Skip to main content

Liver Antioxidant Enzyme Activities Increase After Taurine in Ovariectomized Rats

  • Conference paper
Taurine 10

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 975))

Abstract

The present study was performed to know the effects of taurine on the lipid level of plasma and liver, lipid peroxidation and antioxidative enzyme activities of liver tissue in ovariectomized (OVX) rats fed cholesterol. Twenty-four female SD rats (200 ± 5 g) were grouped; sham and ovariectomy groups, which were each randomly subgrouped; fed control and control supplemented with taurine (20 g/kg diet). The serum total cholesterol, TG (triglyceride), LDL-cholesterol, athrogenic index, and HDL-cholesterol of taurine diet group were not statistically different. Also the levels of liver total cholesterol, triglyceride were not considerably different in different diets. The lipid peroxidation of malondialdehyde concentration was considerably lower in taurine-feeding group than control-feeding group in ovariectomy group. The superoxide dismutase activity in liver tissue was significantly higher in rats fed taurine than in rats fed control diet in OVX rats. GSH-Px (glutathione peroxidase) activity was statistically greater at the rats fed taurine diets compared to rats fed control diet in ovariectomy group. Activity of catalase was higher in taurine group than in control group in ovariectomy group, but it was not significantly different. In conclusion, taurine supplementation was beneficial on antioxidative enzyme activities of liver tissue in ovariectomized rats fed cholesterol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAT:

Catalase

GSH-Px:

Gluthatione peroxidase

MDA:

Malondialdehyde

OVX:

Ovariectomized

SHAM:

Sham operated

SOD:

Superoxide dismutase

References

  • Aebi H (1974) Catalase. In: Bergmeyer HU (ed) Method of enzymatic analysis, 2nd edn. Academic Press, New York, pp 673–684

    Chapter  Google Scholar 

  • Askwith T, Zeng W, Eggo MC, Stevens MJ (2012) Taurine reduces nitrosative stress and nitric oxide synthase expression in high glucose-exposed human Schwann cells. Exp Neurol 233:154–162

    Article  CAS  PubMed  Google Scholar 

  • Barrett-Connor E (2013) Menopause, atherosclerosis, and coronary artery disease. Curr Opin Pharmacol 13:186–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouckenooghe T, Remacle C, Reusens B (2006) Is taurine a functional nutrient? Curr Opin Clin Nutr Metab Care 9:728–733

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Yang L, He HJ, Xu T, Liu HB, Wu Q, Ma Y, Liu QH, Nie MH (2014) Antioxidant capacity responsible for a hypocholesterolemia is independent of dietary cholesterol in adult rats fed rice protein. Gene 533:57–66

    Article  CAS  PubMed  Google Scholar 

  • Choi MJ, Kim JH, Chang KJ (2006) The effect of dietary taurine supplementation on plasma, liver lipid concentrations and free amino acid concentrations in rats fed a high-cholesterol diet. Adv Exp Med Biol 583:235–242

    Article  CAS  PubMed  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  CAS  PubMed  Google Scholar 

  • Criqui MH, Suarez L, Barrett-Connor E, McPhillips J, Wingard DL, Garland C (1988) Postmenopausal estrogen use and mortality. Results from a prospective study in a defined, homogeneous community. Am J Epidemiol 128:606–614

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Wang W, Yu P, Xi Z, Xu L, Li X, He N (2013) Comparison of taurine, GABA, Glu, and Asp as scavengers of malondialdehyde in vitro and in vivo. Nanoscale Res Lett 8:190–198

    Article  PubMed  PubMed Central  Google Scholar 

  • Dodge JA, Olasebrook AL, Magee DE, Phillips DL, Sato M, Short LL, Bryant HU (1996) Environmental estrogens: effects on cholesterol lowering and bone in the ovariectomized rat. J Steroid Biochem Mol Biol 59:155–161

    Article  CAS  PubMed  Google Scholar 

  • Friedwald WT, Levy RI, Fredricson DS (1972) Estimation of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    Google Scholar 

  • Goudev A, Kyurkchiev S, Gergova V, Karshelova E, Georgiev D, Atar D, Kehayov I, Nachev C (2000) Reduced concentrations of soluble adhesion molecules after antioxidant supplementation in postmenopausal women with high cardiovascular risk profiles—a randomized double-blind study. Cardiology 94:227–232

    Article  CAS  PubMed  Google Scholar 

  • Hansel B, Nicolle C, Lalanne F, Tondu F, Lassel T, Donazzolo Y, Ferrières J, Krempf M, Schlienger JL, Verges B, Chapman MJ, Bruckert E (2007) Effect of low-fat, fermented milk enriched with plant sterols on serum lipid profile and oxidative stress in moderate hypercholesterolemia. Am J Clin Nutr 86:790–796

    CAS  PubMed  Google Scholar 

  • Ito T, Schaffer S, Azuma J (2014) The effect of taurine on chronic heart failure: actions of taurine against catecholamine and angiotensin II. Amino Acids 46:111–119

    Article  CAS  PubMed  Google Scholar 

  • Jang JS, Piao S, Cha YN, Kim C (2009) Taurine chloramine activates Nrf2, increases HO-1 expression and protects cells from death caused by hydrogen peroxide. J Clin Biochem Nutr 45:37–43

    Article  CAS  Google Scholar 

  • Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42:2223–2232

    Article  CAS  PubMed  Google Scholar 

  • Kalu DN, Arjmandi BH, Liu CC, Salih MA, Birnbaum RS (1994) Effects of ovariectomy and estrogen on the serum levels of insulin-like growth factor-I and insulin-like growth factor binding protein-3. Bone Miner 25:135–148

    Article  CAS  PubMed  Google Scholar 

  • Katan MB, Vroomen LH, Hermus IL (1982) Reduction of casein-induced hypercholesterolemia and atherosclerosis in rabbits and rats by dietary glycine, arginine and alanine. Atherosclerosis 43:381–391

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki M, Funabiki R, Yagasaki K (1998) Effects of dietary methionine and cystine on lipid metabolism in hepatoma-bearing rats with hyperlipidemia. Lipids 33:905–911

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Kim AK (2013) Taurine enhances anticancer activity of cisplatin in human cervical cancer cells. Adv Exp Med Biol 776:189–198

    Article  CAS  PubMed  Google Scholar 

  • Kishida T, Akazawa T, Ebihara K (2001) Influence of age and ovariectomy on the hypocholesterolemic effects of dietary taurine in rats fed a cholesterol-free diet. Nutr Res 21:1025–1033

    Article  CAS  PubMed  Google Scholar 

  • Lambert IH (2004) Regulation of the cellular content of the organic osmolyte taurine in mammalian cells. Neurochem Res 29:27–63

    Article  CAS  PubMed  Google Scholar 

  • Lundeen SG, Carver JM, McKean ML, Winneker RC (1997) Characterization of the ovariectomized rat model for the evaluation of estrogen effects on plasma cholesterol levels. Endocrinology 138:1552–1558

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Fan AL, Randall RG (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Maia AR, Batista TM, Victorio JA, Clerici SP, Delbin MA, Carneiro EM, Davel AP (2014) Taurine supplementation reduces blood pressure and prevents endothelial dysfunction and oxidative stress in post-weaning protein-restricted rats. PLoS One 29(9):e105851

    Article  Google Scholar 

  • Martin JP, Dailey M, Sugarman E (1987) Negative and positive assays of superoxide dismutase based on hematoxylin autoxidation. Arch Biochem Biophys 255:329–336

    Article  CAS  PubMed  Google Scholar 

  • Nakaya Y, Minami A, Harada N, Sakamoto S, Niwa Y, Ohnaka M (2000) Taurine improves insulin sensitivity in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous type 2 diabetes. Am J Clin Nutr 71:54–58

    CAS  PubMed  Google Scholar 

  • National Research Council (US) Institute for Laboratory Animal Research (1996) Guide for the care and use of laboratory animals. National Academies Press, Washington, DC

    Google Scholar 

  • Nozaki M, Hashimoto K, Sumii Y, Ogata R, Yuuki H, Yokoyama M, Imura M, Sano M, Nakano H (1993) Changes in bone and lipid metabolisms following oophorectomy and effect of estrogen replacement therapy. Acta Obst Gynaec Jpn 45:38–44

    CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Oliveira MWS, Minotto JB, de Oliveira MR (2010) Scavenging and antioxidant potential of physiological taurine concetrations against different reactive oxygen/nitrogen species. Pharmacol Rep 62:185–193

    Article  CAS  PubMed  Google Scholar 

  • Ozden S, Catalgol B, Gezginci-Oktayoglu S, Karatug A, Bolkent S, Alpertunga B (2013) Acute effects of methiocarb on oxidative damage and the protective effects of vitamin E and taurine in the liver and kidney of Wistar rats. Toxicol Ind Health 29:60–71

    Article  CAS  PubMed  Google Scholar 

  • Paglia DE, Valentine WN (1977) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    Google Scholar 

  • Schaffer SW, Azuma J, Mozaffari M (2009) Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 87:91–99

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama K, Mizuno M, Muramatsu K (1986) Effect of individual amino acids on plasma cholesterol level in rats fed a high cholesterol diet. J Nutr Sci Vitaminol 32:623–633

    Article  CAS  PubMed  Google Scholar 

  • Ueki I, Stipanuk MH (2009) 3T3-L1 adipocytes and rat adipose tissue have a high capacity for taurine synthesis by the cysteine dioxygenase/cysteinesulfinate decarboxylase and cysteamine dioxygenase pathways. J Nutr 139:207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokogoshi H, Mochizuki H, Nanami K, Hida Y, Miyachi F, Oda H (1999) Dietary taurine enhances cholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed a high-cholesterol diet. J Nutr 129:1705–1712

    CAS  PubMed  Google Scholar 

  • Zouboulis-Vafiadis I, Dumont M, Erlinger S (1982) Conjugation is rate limiting in hepatic transport of ursodeoxycholate in the rat. Am J Physiol 243:G208–G213

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Dong-A Pharmaceutical Co. donated taurine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi-Ja Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this paper

Cite this paper

Kang, YJ., Choi, MJ. (2017). Liver Antioxidant Enzyme Activities Increase After Taurine in Ovariectomized Rats. In: Lee, DH., Schaffer, S.W., Park, E., Kim, H.W. (eds) Taurine 10. Advances in Experimental Medicine and Biology, vol 975. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1079-2_85

Download citation

Publish with us

Policies and ethics