Skip to main content

TRPC Channels and Brain Inflammation

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 976))

Abstract

Nonresolving low-grade inflammation is supposed to underly the basis of chronic disorders including cardiovascular diseases, cancer, diabetes, obesity, and psychiatric disorders such as depression and Alzheimer’s diseases. There is increasing evidence suggesting that pathophysiology of psychiatric disorders is related to the inflammatory responses mediated by microglial cells. Elevation of intracellular Ca2+ is important for the activation of microglial cell functions, including proliferation, release of NO, cytokines, and BDNF. It has been shown that alteration of intracellular Ca2+ signaling underlies the pathophysiology of psychiatric disorders, including depression. BDNF induces a sustained intracellular Ca2+ elevation through the upregulation of the surface expression of TRPC3 channels in rodent microglial cells. Microglial cells are able to respond to BDNF, which may be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of psychiatric disorders. We also need to study the effect of proBDNF on microglial cells especially by focusing on the TRPC channels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339(6116):156–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Batchelor PE, Liberatore GT, Wong JY, Porritt MJ, Frerichs F, Donnan GA, Howells DW (1999) Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci 19:1708–1716

    CAS  PubMed  Google Scholar 

  3. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21(1):13–26

    Article  CAS  PubMed  Google Scholar 

  4. Berridge MJ (2013) Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion 7(1):2–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7:137–151

    Article  CAS  PubMed  Google Scholar 

  6. Cardoso FL, Brites D, Brito MA (2010) Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev 64(2):328–363

    Article  CAS  PubMed  Google Scholar 

  7. Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021

    Article  CAS  PubMed  Google Scholar 

  8. Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61(1):71–90

    Article  PubMed  Google Scholar 

  9. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Souza LB, Ambudkar IS (2014) Trafficking mechanisms and regulation of TRPC channels. Cell Calcium 56(2):43–50

    Article  PubMed  Google Scholar 

  11. Dudvarski Stankovic N, Teodorczyk M, Ploen R, Zipp F, Schmidt MH (2016) Microglia-blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathol 131(3):347–363

    Article  PubMed  Google Scholar 

  12. Elkabes S, DiCicco-Bloom EM, Black IB (1996) Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 16:2508–2521

    CAS  PubMed  Google Scholar 

  13. Hall AA, Herrera Y, Ajmo CT Jr, Cuevas J, Pennypacker KR (2009) Sigma receptors suppress multiple aspects of microglial activation. Glia 57(7):744–754

    Article  PubMed  Google Scholar 

  14. Haroon E, Raison CL, Miller AH (2012) Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 37(1):137–162

    Article  CAS  PubMed  Google Scholar 

  15. Hoffmann A, Kann O, Ohlemeyer C, Hanisch UK, Kettenmann H (2003) Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function. J Neurosci 23(11):4410–4419

    CAS  PubMed  Google Scholar 

  16. Hong C, Seo H, Kwak M, Jeon J, Jang J, Jeong EM, Myeong J, Hwang YJ, Ha K, Kang MJ, Lee KP, Yi EC, Kim IG, Jeon JH, Ryu H, So I (2015) Increased TRPC5 glutathionylation contributes to striatal neuron loss in Huntington’s disease. Brain 138(Pt 10):3030–3047

    Article  PubMed  PubMed Central  Google Scholar 

  17. Horikawa H, Kato TA, Mizoguchi Y, Monji A, Seki Y, Ohkuri T, Gotoh L, Yonaha M, Ueda T, Hashioka S, Kanba S (2010) Inhibitory effects of SSRIs on IFN-γ induced microglial activation through the regulation of intracellular calcium. Prog Neuropsychopharmacol Biol. Psychiatry 34(7):1306–1316

    CAS  Google Scholar 

  18. Hu X, Ivashkiv LB (2009) Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases. Immunity 31(4):539–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kato T, Mizoguchi Y, Monji A, Horikawa H, Suzuki SO, Seki Y, Iwaki T, Hashioka S, Kanba S (2008) Inhibitory effects of aripiprazole on interferon-gamma-induced microglial activation via intracellular Ca2+ regulation in vitro. J Neurochem 106(2):815–825

    Article  CAS  PubMed  Google Scholar 

  20. Kato TA, Yamauchi Y, Horikawa H, Monji A, Mizoguchi Y, Seki Y, Hayakawa K, Utsumi H, Kanba S (2013) Neurotransmitters, psychotropic drugs and microglia: clinical implications for psychiatry. Curr Med Chem 20(3):331–344

    CAS  PubMed  Google Scholar 

  21. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553

    Article  CAS  PubMed  Google Scholar 

  22. Lee KP, Choi S, Hong JH, Ahuja M, Graham S, Ma R, So I, Shin DM, Muallem S, Yuan JP (2014) Molecular determinants mediating gating of Transient Receptor Potential Canonical (TRPC) channels by stromal interaction molecule 1 (STIM1). J Biol Chem 289(10):6372–6382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leonard BE (2014) Impact of inflammation on neurotransmitter changes in major depression: an insight into the action of antidepressants. Prog Neuro-Psychopharmacol Biol Psychiatry 48:261–267

    Article  CAS  Google Scholar 

  24. Lockwich T, Singh BB, Liu X, Ambudkar IS (2001) Stabilization of cortical actin induces internalization of transient receptor potential 3 (Trp3)-associated caveolar Ca2+ signaling complex and loss of Ca2+ influx without disruption of Trp3-inositol trisphosphate receptor association. J Biol Chem 276(45):42401–42408

    Article  CAS  PubMed  Google Scholar 

  25. McLarnon JG, Choi HB, Lue LF, Walker DG, Kim SU (2005) Perturbations in calcium-mediated signal transduction in microglia from Alzheimer’s disease patients. J Neurosci Res 81(3):426–435

    Article  CAS  PubMed  Google Scholar 

  26. Mizoguchi Y, Ishibashi H, Nabekura J (2003) The action of BDNF on GABA(A) currents changes from potentiating to suppressing during maturation of rat hippocampal CA1 pyramidal neurons. J Physiol 548(Pt 3):703–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mizoguchi Y, Kanematsu T, Hirata M, Nabekura J (2003) A rapid increase in the total number of cell surface functional GABAA receptors induced by brain-derived neurotrophic factor in rat visual cortex. J Biol Chem 278(45):44097–44102

    Article  CAS  PubMed  Google Scholar 

  28. Mizoguchi Y, Monji A, Kato T, Seki Y, Gotoh L, Horikawa H, Suzuki SO, Iwaki T, Yonaha M, Hashioka S, Kanba S (2009) Brain-derived neurotrophic factor induces sustained elevation of intracellular Ca2+ in rodent microglia. J Immunol 183(12):7778–7786

    Article  CAS  PubMed  Google Scholar 

  29. Mizoguchi Y, Monji A, Kato TA, Horikawa H, Seki Y, Kasai M, Kanba S, Yamada S (2011) Possible role of BDNF-induced microglial intracellular Ca(2+) elevation in the pathophysiology of neuropsychiatric disorders. Mini-Rev Med Chem 11(7):575–581

    Article  CAS  PubMed  Google Scholar 

  30. Mizoguchi Y, Kato TA, Seki Y, Ohgidani M, Sagata N, Horikawa H, Yamauchi Y, Sato-Kasai M, Hayakawa K, Inoue R, Kanba S, Monji A (2014) Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia. J Biol Chem 289(26):18549–18555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mizoguchi Y, Kato TA, Horikawa H, Monji A (2014) Microglial intracellular Ca(2+) signaling as a target of antipsychotic actions for the treatment of schizophrenia. Front Cell Neurosci 8:370

    Article  PubMed  PubMed Central  Google Scholar 

  32. Molendijk ML, Spinhoven P, Polak M, Bus BA, Penninx BW, Elzinga BM (2014) Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Mol Psychiatry 19(7):791–800

    Article  CAS  PubMed  Google Scholar 

  33. Möller T (2002) Calcium signaling in microglial cells. Glia 40(2):184–194

    Article  PubMed  Google Scholar 

  34. Monji A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M, Yamauchi Y, Yamada S, Kanba S (2013) Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuro-Psychopharmacol Biol Psychiatry 42:115–121

    Article  CAS  Google Scholar 

  35. Munakata M, Shirakawa H, Nagayasu K, Miyanohara J, Miyake T, Nakagawa T, Katsuki H, Kaneko S (2013) Transient receptor potential canonical 3 inhibitor Pyr3 improves outcomes and attenuates astrogliosis after intracerebral hemorrhage in mice. Stroke 44(7):1981–1987

    Article  CAS  PubMed  Google Scholar 

  36. Nagano T, Kimura SH, Takai E, Matsuda T, Takemura M (2006) Lipopolysaccharide sensitizes microglia toward Ca(2+)-induced cell death: mode of cell death shifts from apoptosis to necrosis. Glia 53(1):67–73

    Article  PubMed  Google Scholar 

  37. Nair JS, DaFonseca CJ, Tjernberg A, Sun W, Darnell JE Jr, Chait BT, Zhang JJ (2002) Requirement of Ca2+ and CaMKII for Stat1 Ser-727 phosphorylation in response to IFN-gamma. Proc Natl Acad Sci U S A 99(9):5971–5976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakajima K, Honda S, Tohyama Y, Imai Y, Kohsaka S, Kurihara T (2001) Neurotrophin secretion from cultured microglia. J Neurosci Res 65:322–331

    Article  CAS  PubMed  Google Scholar 

  39. Nilius B, Szallasi A (2014a) Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 66(3):676–814

    Article  PubMed  Google Scholar 

  40. Ohana L, Newell EW, Stanley EF, Schlichter LC (2009) The Ca2+ release-activated Ca2+ current (I(CRAC)) mediates store-operated Ca2+ entry in rat microglia. Channels (Austin) 3(2):129–139

    Article  CAS  Google Scholar 

  41. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810

    Article  CAS  PubMed  Google Scholar 

  42. Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14(1):7–23

    Article  CAS  PubMed  Google Scholar 

  43. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, Hempstead BL, Littman DR, Gan WB (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7):1596–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Patapoutian A, Reichardt LF (2001) Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 11:272–280

    Article  CAS  PubMed  Google Scholar 

  45. Philipp S, Strauss B, Hirnet D, Wissenbach U, Mery L, Flockerzi V, Hoth M (2003) TRPC3 mediates T-cell receptor-dependent calcium entry in human T-lymphocytes. J Biol Chem 278(29):26629–26638

    Article  CAS  PubMed  Google Scholar 

  46. Pedersen BK, Febbraio MA (2012 Apr 3) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8(8):457–465

    Article  CAS  PubMed  Google Scholar 

  47. Qin X, Liu Y, Zhu M, Yang Z (2015) The possible relationship between expressions of TRPC3/5 channels and cognitive changes in rat model of chronic unpredictable stress. Behav Brain Res 290:180–186

    Article  CAS  PubMed  Google Scholar 

  48. Ramirez GA, Lanzani C, Bozzolo EP, Citterio L, Zagato L, Casamassima N, Canti V, Sabbadini MG, Rovere-Querini P, Manunta P, Manfredi AA (2015) TRPC6 gene variants and neuropsychiatric lupus. J Neuroimmunol 288:21–24

    Article  CAS  PubMed  Google Scholar 

  49. Schwartz M, Kipnis J, Rivest S, Prat A (2013) How do immune cells support and shape the brain in health, disease, and aging? J Neurosci 33(45):17587–17596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sen S, Duman R, Sanacora G (2008) Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 64:527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Senadheera S, Kim Y, Grayson TH, Toemoe S, Kochukov MY, Abramowitz J, Housley GD, Bertrand RL, Chadha PS, Bertrand PP, Murphy TV, Tare M, Birnbaumer L, Marrelli SP, Sandow SL (2012) Transient receptor potential canonical type 3 channels facilitate endothelium-derived hyperpolarization-mediated resistance artery vasodilator activity. Cardiovasc Res 95(4):439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Rajkowska G, Suridjan I, Kennedy JL, Rekkas PV, Houle S, Meyer JH (2015) Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry 72(3):268–275

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shirakawa H, Sakimoto S, Nakao K, Sugishita A, Konno M, Iida S, Kusano A, Hashimoto E, Nakagawa T, Kaneko S (2010) Transient receptor potential canonical 3 (TRPC3) mediates thrombin-induced astrocyte activation and upregulates its own expression in cortical astrocytes. J Neurosci 30(39):13116–13129

    Article  CAS  PubMed  Google Scholar 

  54. Simen BB, Duman CH, Simen AA, Duman RS (2006) TNFα signaling in depression and anxiety: behavioral consequences of individual receptor targeting. Biol Psychiatry 59:775–785

    Article  CAS  PubMed  Google Scholar 

  55. Simms BA, Zamponi GW (2014) Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 82(1):24–45

    Article  CAS  PubMed  Google Scholar 

  56. Smedlund KB, Birnbaumer L, Vazquez G (2015) Increased size and cellularity of advanced atherosclerotic lesions in mice with endothelial overexpression of the human TRPC3 channel. Proc Natl Acad Sci U S A 112(17):E2201–E2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Smith AM, Dragunow M (2014) The human side of microglia. Trends Neurosci 37(3):125–135

    Article  CAS  PubMed  Google Scholar 

  58. Tano JY, Smedlund K, Lee R, Abramowitz J, Birnbaumer L, Vazquez G (2011) Impairment of survival signaling and efferocytosis in TRPC3-deficient macrophages. Biochem Biophys Res Commun 410(3):643–647

    Article  CAS  PubMed  Google Scholar 

  59. Thoenen H (1995) Neurotrophins and neuronal plasticity. Science 270(5236):593–598

    Article  CAS  PubMed  Google Scholar 

  60. van Rossum DB, Patterson RL, Sharma S, Barrow RK, Kornberg M, Gill DL, Snyder SH (2005) Phospholipase Cgamma1 controls surface expression of TRPC3 through an intermolecular PH domain. Nature 434(7029):99–104

    Article  PubMed  Google Scholar 

  61. Viswanath B, Jose SP, Squassina A, Thirthalli J, Purushottam M, Mukherjee O, Vladimirov V, Patrinos GP, Del Zompo M, Jain S (2015) Cellular models to study bipolar disorder: a systematic review. J Affect Disord 184:36–50

    Article  PubMed  Google Scholar 

  62. Wake H, Moorhouse AJ, Miyamoto A, Nabekura J (2013) Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36(4):209–217

    Article  CAS  PubMed  Google Scholar 

  63. Wang J, Doré S (2007) Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab 27:894–908

    Article  CAS  PubMed  Google Scholar 

  64. Weber EW, Han F, Tauseef M, Birnbaumer L, Mehta D, Muller WA (2015) TRPC6 is the endothelial calcium channel that regulates leukocyte transendothelial migration during the inflammatory response. J Exp Med 212(11):1883–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wohleb ES, McKim DB, Sheridan JF, Godbout JP (2015) Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front Neurosci 8:447

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yan E, Li B, Gu L, Hertz L, Peng L (2013) Mechanisms for L-channel-mediated increase in [Ca(2+)]i and its reduction by anti-bipolar drugs in cultured astrocytes combined with its mRNA expression in freshly isolated cells support the importance of astrocytic L-channels. Cell Calcium 54(5):335–342

    Article  CAS  PubMed  Google Scholar 

  67. Yao X, Garland CJ (2005) Recent developments in vascular endothelial cell transient receptor potential channels. Circ Res 97(9):853–863

    Article  CAS  PubMed  Google Scholar 

  68. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2(11):596–607

    Article  CAS  PubMed  Google Scholar 

  69. Zhang J, Geula C, Lu C, Koziel H, Hatcher LM, Roisen FJ (2003) Neurotrophins regulate proliferation and survival of two microglial cell lines in vitro. Exp Neurol 183:469–481

    Article  CAS  PubMed  Google Scholar 

  70. Zhang J, Mao X, Zhou T, Cheng X, Lin Y (2014) IL-17A contributes to brain ischemia reperfusion injury through calpain-TRPC6 pathway in mice. Neuroscience 274:419–428

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshito Mizoguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mizoguchi, Y., Monji, A. (2017). TRPC Channels and Brain Inflammation. In: Wang, Y. (eds) Transient Receptor Potential Canonical Channels and Brain Diseases. Advances in Experimental Medicine and Biology, vol 976. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1088-4_10

Download citation

Publish with us

Policies and ethics