Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 976))

Abstract

The family of TRP channel is comprised of a large group of cation-permeable channels, displaying as signaling integrators for sensing extracellular stimulus and initiating intracellular signaling cascades. This chapter offers a brief review of the signaling molecules related to TRPC channels, the first identified mammalian TRP family. Besides the signaling molecules involved in TRPC activation, I will focus on their upstream and downstream signaling cascades and the molecules involved in their intracellular trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambudkar IS, Bandyopadhyay BC, Liu X, Lockwich TP, Paria B, Ong HL (2006) Functional organization of TRPC-Ca2+ channels and regulation of calcium microdomains. Cell Calcium 40(5–6)495–504. doi:10.1016/j.ceca.2006.08.011

    Article  CAS  PubMed  Google Scholar 

  2. Bandyopadhyay BC, Ong HL, Lockwich TP, Liu X, Paria BC, Singh BB, Ambudkar IS (2008) TRPC3 controls agonist-stimulated intracellular Ca2+ release by mediating the interaction between inositol 1,4,5-trisphosphate receptor and RACK1. J Biol Chem 283(47)32821–32830. doi:10.1074/jbc.M805382200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bandyopadhyay BC, Swaim WD, Liu X, Redman RS, Patterson RL, Ambudkar IS (2005) Apical localization of a functional TRPC3/TRPC6-Ca2+-signaling complex in polarized epithelial cells. Role in apical Ca2+ influx. J Biol Chem 280(13)12908–12916. doi:10.1074/jbc.M410013200

    Article  CAS  PubMed  Google Scholar 

  4. Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE (2004) Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6(8)709–720. doi:10.1038/ncb1150

    Article  CAS  PubMed  Google Scholar 

  5. Bollimuntha S, Cornatzer E, Singh BB (2005) Plasma membrane localization and function of TRPC1 is dependent on its interaction with beta-tubulin in retinal epithelium cells. Vis Neurosci 22(2)163–170. doi:10.1017/S0952523805222058

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brazer SC, Singh BB, Liu X, Swaim W, Ambudkar IS (2003) Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 278(29)27208–27215. doi:10.1074/jbc.M301118200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cao E, Liao M, Cheng Y, Julius D (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504(7478)113–118. doi:10.1038/nature12823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cayouette S, Bousquet SM, Francoeur N, Dupre E, Monet M, Gagnon H, Guedri YB, Lavoie C, Boulay G (2010) Involvement of Rab9 and Rab11 in the intracellular trafficking of TRPC6. Biochim Biophys Acta 1803(7)805–812. doi:10.1016/j.bbamcr.2010.03.010

    Article  CAS  PubMed  Google Scholar 

  9. Cayouette S, Lussier MP, Mathieu EL, Bousquet SM, Boulay G (2004) Exocytotic insertion of TRPC6 channel into the plasma membrane upon Gq protein-coupled receptor activation. J Biol Chem 279(8)7241–7246. doi:10.1074/jbc.M312042200

    Article  CAS  PubMed  Google Scholar 

  10. Cioffi DL, Wu S, Alexeyev M, Goodman SR, Zhu MX, Stevens T (2005) Activation of the endothelial store-operated ISOC Ca2+ channel requires interaction of protein 4.1 with TRPC4. Circ Res 97(11)1164–1172. doi:10.1161/01.RES.0000193597.65217.00

    Article  CAS  PubMed  Google Scholar 

  11. Clapham DE, Runnels LW, Strubing C (2001) The trp ion channel family. Nat Rev Neurosci 2(6)387–396

    Article  CAS  PubMed  Google Scholar 

  12. Davis J, Burr Adam R, Davis Gregory F, Birnbaumer L, Molkentin Jeffery D (2012) A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Dev Cell 23 (4):705–715. doi:http://dx.doi.org/10.1016/j.devcel.2012.08.017

  13. Dibattista M, Amjad A, Maurya DK, Sagheddu C, Montani G, Tirindelli R, Menini A (2012) Calcium-activated chloride channels in the apical region of mouse vomeronasal sensory neurons. J Gen Physiol 140(1)3–15. doi:10.1085/jgp.201210780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ding X, He Z, Zhou K, Cheng J, Yao H, Lu D, Cai R, Jin Y, Dong B, Xu Y, Wang Y (2010) Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. J Natl Cancer Inst. doi:10.1093/jnci/djq217

    Google Scholar 

  15. Goel M, Sinkins W, Keightley A, Kinter M, Schilling WP (2005) Proteomic analysis of TRPC5- and TRPC6-binding partners reveals interaction with the plasmalemmal Na(+)/K(+)-ATPase. Pflugers Arch - Eur J Physiol 451(1)87–98. doi:10.1007/s00424-005-1454-y

    Article  CAS  Google Scholar 

  16. Greka A, Navarro B, Oancea E, Duggan A, Clapham DE (2003) TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6(8)837–845. doi:10.1038/nn1092

    Article  CAS  PubMed  Google Scholar 

  17. He Z, Jia C, Feng S, Zhou K, Tai Y, Bai X, Wang Y (2012) TRPC5 channel is the mediator of neurotrophin-3 in regulating dendritic growth via CaMKIIα in rat hippocampal neurons. J Neurosci 32(27)9383–9395. doi:10.1523/jneurosci.6363-11.2012

    Article  CAS  PubMed  Google Scholar 

  18. Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, Icrac and TRPC1 channels. Nat Cell Biol 8 (9):1003–1010. doi:http://www.nature.com/ncb/journal/v8/n9/suppinfo/ncb1454_S1.html

  19. Hui H, McHugh D, Hannan M, Zeng F, Xu SZ, Khan SU, Levenson R, Beech DJ, Weiss JL (2006) Calcium-sensing mechanism in TRPC5 channels contributing to retardation of neurite outgrowth. J Physiol 572(Pt 1)165–172. doi:10.1113/jphysiol.2005.102889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jia Y, Zhou J, Tai Y, Wang Y (2007) TRPC channels promote cerebellar granule neuron survival. Nat Neurosci 10 (5):559–567. doi:http://www.nature.com/neuro/journal/v10/n5/suppinfo/nn1870_S1.html

  21. Ju M, Shi J, Saleh SN, Albert AP, Large WA (2010) Ins(1,4,5)P3 interacts with PIP2 to regulate activation of TRPC6/C7 channels by diacylglycerol in native vascular myocytes. J Physiol 588(9):1419–1433. doi:10.1113/jphysiol.2009.185256

  22. Kahn-Kirby AH, Bargmann CI (2006) TRP channels in C. elegans. Ann Rev Physiol 68(1)719–736. doi:10.1146/annurev.physiol.68.040204.100715

    Article  CAS  Google Scholar 

  23. Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ (2003) Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426 (6964):285–291. doi:http://www.nature.com/nature/journal/v426/n6964/suppinfo/nature02162_S1.html

  24. Kini V, Chavez A, Mehta D (2010) A new role for PTEN in regulating transient receptor potential canonical channel 6-mediated Ca2+ entry, endothelial permeability, and angiogenesis. J Biol Chem 285(43)33082–33091. doi:10.1074/jbc.M110.142034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kiselyov K, Shin DM, Kim JY, Yuan JP, Muallem S (2007) TRPC channels: interacting proteins. Handb Exp Pharmacol 179:559–574. doi:10.1007/978-3-540-34891-7_33

    Article  CAS  Google Scholar 

  26. Li S, Wang J, Wei Y, Liu Y, Ding X, Dong B, Xu Y, Wang Y (2015) Crucial role of TRPC6 in maintaining the stability of HIF-1α in glioma cells under hypoxia. J Cell Sci 128(17)3317–3329. doi:10.1242/jcs.173161

    Article  CAS  PubMed  Google Scholar 

  27. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504(7478)107–112. doi:10.1038/nature12822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lockwich T, Singh BB, Liu X, Ambudkar IS (2001) Stabilization of cortical actin induces internalization of transient receptor potential 3 (Trp3)-associated caveolar Ca2+ signaling complex and loss of Ca2+ influx without disruption of Trp3-inositol trisphosphate receptor association. J Biol Chem 276(45)42401–42408. doi:10.1074/jbc.M106956200

    Article  CAS  PubMed  Google Scholar 

  29. Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS (2000) Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem 275(16)11934–11942. doi:10.1074/jbc.275.16.11934

    Article  CAS  PubMed  Google Scholar 

  30. Lussier MP, Cayouette S, Lepage PK, Bernier CL, Francoeur N, St-Hilaire M, Pinard M, Boulay G (2005) MxA, a member of the dynamin superfamily, interacts with the ankyrin-like repeat domain of TRPC. J Biol Chem 280(19)19393–19400. doi:10.1074/jbc.M500391200

    Article  CAS  PubMed  Google Scholar 

  31. Mast TG, Brann JH, Fadool DA (2010) The TRPC2 channel forms protein-protein interactions with Homer and RTP in the rat vomeronasal organ. BMC Neurosci 11(1)1–16. doi:10.1186/1471-2202-11-61

    Article  Google Scholar 

  32. Matsuura H, Sokabe T, Kohno K, Tominaga M, Kadowaki T (2009) Evolutionary conservation and changes in insect TRP channels. BMC Evol Biol 9:228. doi:10.1186/1471-2148-9-228

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mehta D, Ahmmed GU, Paria BC, Holinstat M, Voyno-Yasenetskaya T, Tiruppathi C, Minshall RD, Malik AB (2003) RhoA interaction with inositol 1,4,5-trisphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. Role in signaling increased endothelial permeability. J Biol Chem 278(35)33492–33500. doi:10.1074/jbc.M302401200

    Article  CAS  PubMed  Google Scholar 

  34. Mery L, Magnino F, Schmidt K, Krause K-H, Dufour J-F (2001) Alternative splice variants of hTrp4 differentially interact with the C-terminal portion of the inositol 1,4,5-trisphosphate receptors. FEBS Lett 487 (3):377–383. doi:10.1016/s0014-5793(00)02362-0

    Google Scholar 

  35. Miehe S, Bieberstein A, Arnould I, Ihdene O, Rutten H, Strubing C (2010) The phospholipid-binding protein SESTD1 is a novel regulator of the transient receptor potential channels TRPC4 and TRPC5. J Biol Chem 285(16)12426–12434. doi:10.1074/jbc.M109.068304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Monet M, Francoeur N, Boulay G (2012) Involvement of phosphoinositide 3-Kinase and PTEN protein in mechanism of activation of TRPC6 protein in vascular smooth muscle cells. J Biol Chem 287(21)17672–17681. doi:10.1074/jbc.M112.341354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Montell C, Rubin GM (1989) Molecular characterization of the drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2 (4):1313–1323. doi:http://dx.doi.org/10.1016/0896-6273(89)90069-X

  38. Nakayama AY, Harms MB, Luo L (2000) Small GTPases rac and rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci 20(14)5329–5338

    CAS  PubMed  Google Scholar 

  39. Obukhov AG, Nowycky MC (2004) TRPC5 activation kinetics are modulated by the scaffolding protein ezrin/radixin/moesin-binding phosphoprotein-50 (EBP50) J Cell Physiol 201(2)227–235. doi:10.1002/jcp.20057

    Article  CAS  PubMed  Google Scholar 

  40. Odell AF, Scott JL, Van Helden DF (2005) Epidermal growth factor induces tyrosine phosphorylation, membrane insertion, and activation of transient receptor potential channel 4. J Biol Chem 280(45)37974–37987. doi:10.1074/jbc.M503646200

    Article  CAS  PubMed  Google Scholar 

  41. Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T, Kurose H (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 25(22)5305–5316. doi:10.1038/sj.emboj.7601417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pani B, Ong HL, Liu X, Rauser K, Ambudkar IS, Singh BB (2008) Lipid rafts determine clustering of STIM1 in endoplasmic reticulum-plasma membrane junctions and regulation of store-operated Ca2+ entry (SOCE) J Biol Chem 283(25)17333–17340. doi:10.1074/jbc.M800107200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pla AF, Maric D, Brazer S-C, Giacobini P, Liu X, Chang YH, Ambudkar IS, Barker JL (2005) Canonical transient receptor potential 1 plays a role in basic fibroblast growth factor (bFGF)/FGF receptor-1-induced Ca2+ entry and embryonic rat neural stem cell proliferation. J Neurosci 25(10)2687–2701. doi:10.1523/jneurosci.0951-04.2005

    Article  CAS  Google Scholar 

  44. Qiu J, Fang Y, Bosch MA, Ronnekleiv OK, Kelly MJ (2011) Guinea pig kisspeptin neurons are depolarized by leptin via activation of TRPC channels. Endocrinology 152(4)1503–1514. doi:10.1210/en.2010-1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qiu J, Fang Y, Rønnekleiv OK, Kelly MJ (2010) Leptin excites proopiomelanocortin neurons via activation of TRPC channels. J Neurosci 30(4)1560–1565. doi:10.1523/jneurosci.4816-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi Y, Ding X, He Z-H, Zhou K-C, Wang Q, Wang Y-Z (2009) Critical role of TRPC6 channels in G2 phase transition and the development of human oesophageal cancer. Gut 58(11)1443–1450. doi:10.1136/gut.2009.181735

    Article  CAS  PubMed  Google Scholar 

  47. Shim S, Goh EL, Ge S, Sailor K, Yuan JP, Roderick HL, Bootman MD, Worley PF, Song H, Ming GL (2005) XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nat Neurosci 8 (6):730–735. doi:http://www.nature.com/neuro/journal/v8/n6/suppinfo/nn1459_S1.html

  48. Shim S, Yuan JP, Kim JY, Zeng W, Huang G-1, Milshteyn A, Kern D, Muallem S, Ming G, Worley PF (2009) Peptidyl-prolyl isomerase FKBP52 controls chemotropic guidance of neuronal growth cones via regulation of TRPC1 channel opening. Neuron 64 (4):471–483. doi:http://dx.doi.org/10.1016/j.neuron.2009.09.025

  49. Singh BB, Lockwich TP, Bandyopadhyay BC, Liu X, Bollimuntha S, Brazer S-c, Combs C, Das S, Leenders AGM, Sheng Z-H, Knepper MA, Ambudkar SV, Ambudkar IS (2004) VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca influx. Mol Cell 15(4):635–646. doi:10.1016/j.molcel.2004.07.010

  50. Sutton KA, Jungnickel MK, Wang Y, Cullen K, Lambert S, Florman HM (2004) Enkurin is a novel calmodulin and TRPC channel binding protein in sperm. Dev Biol 274 (2):426–435. doi:http://dx.doi.org/10.1016/j.ydbio.2004.07.031

  51. Tai Y, Feng S, Ge R, Du W, Zhang X, He Z, Wang Y (2008) TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway. J Cell Sci 121(14)2301–2307. doi:10.1242/jcs.026906

    Article  CAS  PubMed  Google Scholar 

  52. Tang J, Lin Y, Zhang Z, Tikunova S, Birnbaumer L, Zhu MX (2001) Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels. J Biol Chem 276(24)21303–21310. doi:10.1074/jbc.M102316200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tang Y, Tang J, Chen Z, Trost C, Flockerzi V, Li M, Ramesh V, Zhu MX (2000) Association of mammalian trp4 and phospholipase C isozymes with a PDZ domain-containing protein, NHERF. J Biol Chem 275(48)37559–37564. doi:10.1074/jbc.M006635200

    Article  CAS  PubMed  Google Scholar 

  54. Tian D, Jacobo SM, Billing D, Rozkalne A, Gage SD, Anagnostou T, Pavenstadt H, Hsu HH, Schlondorff J, Ramos A, Greka A (2010) Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels. Sci Signal 3(145)ra77. doi:10.1126/scisignal.2001200

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tolias KF, Bikoff JB, Burette A, Paradis S, Harrar D, Tavazoie S, Weinberg RJ, Greenberg ME (2005) The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron 45 (4):525–538. doi:http://dx.doi.org/10.1016/j.neuron.2005.01.024

  56. Torihashi S, Fujimoto T, Trost C, Nakayama S (2002) Calcium oscillation linked to pacemaking of interstitial cells of Cajal: requirement of calcium influx and localization of TRP4 in caveolae. J Biol Chem 277(21)19191–19197. doi:10.1074/jbc.M201728200

    Article  CAS  PubMed  Google Scholar 

  57. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417. doi:10.1146/annurev.biochem.75.103004.142819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wolstenholme AJ, Williamson SM, Reaves BJ (2011) TRP channels in parasites. Adv Exp Med Biol 704:359–371. doi:10.1007/978-94-007-0265-3_20

    Article  CAS  PubMed  Google Scholar 

  59. Woodard GE, López JJ, Jardín I, Salido GM, Rosado JA (2010) TRPC3 regulates agonist-stimulated Ca2+ mobilization by mediating the interaction between type I inositol 1,4,5-trisphosphate receptor, RACK1, and Orai1. J Biol Chem 285(11)8045–8053. doi:10.1074/jbc.M109.033605

    Article  CAS  PubMed  Google Scholar 

  60. Wu LJ, Sweet TB, Clapham DE (2010) International union of basic and clinical pharmacology. LXXVI Curr Prog Mamm TRP ion Channel Fam Pharmacol Rev 62(3)381–404. doi:10.1124/pr.110.002725

    CAS  Google Scholar 

  61. Xiao R, Xu XZ (2009) Function and regulation of TRP family channels in C. elegans. Pflugers Arch - Eur J Physiol 458(5)851–860. doi:10.1007/s00424-009-0678-7

    Article  CAS  Google Scholar 

  62. Xu S-Z, Sukumar P, Zeng F, Li J, Jairaman A, English A, Naylor J, Ciurtin C, Majeed Y, Milligan CJ, Bahnasi YM, Al-Shawaf E, Porter KE, Jiang L-H, Emery P, Sivaprasadarao A, Beech DJ (2008) TRPC channel activation by extracellular thioredoxin. Nature 451 (7174):69–72. doi:http://www.nature.com/nature/journal/v451/n7174/suppinfo/nature06414_S1.html

  63. Yildirim E, Dietrich A, Birnbaumer L (2003) The mouse C-type transient receptor potential 2 (TRPC2) channel: alternative splicing and calmodulin binding to its N terminus. Proc Natl Acad Sci 100(5)2220–2225. doi:10.1073/pnas.0438036100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2 (11):596–607. doi:http://www.nature.com/nchembio/journal/v2/n11/suppinfo/nchembio821_S1.html

  65. Yu P-c, S-y G, J-w B, J-l D (2010) TRPC1 is essential for in vivo angiogenesis in zebrafish. Circ Res 106(7)1221–1232. doi:10.1161/circresaha.109.207670

    Article  CAS  PubMed  Google Scholar 

  66. Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114 (6):777–789. doi:10.1016/s0092-8674(03)00716-5

  67. Yuasa K, Matsuda T, Tsuji A (2011) Functional regulation of transient receptor potential canonical 7 by cGMPdependent protein kinase Iα. Cell Signal 23(7):1179–1187

    Google Scholar 

  68. Zhou J, Du W, Zhou K, Tai Y, Yao H, Jia Y, Ding Y, Wang Y (2008) Critical role of TRPC6 channels in the formation of excitatory synapses. Nat Neurosci 11 (7):741–743. doi:http://www.nature.com/neuro/journal/v11/n7/suppinfo/nn.2127_S1.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuohao He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

He, Z. (2017). TRPC Channel Downstream Signaling Cascades. In: Wang, Y. (eds) Transient Receptor Potential Canonical Channels and Brain Diseases. Advances in Experimental Medicine and Biology, vol 976. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1088-4_3

Download citation

Publish with us

Policies and ethics