Skip to main content

Comparative Protein Structure Modelling

  • Chapter
  • First Online:
From Protein Structure to Function with Bioinformatics

Abstract

A prerequisite to understand cell functioning on the system level is the knowledge of three-dimensional protein structures that mediate biochemical interactions. The explosion in the number of available gene sequences set the stage for the next step in genome scale projects, to obtain three dimensional structures for each protein. To achieve this ambitious goal, the costly and slow structure determination experiments are boosted with theoretical approaches. The current state and recent advances in structure modelling approaches are reviewed here, with special emphasis on comparative structure modelling techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abagyan R, Totrov M (1994) Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol 235(3):983–1002

    Article  CAS  PubMed  Google Scholar 

  • Abboud N, De Jesus M, Nakouzi A, Cordero RJ, Pujato M, Fiser A, Rivera J, Casadevall A (2009) Identification of linear epitopes in Bacillus anthracis protective antigen bound by neutralizing antibodies. J Biol Chem 284(37):25077–25086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adhikari AN, Peng J, Wilde M, Xu J, Freed KF, Sosnick TR (2012) Modeling large regions in proteins: applications to loops, termini, and folding. Protein Sci 21(1):107–121

    Article  CAS  PubMed  Google Scholar 

  • Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT, Rout MP, Sali A (2007a) Determining the architectures of macromolecular assemblies. Nature 450(7170):683–694

    Article  CAS  PubMed  Google Scholar 

  • Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT, Sali A, Rout MP (2007b) The molecular architecture of the nuclear pore complex. Nature 450(7170):695–701

    Article  CAS  PubMed  Google Scholar 

  • Alber F, Forster F, Korkin D, Topf M, Sali A (2008) Integrating diverse data for structure determination of macromolecular assemblies. Annu Rev Biochem 77:443–477

    Article  CAS  PubMed  Google Scholar 

  • Al-Lazikani B, Sheinerman FB, Honig B (2001) Combining multiple structure and sequence alignments to improve sequence detection and alignment: application to the SH2 domains of Janus kinases. Proc Natl Acad Sci U S A 98(26):14796–14801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJ, Chothia C, Murzin AG (2008) Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res 36 (Database issue):D419–D425

    Google Scholar 

  • Apostolico A, Giancarlo R (1998) Sequence alignment in molecular biology. J Comput Biol: J Comput Mol Cell Biol 5(2):173–196

    Article  CAS  Google Scholar 

  • Apweiler R, Bairoch A, Wu CH (2004) Protein sequence databases. Curr Opin Chem Biol 8(1):76–80

    Article  CAS  PubMed  Google Scholar 

  • Aszodi A, Taylor WR (1994) Secondary structure formation in model polypeptide chains. Protein Eng 7(5):633–644

    Article  CAS  PubMed  Google Scholar 

  • Aszodi A, Taylor WR (1996) Homology modelling by distance geometry. Fold Des 1(5):325–334

    Article  CAS  PubMed  Google Scholar 

  • Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294(5540):93–96

    Article  CAS  PubMed  Google Scholar 

  • Barrientos LG, Campos-Olivas R, Louis JM, Fiser A, Sali A, Gronenborn AM (2001) 1H, 13C, 15N resonance assignments and fold verification of a circular permuted variant of the potent HIV-inactivating protein cyanovirin-N. J Biomol NMR 19(3):289–290

    Article  CAS  PubMed  Google Scholar 

  • Battey JN, Kopp J, Bordoli L, Read RJ, Clarke ND, Schwede T (2007) Automated server predictions in CASP7. Proteins 69(Suppl 8):68–82

    Article  CAS  PubMed  Google Scholar 

  • Becker OM, Dhanoa DS, Marantz Y, Chen D, Shacham S, Cheruku S, Heifetz A, Mohanty P, Fichman M, Sharadendu A, Nudelman R, Kauffman M, Noiman S (2006) An integrated in silico 3D model-driven discovery of a novel, potent, and selective amidosulfonamide 5-HT1A agonist (PRX-00023) for the treatment of anxiety and depression. J Med Chem 49(11):3116–3135

    Article  CAS  PubMed  Google Scholar 

  • Berjanskii M, Tang P, Liang J, Cruz JA, Zhou J, Zhou Y, Bassett E, MacDonell C, Lu P, Lin G, Wishart DS (2009) GeNMR: a web server for rapid NMR-based protein structure determination. Nucleic Acids Res 37 (Web Server issue):W670–W677

    Google Scholar 

  • Berman H, Henrick K, Nakamura H, Markley JL (2007) The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res 35 (Database issue):D301–D303

    Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42 (Web Server issue):W252–W258

    Google Scholar 

  • Blake JD, Cohen FE (2001) Pairwise sequence alignment below the twilight zone. J Mol Biol 307(2):721–735

    Article  CAS  PubMed  Google Scholar 

  • Blundell TL, Sibanda BL, Sternberg MJ, Thornton JM (1987) Knowledge-based prediction of protein structures and the design of novel molecules. Nature 326(6111):347–352

    Article  CAS  PubMed  Google Scholar 

  • Boissel JP, Lee WR, Presnell SR, Cohen FE, Bunn HF (1993) Erythropoietin structure-function relationships. Mutant proteins that test a model of tertiary structure. J Biol Chem 268(21):15983–15993

    CAS  PubMed  Google Scholar 

  • Bonneau R, Baker D (2001) Ab initio protein structure prediction: progress and prospects. Annu Rev Biophys Biomol Struct 30:173–189

    Article  CAS  PubMed  Google Scholar 

  • Bonneau R, Strauss CE, Rohl CA, Chivian D, Bradley P, Malmstrom L, Robertson T, Baker D (2002) De novo prediction of three-dimensional structures for major protein families. J Mol Biol 322(1):65–78

    Article  CAS  PubMed  Google Scholar 

  • Boratyn GM, Schaffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL (2012) Domain enhanced lookup time accelerated BLAST. Biol Direct 7:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers PM, Strauss CE, Baker D (2000) De novo protein structure determination using sparse NMR data. J Biomol NMR 18(4):311–318

    Article  CAS  PubMed  Google Scholar 

  • Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253(5016):164–170

    Article  CAS  PubMed  Google Scholar 

  • Braun W, Go N (1985) Calculation of protein conformations by proton-proton distance constraints. A new efficient algorithm. J Mol Biol 186(3):611–626

    Article  CAS  PubMed  Google Scholar 

  • Brenner SE, Chothia C, Hubbard TJ (1998) Assessing sequence comparison methods with reliable structurally identified distant evolutionary relationships. Proc Natl Acad Sci U S A 95(11):6073–6078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browne WJ, North AC, Phillips DC, Brew K, Vanaman TC, Hill RL (1969) A possible three-dimensional structure of bovine alpha-lactalbumin based on that of hen’s egg-white lysozyme. J Mol Biol 42(1):65–86

    Article  CAS  PubMed  Google Scholar 

  • Bruccoleri RE, Karplus M (1987) Prediction of the folding of short polypeptide segments by uniform conformational sampling. Biopolymers 26(1):137–168

    Article  CAS  PubMed  Google Scholar 

  • Bruccoleri RE, Karplus M (1990) Conformational sampling using high-temperature molecular dynamics. Biopolymers 29(14):1847–1862

    Article  CAS  PubMed  Google Scholar 

  • Bujnicki JM, Elofsson A, Fischer D, Rychlewski L (2001) LiveBench-1: continuous benchmarking of protein structure prediction servers. Protein Sci 10(2):352–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burley SK, Joachimiak A, Montelione GT, Wilson IA (2008) Contributions to the NIH-NIGMS protein structure initiative from the PSI production centers. Structure 16(1):5–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, Rowland AM, Kotts C, Carver ME, Shepard HM (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A 89(10):4285–4289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci U S A 104(23):9615–9620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarty S, Sanchez R (2004) Systematic analysis of added-value in simple comparative models of protein structure. Structure 12(8):1461–1470

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty S, Wang L, Sanchez R (2005) Accuracy of structure-derived properties in simple comparative models of protein structures. Nucleic Acids Res 33(1):244–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chance MR, Bresnick AR, Burley SK, Jiang JS, Lima CD, Sali A, Almo SC, Bonanno JB, Buglino JA, Boulton S, Chen H, Eswar N, He G, Huang R, Ilyin V, McMahan L, Pieper U, Ray S, Vidal M, Wang LK (2002) Structural genomics: a pipeline for providing structures for the biologist. Protein Sci 11(4):723–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinea G, Padron G, Hooft RW, Sander C, Vriend G (1995) The use of position-specific rotamers in model building by homology. Proteins 23(3):415–421

    Article  CAS  PubMed  Google Scholar 

  • Chivian D, Baker D (2006) Homology modeling using parametric alignment ensemble generation with consensus and energy-based model selection. Nucleic Acids Res 34(17):e112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chopra G, Kalisman N, Levitt M (2010) Consistent refinement of submitted models at CASP using a knowledge-based potential. Proteins 78(12):2668–2678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5(4):823–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 196(4):901–917

    Article  CAS  PubMed  Google Scholar 

  • Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ, Air G, Sheriff S, Padlan EA, Davies D, Tulip WR (1989) Conformations of immunoglobulin hypervariable regions. Nature 342(6252):877–883

    Article  CAS  PubMed  Google Scholar 

  • Chothia C, Gough J, Vogel C, Teichmann SA (2003) Evolution of the protein repertoire. Science 300(5626):1701–1703

    Article  CAS  PubMed  Google Scholar 

  • Claessens M, Van Cutsem E, Lasters I, Wodak S (1989) Modelling the polypeptide backbone with ‘spare parts’ from known protein structures. Protein Eng 2(5):335–345

    Article  CAS  PubMed  Google Scholar 

  • Clore GM, Brunger AT, Karplus M, Gronenborn AM (1986) Application of molecular dynamics with interproton distance restraints to three-dimensional protein structure determination. A model study of crambin. J Mol Biol 191(3):523–551

    Article  CAS  PubMed  Google Scholar 

  • Clore GM, Robien MA, Gronenborn AM (1993) Exploring the limits of precision and accuracy of protein structures determined by nuclear magnetic resonance spectroscopy. J Mol Biol 231(1):82–102

    Article  CAS  PubMed  Google Scholar 

  • Cohen FE, Kuntz ID, Fasman GD (1989) Tertiary structure prediction. In: Fasman GD (ed) Prediction of protein structure and the principles of protein conformations. Plenum, New York, pp 647–705

    Chapter  Google Scholar 

  • Collura V, Higo J, Garnier J (1993) Modeling of protein loops by simulated annealing. Protein Sci 2(9):1502–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras-Moreira B, Fitzjohn PW, Offman M, Smith GR, Bates PA (2003) Novel use of a genetic algorithm for protein structure prediction: searching template and sequence alignment space. Proteins 53(Suppl 6):424–429

    Article  CAS  PubMed  Google Scholar 

  • Cormier C, Steel J, Fiacco M, Park J, Kramer J, LaBaer J (2011) PSI: biology-materials repository: developing a public resource for structural biology plasmids. Biophys J 100(3):52

    Article  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13(3):289–302

    Article  CAS  PubMed  Google Scholar 

  • Crublet E, Kerfah R, Mas G, Noirclerc-Savoye M, Lantez V, Vernet T, Boisbouvier J (2014) A cost-effective protocol for the parallel production of libraries of 13CH3-specifically labeled mutants for NMR studies of high molecular weight proteins. Methods Mol Biol 1091:229–244

    Article  CAS  PubMed  Google Scholar 

  • Cuff AL, Sillitoe I, Lewis T, Clegg AB, Rentzsch R, Furnham N, Pellegrini-Calace M, Jones D, Thornton J, Orengo CA (2011) Extending CATH: increasing coverage of the protein structure universe and linking structure with function. Nucleic Acids Res 39 (Database issue):D420–D426

    Google Scholar 

  • Dalton JA, Jackson RM (2007) An evaluation of automated homology modelling methods at low target template sequence similarity. Bioinformatics 23(15):1901–1908

    Article  CAS  PubMed  Google Scholar 

  • Das B, Meirovitch H (2003) Solvation parameters for predicting the structure of surface loops in proteins: transferability and entropic effects. Proteins 51(3):470–483

    Article  CAS  PubMed  Google Scholar 

  • Das R, Qian B, Raman S, Vernon R, Thompson J, Bradley P, Khare S, Tyka MD, Bhat D, Chivian D, Kim DE, Sheffler WH, Malmstrom L, Wollacott AM, Wang C, Andre I, Baker D (2007) Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Proteins 69(Suppl 8):118–128

    Article  CAS  PubMed  Google Scholar 

  • de Bakker PI, DePristo MA, Burke DF, Blundell TL (2003) Ab initio construction of polypeptide fragments: accuracy of loop decoy discrimination by an all-atom statistical potential and the AMBER force field with the generalized born solvation model. Proteins 51(1):21–40

    Article  PubMed  CAS  Google Scholar 

  • Deane CM, Blundell TL (2001) CODA: a combined algorithm for predicting the structurally variable regions of protein models. Protein Sci 10(3):599–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DePristo MA, de Bakker PI, Lovell SC, Blundell TL (2003) Ab initio construction of polypeptide fragments: efficient generation of accurate, representative ensembles. Proteins 51(1):41–55

    Article  CAS  PubMed  Google Scholar 

  • Dill KA, Chan HS (1997) From Levinthal to pathways to funnels. Nat Struct Biol 4(1):10–19

    Article  CAS  PubMed  Google Scholar 

  • Do CB, Mahabhashyam MS, Brudno M, Batzoglou S (2005) ProbCons: probabilistic consistency-based multiple sequence alignment. Genome Res 15(2):330–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du P, Andrec M, Levy RM (2003) Have we seen all structures corresponding to short protein fragments in the Protein Data Bank? An update. Protein Eng 16(6):407–414

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Batzoglou S (2006) Multiple sequence alignment. Curr Opin Struct Biol 16(3):368–373

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Sjolander K (2003) Simultaneous sequence alignment and tree construction using hidden Markov models. Pac Symp Biocomput 180–191

    Google Scholar 

  • Edgar RC, Sjolander K (2004) COACH: profile-profile alignment of protein families using hidden Markov models. Bioinformatics 20(8):1309–1318

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg D, Luthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

    Article  CAS  PubMed  Google Scholar 

  • Eramian D, Shen MY, Devos D, Melo F, Sali A, Marti-Renom MA (2006) A composite score for predicting errors in protein structure models. Protein Sci 15(7):1653–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espadaler J, Fernandez-Fuentes N, Hermoso A, Querol E, Aviles FX, Sternberg MJ, Oliva B (2004) ArchDB: automated protein loop classification as a tool for structural genomics. Nucleic Acids Res 32 (Database issue):D185

    Google Scholar 

  • Evers A, Gohlke H, Klebe G (2003) Ligand-supported homology modelling of protein binding-sites using knowledge-based potentials. J Mol Biol 334(2):327–345

    Article  CAS  PubMed  Google Scholar 

  • Eyrich VA, Marti-Renom MA, Przybylski D, Madhusudhan MS, Fiser A, Pazos F, Valencia A, Sali A, Rost B (2001) EVA: continuous automatic evaluation of protein structure prediction servers. Bioinformatics 17(12):1242–1243

    Article  CAS  PubMed  Google Scholar 

  • Faber HR, Matthews BW (1990) A mutant T4 lysozyme displays five different crystal conformations. Nature 348(6298):263–266

    Article  CAS  PubMed  Google Scholar 

  • Fajardo JE, Fiser A (2013) Protein structure based prediction of catalytic residues. BMC Bioinform 14:63

    Article  CAS  Google Scholar 

  • Fasnacht M, Zhu J, Honig B (2007) Local quality assessment in homology models using statistical potentials and support vector machines. Protein Sci 16(8):1557–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Fuentes N, Fiser A (2006) Saturating representation of loop conformational fragments in structure databanks. BMC Struct Biol 6:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandez-Fuentes N, Oliva B, Fiser A (2006a) A supersecondary structure library and search algorithm for modeling loops in protein structures. Nucleic Acids Res 34(7):2085–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Fuentes N, Zhai J, Fiser A (2006b) ArchPRED: a template based loop structure prediction server. Nucleic Acids Res 34 (Web Server issue):W173–W176

    Google Scholar 

  • Fernandez-Fuentes N, Madrid-Aliste CJ, Rai BK, Fajardo JE, Fiser A (2007a) M4T: a comparative protein structure modeling server. Nucleic Acids Res 35 (Web Server issue):W363–W368

    Google Scholar 

  • Fernandez-Fuentes N, Rai BK, Madrid-Aliste CJ, Fajardo JE, Fiser A (2007b) Comparative protein structure modeling by combining multiple templates and optimizing sequence-to-structure alignments. Bioinformatics 23(19):2558–2565

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Fuentes N, Dybas JM, Fiser A (2010) Structural characteristics of novel protein folds. PLoS Comput Biol 6 (4):e1000750

    Google Scholar 

  • Fidelis K, Stern PS, Bacon D, Moult J (1994) Comparison of systematic search and database methods for constructing segments of protein structure. Protein Eng 7(8):953–960

    Article  CAS  PubMed  Google Scholar 

  • Fine RM, Wang H, Shenkin PS, Yarmush DL, Levinthal C (1986) Predicting antibody hypervariable loop conformations. II: Minimization and molecular dynamics studies of MCPC603 from many randomly generated loop conformations. Proteins 1(4):342–362

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein AV, Reva BA (1991) A search for the most stable folds of protein chains. Nature 351(6326):497–499

    Article  CAS  PubMed  Google Scholar 

  • Fiser A (2004) Protein structure modeling in the proteomics era. Expert Rev Proteomics 1(1):97–110

    Article  CAS  PubMed  Google Scholar 

  • Fiser A, Sali A (2003a) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491

    Article  CAS  PubMed  Google Scholar 

  • Fiser A, Sali A (2003b) ModLoop: automated modeling of loops in protein structures. Bioinformatics 19(18):2500–2501

    Article  CAS  PubMed  Google Scholar 

  • Fiser A, Vertessy BG (2000) Altered subunit communication in subfamilies of trimeric dUTPases. Biochem Biophys Res Commun 279(2):534–542

    Article  CAS  PubMed  Google Scholar 

  • Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9(9):1753–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiser A, Feig M, Brooks CL III, Sali A (2002) Evolution and physics in comparative protein structure modeling. Acc Chem Res 35(6):413–421

    Article  CAS  PubMed  Google Scholar 

  • Fiser A, Filipe SR, Tomasz A (2003) Cell wall branches, penicillin resistance and the secrets of the MurM protein. Trends Microbiol 11(12):547–553

    Article  CAS  PubMed  Google Scholar 

  • Fogolari F, Tosatto SC (2005) Application of MM/PBSA colony free energy to loop decoy discrimination: toward correlation between energy and root mean square deviation. Protein Sci 14(4):889–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forrest LR, Woolf TB (2003) Discrimination of native loop conformations in membrane proteins: decoy library design and evaluation of effective energy scoring functions. Proteins 52(4):492–509

    Article  CAS  PubMed  Google Scholar 

  • Ginalski K (2006) Comparative modeling for protein structure prediction. Curr Opin Struct Biol 16(2):172–177

    Article  CAS  PubMed  Google Scholar 

  • Ginalski K, Elofsson A, Fischer D, Rychlewski L (2003) 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19(8):1015–1018

    Article  CAS  PubMed  Google Scholar 

  • Gong H, Shen Y, Rose GD (2007) Building native protein conformation from NMR backbone chemical shifts using Monte Carlo fragment assembly. Protein Sci 16(8):1515–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabarek Z (2006) Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 359(3):509–525

    Article  CAS  PubMed  Google Scholar 

  • Grant A, Lee D, Orengo C (2004) Progress towards mapping the universe of protein folds. Genome Biol 5(5):107

    Article  PubMed  PubMed Central  Google Scholar 

  • Graslund S, Nordlund P, Weigelt J, Hallberg BM, Bray J, Gileadi O, Knapp S, Oppermann U, Arrowsmith C, Hui R, Ming J, dhe-Paganon S, Park HW, Savchenko A, Yee A, Edwards A, Vincentelli R, Cambillau C, Kim R, Kim SH, Rao Z, Shi Y, Terwilliger TC, Kim CY, Hung LW, Waldo GS, Peleg Y, Albeck S, Unger T, Dym O, Prilusky J, Sussman JL, Stevens RC, Lesley SA, Wilson IA, Joachimiak A, Collart F, Dementieva I, Donnelly MI, Eschenfeldt WH, Kim Y, Stols L, Wu R, Zhou M, Burley SK, Emtage JS, Sauder JM, Thompson D, Bain K, Luz J, Gheyi T, Zhang F, Atwell S, Almo SC, Bonanno JB, Fiser A, Swaminathan S, Studier FW, Chance MR, Sali A, Acton TB, Xiao R, Zhao L, Ma LC, Hunt JF, Tong L, Cunningham K, Inouye M, Anderson S, Janjua H, Shastry R, Ho CK, Wang D, Wang H, Jiang M, Montelione GT, Stuart DI, Owens RJ, Daenke S, Schutz A, Heinemann U, Yokoyama S, Bussow K, Gunsalus KC (2008) Protein production and purification. Nat Methods 5(2):135–146

    Article  PubMed  Google Scholar 

  • Greene LH, Lewis TE, Addou S, Cuff A, Dallman T, Dibley M, Redfern O, Pearl F, Nambudiry R, Reid A, Sillitoe I, Yeats C, Thornton JM, Orengo CA (2007) The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution. Nucleic Acids Res 35 (Database issue):D291–D297

    Google Scholar 

  • Greer J (1981) Comparative model-building of the mammalian serine proteases. J Mol Biol 153(4):1027–1042

    Article  CAS  PubMed  Google Scholar 

  • Greer J (1990) Comparative modeling methods: application to the family of the mammalian serine proteases. Proteins 7(4):317–334

    Article  CAS  PubMed  Google Scholar 

  • Guenther B, Onrust R, Sali A, O’Donnell M, Kuriyan J (1997) Crystal structure of the Ă«-subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell 91(3):335–345

    Article  CAS  PubMed  Google Scholar 

  • Haas J, Roth S, Arnold K, Kiefer F, Schmidt T, Bordoli L, Schwede T (2013) The protein model portal—a comprehensive resource for protein structure and model information. Database: J Biol Databases Curation 2013:bat031

    Google Scholar 

  • Han R, Leo-Macias A, Zerbino D, Bastolla U, Contreras-Moreira B, Ortiz AR (2008) An efficient conformational sampling method for homology modeling. Proteins 71(1):175–188

    Article  CAS  PubMed  Google Scholar 

  • Han B, Liu Y, Ginzinger SW, Wishart DS (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50(1):43–57

    Google Scholar 

  • Havel TF, Snow ME (1991) A new method for building protein conformations from sequence alignments with homologues of known structure. J Mol Biol 217(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89(22):10915–10919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S (2000) Blocks-based methods for detecting protein homology. Electrophoresis 21(9):1700–1706

    Article  CAS  PubMed  Google Scholar 

  • Hlavin ML, Lemmon V (1991) Molecular structure and functional testing of human L1CAM: an interspecies comparison. Genomics 11(2):416–423

    Article  CAS  PubMed  Google Scholar 

  • Holm L, Sander C (1991) Database algorithm for generating protein backbone and side-chain co-ordinates from a C alpha trace application to model building and detection of co-ordinate errors. J Mol Biol 218(1):183–194

    Article  CAS  PubMed  Google Scholar 

  • Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381(6580):272

    Article  CAS  PubMed  Google Scholar 

  • Hung LH, Samudrala R (2003) Accurate and automated classification of protein secondary structure with PsiCSI. Protein Sci 12(2):288–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illergard K, Ardell DH, Elofsson A (2009) Structure is three to ten times more conserved than sequence—a study of structural response in protein cores. Proteins 77(3):499–508

    Article  CAS  PubMed  Google Scholar 

  • Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction. Proteins 55(2):351–367

    Article  CAS  PubMed  Google Scholar 

  • Jaroszewski L, Rychlewski L, Zhang B, Godzik A (1998) Fold prediction by a hierarchy of sequence, threading, and modeling methods. Protein Sci 7(6):1431–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaroszewski L, Rychlewski L, Li Z, Li W, Godzik A (2005) FFAS03: a server for profile–profile sequence alignments. Nucleic Acids Res 33 (Web Server issue):W284–W288

    Google Scholar 

  • Jennings AJ, Edge CM, Sternberg MJ (2001) An approach to improving multiple alignments of protein sequences using predicted secondary structure. Protein Eng 14(4):227–231

    Article  CAS  PubMed  Google Scholar 

  • John B, Sali A (2003) Comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Res 31(14):3982–3992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John B, Sali A (2004) Detection of homologous proteins by an intermediate sequence search. Protein Sci 13(1):54–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson LN, Lowe ED, Noble ME, Owen DJ (1998) The Eleventh Datta Lecture. The structural basis for substrate recognition and control by protein kinases. FEBS Lett 430(1–2):1–11

    Article  CAS  PubMed  Google Scholar 

  • Jones TA, Thirup S (1986) Using known substructures in protein model building and crystallography. EMBO J 5(4):819–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) A new approach to protein fold recognition. Nature 358(6381):86–89

    Article  CAS  PubMed  Google Scholar 

  • Karchin R, Cline M, Mandel-Gutfreund Y, Karplus K (2003) Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry. Proteins 51(4):504–514

    Article  CAS  PubMed  Google Scholar 

  • Karplus K, Barrett C, Hughey R (1998) Hidden Markov models for detecting remote protein homologies. Bioinformatics 14(10):846–856

    Article  CAS  PubMed  Google Scholar 

  • Karplus K, Katzman S, Shackleford G, Koeva M, Draper J, Barnes B, Soriano M, Hughey R (2005) SAM-T04: what is new in protein-structure prediction for CASP6. Proteins 61(Suppl 7):135–142

    Article  CAS  PubMed  Google Scholar 

  • Khafizov K, Madrid-Aliste C, Almo SC, Fiser A (2014) Trends in structural coverage of the protein universe and the impact of the Protein Structure Initiative (vol 111, pg 3733, 2014). Proc Natl Acad Sci U S A 111(13):5060

    Google Scholar 

  • Kihara D, Skolnick J (2003) The PDB is a covering set of small protein structures. J Mol Biol 334(4):793–802

    Article  CAS  PubMed  Google Scholar 

  • Kiselar JG, Janmey PA, Almo SC, Chance MR (2003) Structural analysis of gelsolin using synchrotron protein footprinting. Mol Cell Proteomics 2(10):1120–1132

    Article  CAS  PubMed  Google Scholar 

  • Koehl P, Delarue M (1995) A self consistent mean field approach to simultaneous gap closure and side-chain positioning in homology modelling. Nat Struct Biol 2(2):163–170

    Article  CAS  PubMed  Google Scholar 

  • Kohlhoff KJ, Robustelli P, Cavalli A, Salvatella X, Vendruscolo M (2009) Fast and accurate predictions of protein NMR chemical shifts from interatomic distances. J Am Chem Soc 131(39):13894–13895

    Article  CAS  PubMed  Google Scholar 

  • Kolinski A, Bujnicki JM (2005) Generalized protein structure prediction based on combination of fold-recognition with de novo folding and evaluation of models. Proteins 61(Suppl 7):84–90

    Article  CAS  PubMed  Google Scholar 

  • Kolinski A, Betancourt MR, Kihara D, Rotkiewicz P, Skolnick J (2001) Generalized comparative modeling (GENECOMP): a combination of sequence comparison, threading, and lattice modeling for protein structure prediction and refinement. Proteins 44(2):133–149

    Article  CAS  PubMed  Google Scholar 

  • Kopp J, Schwede T (2006) The SWISS-MODEL repository: new features and functionalities. Nucleic Acids Res 34 (Database issue):D315–D318

    Google Scholar 

  • Kopp J, Bordoli L, Battey JN, Kiefer F, Schwede T (2007) Assessment of CASP7 predictions for template-based modeling targets. Proteins 69(Suppl 8):38–56

    Article  CAS  PubMed  Google Scholar 

  • Krogh A, Brown M, Mian IS, Sjolander K, Haussler D (1994) Hidden Markov models in computational biology. Applications to protein modeling. J Mol Biol 235(5):1501–1531

    Article  CAS  PubMed  Google Scholar 

  • Kryshtafovych A, Fidelis K, Moult J (2014) CASP10 results compared to those of previous CASP experiments. Proteins 82(Suppl 2):164–174

    Article  CAS  PubMed  Google Scholar 

  • Lange OF, Rossi P, Sgourakis NG, Song YF, Lee HW, Aramini JM, Ertekin A, Xiao R, Acton TB, Montelione GT, Baker D (2012) Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Proc Natl Acad Sci U S A 109(27):10873–10878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskowski RA, Moss DS, Thornton JM (1993) Main-chain bond lengths and bond angles in protein structures. J Mol Biol 231(4):1049–1067

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Lee J, Sasaki TN, Sasai M, Seok C, Lee J (2011) De novo protein structure prediction by dynamic fragment assembly and conformational space annealing. Proteins 79(8):2403–2417

    Article  CAS  PubMed  Google Scholar 

  • Lesk AM (1995) NAD-binding domains of dehydrogenases. Curr Opin Struct Biol 5(6):775–783

    Article  CAS  PubMed  Google Scholar 

  • Lesk AM, Chothia C (1980) How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. J Mol Biol 136(3):225–270

    Article  CAS  PubMed  Google Scholar 

  • Levitt M (1992) Accurate modeling of protein conformation by automatic segment matching. J Mol Biol 226(2):507–533

    Article  CAS  PubMed  Google Scholar 

  • Levitt M (2009) Nature of the protein universe. Proc Natl Acad Sci U S A 106(27):11079–11084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippow SM, Wittrup KD, Tidor B (2007) Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol 25(10):1171–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luthy R, McLachlan AD, Eisenberg D (1991) Secondary structure-based profiles: use of structure-conserving scoring tables in searching protein sequence databases for structural similarities. Proteins 10:229–239

    Article  CAS  PubMed  Google Scholar 

  • Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, Sander C (2011) Protein 3D structure computed from evolutionary sequence variation. PLoS ONE 6(12):e28766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  CAS  PubMed  Google Scholar 

  • Marti-Renom MA, Madhusudhan MS, Fiser A, Rost B, Sali A (2002) Reliability of assessment of protein structure prediction methods. Structure 10(3):435–440

    Article  CAS  PubMed  Google Scholar 

  • Marti-Renom MA, Madhusudhan MS, Sali A (2004) Alignment of protein sequences by their profiles. Protein Sci 13(4):1071–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meiler J (2003) PROSHIFT: protein chemical shift prediction using artificial neural networks. J Biomol NMR 26(1):25–37

    Article  CAS  PubMed  Google Scholar 

  • Melo F, Feytmans E (1997) Novel knowledge-based mean force potential at atomic level. J Mol Biol 267(1):207–222

    Article  CAS  PubMed  Google Scholar 

  • Menon V, Vallat BK, Dybas JM, Fiser A (2013) Modeling proteins using a super-secondary structure library and NMR chemical shift information. Structure 21(6):891–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mezei M (1998) Chameleon sequences in the PDB. Protein Eng 11(6):411–414

    Article  CAS  PubMed  Google Scholar 

  • Michalsky E, Goede A, Preissner R (2003) Loops in proteins (LIP)—a comprehensive loop database for homology modelling. Protein Eng 16(12):979–985

    Article  CAS  PubMed  Google Scholar 

  • Mirjalili V, Noyes K, Feig M (2014) Physics-based protein structure refinement through multiple molecular dynamics trajectories and structure averaging. Proteins 82(Suppl 2):196–207

    Article  CAS  PubMed  Google Scholar 

  • Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, Zecchina R, Onuchic JN, Hwa T, Weigt M (2011) Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc Natl Acad Sci U S A 108(49):E1293–E1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moretti S, Armougom F, Wallace IM, Higgins DG, Jongeneel CV, Notredame C (2007) The M-Coffee web server: a meta-method for computing multiple sequence alignments by combining alternative alignment methods. Nucleic Acids Res 35 (Web Server issue):W645–W648

    Google Scholar 

  • Moult J (2005) A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr Opin Struct Biol 15(3):285–289

    Article  CAS  PubMed  Google Scholar 

  • Moult J, James MN (1986) An algorithm for determining the conformation of polypeptide segments in proteins by systematic search. Proteins 1(2):146–163

    Article  CAS  PubMed  Google Scholar 

  • Nair R, Liu J, Soong TT, Acton TB, Everett JK, Kouranov A, Fiser A, Godzik A, Jaroszewski L, Orengo C, Montelione GT, Rost B (2009) Structural genomics is the largest contributor of novel structural leverage. J Struct Funct Genomics 10(2):181–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norin M, Sundstrom M (2001) Protein models in drug discovery. Curr Opin Drug Discov Devel 4(3):284–290

    CAS  PubMed  Google Scholar 

  • Notredame C (2007) Recent evolutions of multiple sequence alignment algorithms. PLoS Comput Biol 3(8):e123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohlendorf DH (1994) Accuracy of refined protein structures. Comparison of four independently refined models of human interleukin 1 beta. Acta Crystallogr D Biol Crystallogr D50:808–812

    Article  Google Scholar 

  • Oliva B, Bates PA, Querol E, Aviles FX, Sternberg MJ (1997) An automated classification of the structure of protein loops. J Mol Biol 266(4):814–830

    Article  CAS  PubMed  Google Scholar 

  • Orr GA, Rao S, Swindell CS, Kingston DG, Horwitz SB (1998) Photoaffinity labeling approach to map the Taxol-binding site on the microtubule. Methods Enzymol 298:238–252

    Article  CAS  PubMed  Google Scholar 

  • Pearson WR (2000) Flexible sequence similarity searching with the FASTA3 program package. Methods Mol Biol 132:185–219

    CAS  PubMed  Google Scholar 

  • Pei J, Grishin NV (2007) PROMALS: towards accurate multiple sequence alignments of distantly related proteins. Bioinformatics 23(7):802–808

    Article  CAS  PubMed  Google Scholar 

  • Pei J, Kim BH, Grishin NV (2008) PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res 36(7):2295–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng HP, Yang AS (2007) Modeling protein loops with knowledge-based prediction of sequence-structure alignment. Bioinformatics 23(21):2836–2842

    Article  CAS  PubMed  Google Scholar 

  • Petrey D, Honig B (2005) Protein structure prediction: inroads to biology. Mol Cell 20(6):811–819

    Article  CAS  PubMed  Google Scholar 

  • Petrey D, Xiang Z, Tang CL, Xie L, Gimpelev M, Mitros T, Soto CS, Goldsmith-Fischman S, Kernytsky A, Schlessinger A, Koh IY, Alexov E, Honig B (2003) Using multiple structure alignments, fast model building, and energetic analysis in fold recognition and homology modeling. Proteins 53(Suppl 6):430

    Article  CAS  PubMed  Google Scholar 

  • Piana S, Lindorff-Larsen K, Shaw DE (2012) Protein folding kinetics and thermodynamics from atomistic simulation. Proc Natl Acad Sci U S A 109(44):17845–17850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piana S, Klepeis JL, Shaw DE (2014) Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr Opin Struct Biol 24:98–105

    Article  CAS  PubMed  Google Scholar 

  • Pieper U, Eswar N, Davis FP, Braberg H, Madhusudhan MS, Rossi A, Marti-Renom M, Karchin R, Webb BM, Eramian D, Shen MY, Kelly L, Melo F, Sali A (2006) MODBASE: a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 34 (Database issue):D291–D295

    Google Scholar 

  • Pieper U, Webb BM, Dong GQ, Schneidman-Duhovny D, Fan H, Kim SJ, Khuri N, Spill YG, Weinkam P, Hammel M, Tainer JA, Nilges M, Sali A (2014) ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 42 (Database issue):D336–D346

    Google Scholar 

  • Pillardy J, Czaplewski C, Liwo A, Lee J, Ripoll DR, Kazmierkiewicz R, Oldziej S, Wedemeyer WJ, Gibson KD, Arnautova YA, Saunders J, Ye YJ, Scheraga HA (2001) Recent improvements in prediction of protein structure by global optimization of a potential energy function. Proc Natl Acad Sci U S A 98(5):2329–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L, Winkler M, Ferrara N (1997) Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57(20):4593–4599

    CAS  PubMed  Google Scholar 

  • Pujato M, Kieken F, Skiles AA, Tapinos N, Fiser A (2014) Prediction of DNA binding motifs from 3D models of transcription factors; identifying TLX3 regulated genes. Nucleic Acids Res 42(22):13500–13512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian B, Ortiz AR, Baker D (2004) Improvement of comparative model accuracy by free-energy optimization along principal components of natural structural variation. Proc Natl Acad Sci U S A 101(43):15346–15351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Queen C, Schneider WP, Selick HE, Payne PW, Landolfi NF, Duncan JF, Avdalovic NM, Levitt M, Junghans RP, Waldmann TA (1989) A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci U S A 86(24):10029–10033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai BK, Fiser A (2006) Multiple mapping method: a novel approach to the sequence-to-structure alignment problem in comparative protein structure modeling. Proteins 63(3):644–661

    Article  CAS  PubMed  Google Scholar 

  • Rai BK, Madrid-Aliste CJ, Fajardo JE, Fiser A (2006) MMM: a sequence-to-structure alignment protocol. Bioinformatics 22(21):2691–2692

    Article  CAS  PubMed  Google Scholar 

  • Raman S, Huang YJP, Mao BC, Rossi P, Aramini JM, Liu GH, Montelione GT, Baker D (2010a) Accurate automated protein NMR structure determination using unassigned NOESY data. J Am Chem Soc 132(1):202–207

    Article  CAS  PubMed  Google Scholar 

  • Raman S, Lange OF, Rossi P, Tyka M, Wang X, Aramini J, Liu G, Ramelot TA, Eletsky A, Szyperski T, Kennedy MA, Prestegard J, Montelione GT, Baker D (2010b) NMR structure determination for larger proteins using backbone-only data. Science 327(5968):1014–1018

    Google Scholar 

  • Reddy BV, Li WW, Shindyalov IN, Bourne PE (2001) Conserved key amino acid positions (CKAAPs) derived from the analysis of common substructures in proteins. Proteins 42(2):148–163

    Article  CAS  PubMed  Google Scholar 

  • Remmert M, Biegert A, Hauser A, Soding J (2012) HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9(2):173–175

    Article  CAS  Google Scholar 

  • Ring CS, Cohen FE (1993) Modeling protein structures: construction and their applications. FASEB J 7(9):783–790

    CAS  PubMed  Google Scholar 

  • Ring CS, Sun E, McKerrow JH, Lee GK, Rosenthal PJ, Kuntz ID, Cohen FE (1993) Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proc Natl Acad Sci U S A 90(8):3583–3587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robustelli P, Cavalli A, Dobson CM, Vendruscolo M, Salvatella X (2009) Folding of small proteins by Monte Carlo simulations with chemical shift restraints without the use of molecular fragment replacement or structural homology. J Phys Chem B 113(22):7890–7896

    Article  CAS  PubMed  Google Scholar 

  • Robustelli P, Kohlhoff K, Cavalli A, Vendruscolo M (2010) Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins. Structure 18(8):923–933

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JP, Levitt M, Chopra G (2012) KoBaMIN: a knowledge-based minimization web server for protein structure refinement. Nucleic Acids Res 40 (Web Server issue):W323–W328

    Google Scholar 

  • Rohl CA, Baker D (2002) De novo determination of protein backbone structure from residual dipolar couplings using Rosetta. J Am Chem Soc 124(11):2723–2729

    Article  CAS  PubMed  Google Scholar 

  • Rohl CA, Strauss CE, Chivian D, Baker D (2004a) Modeling structurally variable regions in homologous proteins with rosetta. Proteins 55(3):656–677

    Article  CAS  PubMed  Google Scholar 

  • Rohl CA, Strauss CE, Misura KM, Baker D (2004b) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93

    Article  CAS  PubMed  Google Scholar 

  • Rost B (1997) Protein structures sustain evolutionary drift. Fold Des 2(3):S19–S24

    Article  CAS  PubMed  Google Scholar 

  • Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12(2):85–94

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein R, Ramagopal UA, Nathenson SG, Almo SC, Fiser A (2013) Functional classification of immune regulatory proteins. Structure 21(5):766–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudolph MG, Stanfield RL, Wilson IA (2006) How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24:419–466

    Article  CAS  PubMed  Google Scholar 

  • Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers YH, Falcon LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari MR, Strausberg RL, Nealson K, Friedman R, Frazier M, Venter JC (2007) The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5(3):e77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rychlewski L, Jaroszewski L, Li W, Godzik A (2000) Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci 9(2):232–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rykunov D, Fiser A (2007) Effects of amino acid composition, finite size of proteins, and sparse statistics on distance-dependent statistical pair potentials. Proteins 67(3):559–568

    Article  CAS  PubMed  Google Scholar 

  • Rykunov D, Fiser A (2010) New statistical potential for quality assessment of protein models and a survey of energy functions. BMC Bioinform 11(1):128

    Article  CAS  Google Scholar 

  • Rykunov D, Steinberger E, Madrid-Aliste CJ, Fiser A (2009) Improved scoring function for comparative modeling using the M4T method. J Struct Funct Genomics 10(1):95–99

    Article  CAS  PubMed  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815

    Article  CAS  PubMed  Google Scholar 

  • Sali A, Matsumoto R, McNeil HP, Karplus M, Stevens RL (1993) Three-dimensional models of four mouse mast cell chymases. Identification of proteoglycan binding regions and protease-specific antigenic epitopes. J Biol Chem 268(12):9023–9034

    CAS  PubMed  Google Scholar 

  • Sali A, Shakhnovich E, Karplus M (1994) How does a protein fold? Nature 369(6477):248–251

    Article  CAS  PubMed  Google Scholar 

  • Samudrala R, Moult J (1998) A graph-theoretic algorithm for comparative modeling of protein structure. J Mol Biol 279(1):287–302

    Article  CAS  PubMed  Google Scholar 

  • Sanchez R, Sali A (1997) Evaluation of comparative protein structure modeling by MODELLER-3. Proteins Suppl 1:50–58

    Article  Google Scholar 

  • Sanchez R, Sali A (1998) Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc Natl Acad Sci U S A 95(23):13597–13602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangar V, Blankenberg DJ, Altman N, Lesk AM (2007) Quantitative sequence-function relationships in proteins based on gene ontology. BMC Bioinform 8:294

    Article  CAS  Google Scholar 

  • Saraste M, Sibbald PR, Wittinghofer A (1990) The P-loop–a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15(11):430–434

    Article  PubMed  Google Scholar 

  • Sauder JM, Arthur JW, Dunbrack RL Jr (2000) Large-scale comparison of protein sequence alignment algorithms with structure alignments. Proteins 40(1):6–22

    Article  CAS  PubMed  Google Scholar 

  • Schaffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, Koonin EV, Altschul SF (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29(14):2994–3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarzenbacher R, Godzik A, Jaroszewski L (2008) The JCSG MR pipeline: optimized alignments, multiple models and parallel searches. Acta Crystallogr D Biol Crystallogr 64(Pt 1):133–140

    Article  CAS  PubMed  Google Scholar 

  • Schwede T, Sali A, Honig B, Levitt M, Berman HM, Jones D, Brenner SE, Burley SK, Das R, Dokholyan NV, Dunbrack RL Jr, Fidelis K, Fiser A, Godzik A, Huang YJ, Humblet C, Jacobson MP, Joachimiak A, Krystek SR Jr, Kortemme T, Kryshtafovych A, Montelione GT, Moult J, Murray D, Sanchez R, Sosnick TR, Standley DM, Stouch T, Vajda S, Vasquez M, Westbrook JD, Wilson IA (2009) Outcome of a workshop on applications of protein models in biomedical research. Structure 17(2):151–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Service R (2005) Structural biology. Structural genomics, round 2. Science 307(5715):1554–1558

    Article  CAS  PubMed  Google Scholar 

  • Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, Bank JA, Jumper JM, Salmon JK, Shan Y, Wriggers W (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330(6002):341–346

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Bax A (2010) SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J Biomol NMR 48 (1):13–22

    Google Scholar 

  • Shen Y, Bax A (2012) Identification of helix capping and beta-turn motifs from NMR chemical shifts. J Biomol NMR 52: 211–232

    Google Scholar 

  • Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci U S A 105(12):4685–4690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009a) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44(4):213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Vernon R, Baker D, Bax A (2009b) De novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR 43(2):63–78

    Article  CAS  PubMed  Google Scholar 

  • Sheng Y, Sali A, Herzog H, Lahnstein J, Krilis SA (1996) Site-directed mutagenesis of recombinant human beta 2-glycoprotein I identifies a cluster of lysine residues that are critical for phospholipid binding and anti-cardiolipin antibody activity. J Immunol 157(8):3744–3751

    CAS  PubMed  Google Scholar 

  • Shenkin PS, Yarmush DL, Fine RM, Wang HJ, Levinthal C (1987) Predicting antibody hypervariable loop conformation. I. Ensembles of random conformations for ringlike structures. Biopolymers 26(12):2053–2085

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Blundell TL, Mizuguchi K (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310(1):243–257

    Article  CAS  PubMed  Google Scholar 

  • Shin DS, Zhao RB, Yap EH, Fiser A, Goldman ID (2012) A P425R mutation of the proton-coupled folate transporter causing hereditary folate malabsorption produces a highly selective alteration in folate binding. Am J Physiol-Cell Ph 302(9):C1405–C1412

    Article  CAS  Google Scholar 

  • Sibanda BL, Blundell TL, Thornton JM (1989) Conformation of beta-hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. J Mol Biol 206(4):759–777

    Article  CAS  PubMed  Google Scholar 

  • Sippl MJ (1990) Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol 213(4):859–883

    Article  CAS  PubMed  Google Scholar 

  • Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17(4):355–362

    Article  CAS  PubMed  Google Scholar 

  • Sippl MJ (1995) Knowledge-based potentials for proteins. Curr Opin Struct Biol 5(2):229–235

    Article  CAS  PubMed  Google Scholar 

  • Soding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21(7):951–960

    Article  PubMed  Google Scholar 

  • Soto CS, Fasnacht M, Zhu J, Forrest L, Honig B (2008) Loop modeling: sampling, filtering, and scoring. Proteins 70(3):834–843

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan N, Blundell TL (1993) An evaluation of the performance of an automated procedure for comparative modelling of protein tertiary structure. Protein Eng 6(5):501–512

    Article  CAS  PubMed  Google Scholar 

  • Stein A, Ceol A, Aloy P (2011) 3did: identification and classification of domain-based interactions of known three-dimensional structure. Nucleic Acids Res 39 (Database issue):D718–D723

    Google Scholar 

  • Summa CM, Levitt M (2007) Near-native structure refinement using in vacuo energy minimization. Proc Natl Acad Sci U S A 104(9):3177–3182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutcliffe MJ, Haneef I, Carney D, Blundell TL (1987) Knowledge based modelling of homologous proteins, part I: three-dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng 1(5):377–384

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe MJ, Dobson CM, Oswald RE (1992) Solution structure of neuronal bungarotoxin determined by two-dimensional NMR spectroscopy: calculation of tertiary structure using systematic homologous model building, dynamical simulated annealing, and restrained molecular dynamics. Biochemistry 31(11):2962–2970

    Article  CAS  PubMed  Google Scholar 

  • Tai CH, Bai H, Taylor TJ, Lee B (2014) Assessment of template-free modeling in CASP10 and ROLL. Proteins 82(Suppl 2):57–83

    Article  CAS  PubMed  Google Scholar 

  • Tainer JA, Thayer MM, Cunningham RP (1995) DNA repair proteins. Curr Opin Struct Biol 5(1):20–26

    Article  CAS  PubMed  Google Scholar 

  • Tang K, Zhang J, Liang J (2014) Fast protein loop sampling and structure prediction using distance-guided sequential chain-growth Monte Carlo method. PLoS Comput Biol 10(4):e1003539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taylor WR, Hatrick K (1994) Compensating changes in protein multiple sequence alignments. Protein Eng 7(3):341–348

    Article  CAS  PubMed  Google Scholar 

  • Terashi G, Takeda-Shitaka M, Kanou K, Iwadate M, Takaya D, Hosoi A, Ohta K, Umeyama H (2007) Fams-ace: a combined method to select the best model after remodeling all server models. Proteins 69(Suppl 8):98–107

    Article  CAS  PubMed  Google Scholar 

  • Todd AE, Orengo CA, Thornton JM (2001) Evolution of function in protein superfamilies, from a structural perspective. J Mol Biol 307(4):1113–1143

    Article  CAS  PubMed  Google Scholar 

  • Todd AE, Orengo CA, Thornton JM (2002) Plasticity of enzyme active sites. Trends Biochem Sci 27(8):419–426

    Article  CAS  PubMed  Google Scholar 

  • Topf M, Lasker K, Webb B, Wolfson H, Chiu W, Sali A (2008) Protein structure fitting and refinement guided by cryo-EM density. Structure 16(2):295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topham CM, McLeod A, Eisenmenger F, Overington JP, Johnson MS, Blundell TL (1993) Fragment ranking in modelling of protein structure. Conformationally constrained environmental amino acid substitution tables. J Mol Biol 229(1):194–220

    Article  CAS  PubMed  Google Scholar 

  • Unger R, Harel D, Wherland S, Sussman JL (1989) A 3D building blocks approach to analyzing and predicting structure of proteins. Proteins 5(4):355–373

    Article  CAS  PubMed  Google Scholar 

  • Vakser IA (1995) Protein docking for low-resolution structures. Protein Eng 8(4):371–377

    Article  CAS  PubMed  Google Scholar 

  • van Gelder CW, Leusen FJ, Leunissen JA, Noordik JH (1994) A molecular dynamics approach for the generation of complete protein structures from limited coordinate data. Proteins 18(2):174–185

    Article  PubMed  Google Scholar 

  • van Vlijmen HW, Karplus M (1997) PDB-based protein loop prediction: parameters for selection and methods for optimization. J Mol Biol 267(4):975–1001

    Article  PubMed  Google Scholar 

  • Venclovas C, Margelevicius M (2005) Comparative modeling in CASP6 using consensus approach to template selection, sequence-structure alignment, and structure assessment. Proteins 61(Suppl 7):99–105

    Article  CAS  PubMed  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304(5667):66–74

    Article  CAS  PubMed  Google Scholar 

  • Vernal J, Fiser A, Sali A, Muller M, Jose CJ, Nowicki C (2002) Probing the specificity of a trypanosomal aromatic alpha-hydroxy acid dehydrogenase by site-directed mutagenesis. Biochem Biophys Res Commun 293(1):633–639

    Article  CAS  PubMed  Google Scholar 

  • Vitkup D, Melamud E, Moult J, Sander C (2001) Completeness in structural genomics. Nat Struct Biol 8(6):559–566

    Article  CAS  PubMed  Google Scholar 

  • Wallner B, Elofsson A (2005a) All are not equal: a benchmark of different homology modeling programs. Protein Sci 14(5):1315–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallner B, Elofsson A (2005b) Pcons5: combining consensus, structural evaluation and fold recognition scores. Bioinformatics 21(23):4248–4254

    Article  CAS  PubMed  Google Scholar 

  • Wallner B, Elofsson A (2007) Prediction of global and local model quality in CASP7 using Pcons and ProQ. Proteins 69(Suppl 8):184–193

    Article  CAS  PubMed  Google Scholar 

  • Wallner B, Larsson P, Elofsson A (2007) Pcons.net: protein structure prediction meta server. Nucleic Acids Res 35 (Web Server issue):W369–W374

    Google Scholar 

  • Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4(2):171–180

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Arndt D, Berjanskii M, Tang P, Zhou J, Lin G (2008) CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data. Nucleic Acids Res 36 (Web Server issue):W496–W502

    Google Scholar 

  • Wlodawer A (2002) Rational approach to AIDS drug design through structural biology. Annu Rev Med 53:595–614

    Article  CAS  PubMed  Google Scholar 

  • Wlodawer A, Miller M, Jaskolski M, Sathyanarayana BK, Baldwin E, Weber IT, Selk LM, Clawson L, Schneider J, Kent SBH (1989) Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science 245(4918):616–621

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Fiser A, ter Kuile B, Sali A, Muller M (1999) Convergent evolution of Trichomonas vaginalis lactate dehydrogenase from malate dehydrogenase. Proc Natl Acad Sci U S A 96(11):6285–6290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, McArthur AG, Fiser A, Sali A, Sogin ML, Mllerm M (2000) Core histones of the amitochondriate protist, Giardia lamblia. Mol Biol Evol 17(8):1156–1163

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Soto CS, Honing B (2002) Evaluating conformational free energies: the colony energy and its application to the poblem of loop prediction. Proc Natl Acad Sci U S A 99:7432–7437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao H, Verdier-Pinard P, Fernandez-Fuentes N, Burd B, Angeletti R, Fiser A, Horwitz SB, Orr GA (2006) Insights into the mechanism of microtubule stabilization by Taxol. Proc Natl Acad Sci U S A 103(27):10166–10173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu LZ, Sanchez R, Sali A, Heintz N (1996) Ligand specificity of brain lipid-binding protein. J Biol Chem 271(40):24711–24719

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Jiao F, Yu L (2007) Protein structure prediction using threading. Methods Mol Biol 413:91–122

    Google Scholar 

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12(1):7–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yap EH, Rosche T, Almo S, Fiser A (2014) Functional clustering of immunoglobulin superfamily proteins with protein-protein interaction information calibrated hidden Markov Model sequence profiles. J Mol Biol 426(4):945–961

    Article  CAS  PubMed  Google Scholar 

  • Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, Eisen JA, Heidelberg KB, Manning G, Li W, Jaroszewski L, Cieplak P, Miller CS, Li H, Mashiyama ST, Joachimiak MP, van Belle C, Chandonia JM, Soergel DA, Zhai Y, Natarajan K, Lee S, Raphael BJ, Bafna V, Friedman R, Brenner SE, Godzik A, Eisenberg D, Dixon JE, Taylor SS, Strausberg RL, Frazier M, Venter JC (2007) The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol 5(3):e16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zemla A (2003) LGA: A method for finding 3D similarities in protein structures. Nucleic Acids Res 31(13):3370–3374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y (2007) Template-based modeling and free modeling by I-TASSER in CASP7. Proteins 69(Suppl 8):108–117

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Skolnick J (2005) The protein structure prediction problem could be solved using the current PDB library. Proc Natl Acad Sci U S A 102(4):1029–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Liu S, Zhou Y (2004) Accurate and efficient loop selections by the DFIRE-based all-atom statistical potential. Protein Sci 13(2):391–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Thiele I, Weekes D, Li ZW, Jaroszewski L, Ginalski K, Deacon AM, Wooley J, Lesley SA, Wilson IA, Palsson B, Osterman A, Godzik A (2009) Three-dimensional structural view of the central metabolic network of thermotoga maritima. Science 325(5947):1544–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Q, Rosenfeld R, Vajda S, DeLisi C (1993) Determining protein loop conformation using scaling-relaxation techniques. Protein Sci 2(8):1242–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Skolnick J (2007) Ab initio protein structure prediction using chunk-TASSER. Biophys J 93(5):1510–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Skolnick J (2011) GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction. Biophys J 101 (8):2043–2052

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AndrĂ¡s Fiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fiser, A. (2017). Comparative Protein Structure Modelling. In: J. Rigden, D. (eds) From Protein Structure to Function with Bioinformatics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1069-3_4

Download citation

Publish with us

Policies and ethics