Skip to main content

Putative Role of Taurine as Neurotransmitter During Perinatal Cortical Development

  • Conference paper
Taurine 10

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 975))

Abstract

Neurotransmitters and neuronal activity affect neurodevelopmental events like neurogenesis, neuronal migration, apoptosis and differentiation. Beside glutamate and gamma-amino butyric acid, the aminosulfonic acid taurine has been considered as possible neurotransmitter that influences early neuronal development. In this article I review recent studies of our group which demonstrate that taurine can affect a variety of identified neuronal populations in the immature neocortex and directly modulates neuronal activity. These experiments revealed that taurine evoke dose-dependent membrane responses in a variety of neocortical neuron populations, including Cajal-Retzius cells, subplate neurons and GABAergic interneurons. Taurine responses persist in the presence of GABA(A) receptor antagonists and are reduced by the addition of strychnine, suggesting that glycine receptors are involved in taurine-mediated membrane responses. Gramicidin-perforated patch-clamp and cell-attached recordings demonstrated that taurine evokes depolarizing and mainly excitatory membrane responses, in accordance with the high intracellular Cl− concentration in immature neurons. In addition, taurine increases the frequency of postsynaptic GABAergic currents (PSCs) in a considerable fraction of immature pyramidal neurons, indicating a specific activation of presynaptic GABAergic networks projecting toward and exciting pyramidal neurons. In summary, these results suggest that taurine may be critically involved in the regulation of network excitability in the immature neocortex and hippocampus via interactions with glycine receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACSF:

Artificial cerebrospinal fluid

CNS:

Central nervous system

CRc:

Cajal-Retzius cells

GABA:

γ Amino butyric acid

GES:

Guanidinoethanesulfonic acid

GFP:

Green fluorescent protein

PSC:

Postsynaptic current

SPn:

Subplate neurons

References

  • Achilles K, Okabe A, Ikeda M, Shimizu-Okabe C, Yamada J, Fukuda A, Luhmann HJ, Kilb W (2007) Kinetic properties of Cl uptake mediated by Na+-dependent K+-2Cl cotransport in immature rat neocortical neurons. J Neurosci 27:8616–8627

    Article  CAS  PubMed  Google Scholar 

  • Albrecht J, Schousboe A (2005) Taurine interaction with neurotransmitter receptors in the CNS: an update. Neurochem Res 30:1615–1621

    Article  CAS  PubMed  Google Scholar 

  • Behar TN, Smith SV, Kennedy RT, McKenzie JM, Maric I, Barker AL (2001) GABAB receptors mediate motility signals for migrating embryonic cortical cells. Cereb Cortex 11:744–753

    Article  CAS  PubMed  Google Scholar 

  • Benitez-Diaz P, Miranda-Contreras L, Mendoza-Briceno RV, Pena-Contreras Z, Palacios-Pru E (2003) Prenatal and postnatal contents of amino acid neurotransmitters in mouse parietal cortex. Dev Neurosci 25:366–374

    Article  CAS  PubMed  Google Scholar 

  • Blanquie O, Liebmann L, Hubner CA, Luhmann HJ, Sinning A (2016) NKCC1-mediated GABAergic signaling promotes postnatal cell death in neocortical Cajal-Retzius cells. Cerebral Cortex. doi:10.1093/cercor/bhw004

    Google Scholar 

  • Chen RQ, Okabe A, Sun HY, Sharopov S, Hanganu-Opatz IL, Kolbaev SN, Fukuda A, Luhmann HJ, Kilb W (2014) Activation of glycine receptors modulates spontaneous epileptiform activity in the immature rat hippocampus. J Physiol 592:2153–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Idrissi A (2008a) Taurine improves learning and retention in aged mice. Neurosci Lett 436:19–22

    Article  CAS  PubMed  Google Scholar 

  • El Idrissi A (2008b) Taurine increases mitochondrial buffering of calcium: role in neuroprotection. Amino Acids 34:321–328

    Article  CAS  PubMed  Google Scholar 

  • El Idrissi A, L'Amoreaux WJ (2008) Selective resistance of taurine-fed mice to isoniazide-potentiated seizures: in vivo functional test for the activity of glutamic acid decarboxylase. Neuroscience 156:693–699

    Article  CAS  PubMed  Google Scholar 

  • Flint AC, Liu XL, Kriegstein AR (1998) Nonsynaptic glycine receptor activation during early neocortical development. Neuron 20:43–53

    Article  CAS  PubMed  Google Scholar 

  • Furukawa T, Yamada J, Akita T, Matsushima Y, Yanagawa Y, Fukuda A (2014) Roles of taurine-mediated tonic GABA(A) receptor activation in the radial migration of neurons in the fetal mouse cerebral cortex. Front Cell Neurosci 8:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadley SH, Amin J (2007) Rat alpha(6)beta(2)delta GABA(A) receptors exhibit two distinct and separable agonist affinities. J Physiol (Lond) 581:1001–1018

    Google Scholar 

  • Hanganu-Opatz IL (2010) Between molecules and experience: role of early patterns of coordinated activity for the development of cortical maps and sensory abilities. Brain Res Rev 64:160–176

    Article  PubMed  Google Scholar 

  • Haydar TF, Wang F, Schwartz ML, Rakic P (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci 20:5764–5774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Benitez R, Pasantes-Morales H, Saldana IT, Ramos-Mandujano G (2010) Taurine stimulates proliferation of mice embryonic cultured neural progenitor cells. J Neurosci Res 88:1673–1681

    CAS  PubMed  Google Scholar 

  • Huxtable RJ (1989) Taurine in the central nervous-system and the mammalian actions of taurine. Prog Neurobiol 32:471–533

    Article  CAS  PubMed  Google Scholar 

  • Jammoul F, Wang QP, Nabbout R, Coriat C, Duboc A, Simonutti M, Dubus E, Craft CM, Ye W, Collins SD, Dulac O, Chiron C, Sahel JA, Picaud S (2009) Taurine deficiency is a cause of vigabatrin-induced retinal phototoxicity. Ann Neurol 65:98–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamisaki Y, Wada K, Nakamoto K, Itoh T (1996) Release of taurine and its effects on release of neurotransmitter amino acids in rat cerebral cortex. Adv Exp Med Biol 403:445–454

    Article  CAS  PubMed  Google Scholar 

  • Kanold PO, Luhmann HJ (2010) The subplate and early cortical circuits. Annu Rev Neurosci 33:23–48

    Article  CAS  PubMed  Google Scholar 

  • Kilb W, Ikeda M, Uchida K, Okabe A, Fukuda A, Luhmann HJ (2002) Depolarizing glycine responses in Cajal-Retzius cells of neonatal rat cerebral cortex. Neuroscience 112:299–307

    Article  CAS  PubMed  Google Scholar 

  • Kilb W, Hanganu IL, Okabe A, Sava BA, Shimizu-Okabe C, Fukuda A, Luhmann HJ (2008) Glycine receptors mediate excitation of subplate neurons in neonatal rat cerebral cortex. J Neurophysiol 100:698–707

    Article  CAS  PubMed  Google Scholar 

  • Kirischuk S, Luhmann HJ, Kilb W (2014) Cajal-Retzius cells: update on structural and functional properties of these mystic neurons that bridged the 20th century. Neuroscience 275:33–46

    Article  CAS  PubMed  Google Scholar 

  • Kletke O, Gisselmann G, May A, Hatt H, Sergeeva OA (2013) Partial agonism of taurine at gamma-containing native and recombinant GABA(A) receptors. PLoS One 8:e61733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert IH (2004) Regulation of the cellular content of the organic osmolyte taurine in mammalian cells. Neurochem Res 29:27–63

    Article  CAS  PubMed  Google Scholar 

  • Luhmann HJ, Reiprich RA, Hanganu I, Kilb W (2000) Cellular physiology of the neonatal rat cerebral cortex: intrinsic membrane properties, sodium and calcium currents. J Neurosci Res 62:574–584

    Article  CAS  PubMed  Google Scholar 

  • Luhmann HJ, Fukuda A, Kilb W (2015) Control of cortical neuronal migration by glutamate and GABA. Front Cell Neurosci 9:1–15

    Article  Google Scholar 

  • Luhmann HJ, Sinning A, Yang JW, Reyes-Puerta V, Stuttgen MC, Kirischuk S, Kilb W (2016) Spontaneous neuronal activity in developing neocortical networks: from single cells to large-scale interactions. Front Neural Circuits 10:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcinkiewicz J, Kontny E (2014) Taurine and inflammatory diseases. Amino Acids 46:7–20

    Article  CAS  PubMed  Google Scholar 

  • Meier J, Akyeli J, Kirischuk S, Grantyn R (2003) GABA(A) receptor activity and PKC control inhibitory synaptogenesis in CNS tissue slices. Mol Cell Neurosci 23:600–613

    Article  CAS  PubMed  Google Scholar 

  • Molchanova S, Oja SS, Saransaari P (2004) Characteristics of basal taurine release in the rat striatum measured by microdialysis. Amino Acids 27:261–268

    Article  CAS  PubMed  Google Scholar 

  • Oja SS, Saransaari P (1995) Chloride ions, potassium stimulation and release of endogenous taurine from cerebral cortical slices from 3 day old and 3 month old mice. Neurochem Int 27:313–318

    Article  CAS  PubMed  Google Scholar 

  • Oja SS, Saransaari P (2013) Taurine and epilepsy. Epilepsy Res 104:187–194

    Article  CAS  PubMed  Google Scholar 

  • Oja SS, Saransaari P (2015) Open questions concerning taurine with emphasis on the brain. Adv Exp Med Biol 803:409–413

    Article  PubMed  Google Scholar 

  • Okabe A, Kilb W, Shimizu-Okabe C, Hanganu IL, Fukuda A, Luhmann HJ (2004) Homogenous glycine receptor expression in cortical plate neurons and Cajal-Retzius cells of neonatal rat cerebral cortex. Neuroscience 123:715–724

    Google Scholar 

  • Owens DF, Kriegstein AR (2002) Developmental neurotransmitters? Neuron 36:989–991

    Article  CAS  PubMed  Google Scholar 

  • Palackal T, Moretz R, Wisniewski H, Sturman J (1986) Abnormal visual cortex development in the kitten associated with maternal dietary taurine deprivation. J Neurosci Res 15:223–239

    Article  CAS  PubMed  Google Scholar 

  • Pellicer F, Lopez-Avila A, Coffeen U, Ortega-Legaspi JM, del Angel R (2007) Taurine in the anterior cingulate cortex diminishes neuropathic nociception: a possible interaction with the glycine(A) receptor. Eur J Pain 11:444–451

    Article  CAS  PubMed  Google Scholar 

  • Qian TZ, Chen RQ, Nakamura M, Furukawa T, Kumada T, Akita T, Kilb W, Luhmann HJ, Nakahara D, Fukuda A (2014) Activity-dependent endogenous taurine release facilitates excitatory neurotransmission in the neocortical marginal zone of neonatal rats. Front Cell Neurosci 8:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Rheims S, Minlebaev M, Ivanov A, Represa A, Khazipov R, Holmes GL, Ben-Ari Y, Zilberter Y (2008) Excitatory GABA in rodent developing neocortex in vitro. J Neurophysiol 100:609–619

    Article  PubMed  Google Scholar 

  • Sava BA, Chen RQ, Sun HY, Luhmann HJ, Kilb W (2014) Taurine activates GAB(A)ergic networks in the neocortex of immature mice. Front Cell Neurosci 8:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmieden V, Kuhse J, Betz H (1992) Agonist pharmacology of neonatal and adult glycine receptor alpha subunits: identification of amino acid residues involved in taurine activation. EMBO J 11:2025–2032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sturman JA, Moretz RC, French JH, Wisniewski HM (1985) Postnatal taurine deficiency in the kitten results in a persistence of the cerebellar external granule cell layer: correction by taurine feeding. J Neurosci Res 13:521–528

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Suzuki T, Wada T, Saigo K, Watanabe K (2002) Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J 21:6581–6589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467:60–79

    Article  CAS  PubMed  Google Scholar 

  • Taranukhin AG, Taranukhina EY, Saransaari P, Djatchkova IM, Pelto-Huikko M, Oja SS (2008) Taurine reduces caspase-8 and caspase-9 expression induced by ischemia in the mouse hypothalamic nuclei. Amino Acids 34:169–174

    Article  CAS  PubMed  Google Scholar 

  • Yamada J, Okabe A, Toyoda H, Kilb W, Luhmann HJ, Fukuda A (2004) Cl- uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1. J Physiol 557:829–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. H.J. Luhmann and Prof. A. Fukuda for their constant support. This work was supported by DFG grant KI-835 to WK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Kilb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this paper

Cite this paper

Kilb, W. (2017). Putative Role of Taurine as Neurotransmitter During Perinatal Cortical Development. In: Lee, DH., Schaffer, S.W., Park, E., Kim, H.W. (eds) Taurine 10. Advances in Experimental Medicine and Biology, vol 975. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1079-2_25

Download citation

Publish with us

Policies and ethics