188. doi:10.1038/43705

    Article  CAS  PubMed  Google Scholar 

  80. Xie Y, Hong Y, Ma XY, Ren XR, Ackerman S, Mei L, Xiong WC (2006) DCC-dependent phospholipase C signaling in netrin-1-induced neurite elongation. J Biol Chem 281(5):2605–2611. doi:10.1074/jbc.M512767200

    Article  CAS  PubMed  Google Scholar 

  81. Yao H, Peng F, Dhillon N, Callen S, Bokhari S, Stehno-Bittel L, Ahmad SO, Wang JQ, Buch S (2009) Involvement of TRPC channels in CCL2-mediated neuroprotection against tat toxicity. J Neurosci 29(6):1657–1669. doi:10.1523/JNEUROSCI.2781-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yao H, Peng F, Fan Y, Zhu X, Hu G, Buch SJ (2009) TRPC channel-mediated neuroprotection by PDGF involves Pyk2/ERK/CREB pathway. Cell Death Differ 16(12):1681–1693. doi:10.1038/cdd.2009.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2(11):596–607. doi:10.1038/nchembio821

    Article  CAS  PubMed  Google Scholar 

  84. Zhou J, Du W, Zhou K, Tai Y, Yao H, Jia Y, Ding Y, Wang Y (2008) Critical role of TRPC6 channels in the formation of excitatory synapses. Nat Neurosci 11(7):741–743. doi:10.1038/nn.2127

    Article  CAS  PubMed  Google Scholar 

  85. Zhou X, Su Z, Anishkin A, Haynes WJ, Friske EM, Loukin SH, Kung C, Saimi Y (2007) Yeast screens show aromatic residues at the end of the sixth helix anchor transient receptor potential channel gate. Proc Natl Acad Sci U S A 104(39):15555–15559. doi:10.1073/pnas.0704039104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Dr. Yichang Jia acknowledges the funding support from “1000-talents Plan” for young researchers, the Chinese Central Government, from Peking-Tsinghua Joint Center for Life Sciences and IDG/McGovern Institute for Brain Research at Tsinghua, from National Science Foundation of China (31571097, 81371361), from ALS Association (16-IIP-284), and from NIH Pathway to Independence Award (K99/R00, NS079476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yichang Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zhou, J., Jia, Y. (2017). TRPC Channels and Programmed Cell Death. In: Wang, Y. (eds) Transient Receptor Potential Canonical Channels and Brain Diseases. Advances in Experimental Medicine and Biology, vol 976. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1088-4_5

Download citation

Publish with us

Policies and ethics