Skip to main content

Abstract

Three-dimensional (3D) motifs are patterns of local structure associated with function, typically based on residues in binding or catalytic sites. Protein structures of unknown function can be annotated by comparing them to known 3D motifs. Many methods have been developed for identifying 3D motifs and for searching structures for their occurrence. Approaches vary in the type and amount of input evidence, how the motifs are described and matched, whether the results include a measure of statistical significance, and how the motifs relate to function. Compared to algorithm development, less progress has been made in providing publicly searchable databases of 3D motifs that are both functionally specific and cover a broad range of functions. A roadblock has been the difficulty of generating detailed structure-function classifications; instead, automated, large-scale studies have relied upon pre-existing classifications of either structure or function. Complementary to 3D motif methods are approaches focused on molecular surface descriptions, global structure (fold) comparisons, predicting interactions with other macromolecules, and identifying physiological substrates by docking databases of small molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three-dimensional

CSA:

Catalytic Site Atlas

DRESPAT:

Detection of REcurring Sidechain PATterns

EC:

Enzyme Commission

FFF:

Fuzzy Functional Form

GASPS:

Genetic Algorithm Search for Patterns in Structures

GO:

Gene Ontology

HMM:

Hidden Markov Model

nr-PDB:

Non-redundant PDB

NP:

Nonpolynomial (scaling)

NOE:

Nuclear Overhauser Effect

PAR-3D:

Protein Active site Residues using 3-Dimensional structural motifs

PDB:

Protein Data Bank

PINTS:

Patterns in Non-homologous Tertiary Structures

RMSD:

Root-mean-square Deviation

S-BLEST:

Structure-Based Local Environment Search Tool

SCOP:

Structural Classification of Proteins

SOIPPA:

Sequence Order-Independent Profile-Profile Alignment

SPASM:

SPatial Arrangements of Sidechains and Mainchains

TESS:

TEmplate Search and Superposition

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Andreeva A, Howorth D, Brenner SE, Hubbard TJ, Chothia C, Murzin AG (2004) SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res 32(suppl 1):D226–D229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreeva A, Howorth D, Chandonia J-M, Brenner SE, Hubbard TJ, Chothia C, Murzin AG (2008) Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res 36(suppl 1):D419–D425

    CAS  PubMed  Google Scholar 

  • Arakaki A, Huang Y, Skolnick J (2009) EFICAz2: enzyme function inference by a combined approach enhanced by machine learning. BMC Bioinform 10(1):107

    Article  CAS  Google Scholar 

  • Artymiuk PJ, Poirrette AR, Grindley HM, Rice DW, Willett P (1994) A graph-theoretic approach to the identification of three-dimensional patterns of amino acid side-chains in protein structures. J Mol Biol 243(2):327–344

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ausiello G, Gherardini PF, Marcatili P, Tramontano A, Via A, Helmer-Citterich M (2008) FunClust: a web server for the identification of structural motifs in a set of non-homologous protein structures. BMC Bioinform 9(Suppl 2):S2

    Article  CAS  Google Scholar 

  • Ausiello G, Peluso D, Via A, Helmer-Citterich M (2007) Local comparison of protein structures highlights cases of convergent evolution in analogous functional sites. BMC Bioinform 8(Suppl 1):S24

    Article  CAS  Google Scholar 

  • Ausiello G, Via A, Helmer-Citterich M (2005a) Query3D: a new method for high-throughput analysis of functional residues in protein structures. BMC Bioinform 6(Suppl 4):S5

    Article  CAS  Google Scholar 

  • Ausiello G, Zanzoni A, Peluso D, Via A, Helmer-Citterich M (2005b) pdbFun: mass selection and fast comparison of annotated PDB residues. Nucleic Acids Res 33 (Web Server issue):W133–137

    Google Scholar 

  • Babbitt PC (2003) Definitions of enzyme function for the structural genomics era. Curr Opin Chem Biol 7(2):230–237

    Article  CAS  PubMed  Google Scholar 

  • Babbitt PC, Gerlt JA (1997) Understanding enzyme superfamilies. Chemistry As the fundamental determinant in the evolution of new catalytic activities. J Biol Chem 272(49):30591–30594

    Article  CAS  PubMed  Google Scholar 

  • Babbitt PC, Gerlt JA (2000) New functions from old scaffolds: how nature reengineers enzymes for new functions. Adv Protein Chem 55:1–28

    Article  CAS  PubMed  Google Scholar 

  • Bagley SC, Altman RB (1995) Characterizing the microenvironment surrounding protein sites. Protein Sci 4(4):622–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bairoch A (1994) The ENZYME data bank. Nucleic Acids Res 22(17):3626–3627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294(5540):93–96

    Article  CAS  PubMed  Google Scholar 

  • Barker JA, Thornton JM (2003) An algorithm for constraint-based structural template matching: application to 3D templates with statistical analysis. Bioinformatics 19(13):1644–1649

    Article  CAS  PubMed  Google Scholar 

  • Bartlett GJ, Borkakoti N, Thornton JM (2003) Catalysing new reactions during evolution: economy of residues and mechanism. J Mol Biol 331(4):829–860

    Article  CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blow DM, Birktoft JJ, Hartley BS (1969) Role of a buried acid group in the mechanism of action of chymotrypsin. Nature 221(5178):337–340

    Article  CAS  PubMed  Google Scholar 

  • Brakoulias A, Jackson RM (2004) Towards a structural classification of phosphate binding sites in protein–nucleotide complexes: an automated all-against-all structural comparison using geometric matching. Proteins Struct Funct Bioinf 56(2):250–260

    Article  CAS  Google Scholar 

  • Brylinski M, Skolnick J (2008) A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation. Proc Natl Acad Sci 105(1):129

    Article  CAS  PubMed  Google Scholar 

  • Buturovic L, Wong M, Tang GW, Altman RB, Petkovic D (2014) High precision prediction of functional sites in protein structures. Publ Libr Sci One 9(3):e91240

    Google Scholar 

  • Cammer SA, Hoffman BT, Speir JA, Canady MA, Nelson MR, Knutson S, Gallina M, Baxter SM, Fetrow JS (2003) Structure-based active site profiles for genome analysis and functional family subclassification. J Mol Biol 334(3):387–401

    Article  CAS  PubMed  Google Scholar 

  • Chen BY, Bryant DH, Cruess AE, Bylund JH, Fofanov VY, Kristensen DM, Kimmel M, Lichtarge O, Kavraki LE (2007a) Composite motifs integrating multiple protein structures increase sensitivity for function prediction. Comput Syst Bioinform Conf 6:343–355

    Google Scholar 

  • Chen BY, Fofanov VY, Bryant DH, Dodson BD, Kristensen DM, Lisewski AM, Kimmel M, Lichtarge O, Kavraki LE (2007b) The MASH pipeline for protein function prediction and an algorithm for the geometric refinement of 3D motifs. J Comput Biol 14(6):791–816

    Article  CAS  PubMed  Google Scholar 

  • Chothia C, Gough J, Vogel C, Teichmann SA (2003) Evolution of the protein repertoire. Science 300(5626):1701–1703

    Article  CAS  PubMed  Google Scholar 

  • Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5(4):823–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conte LL, Ailey B, Hubbard TJ, Brenner SE, Murzin AG, Chothia C (2000) SCOP: a structural classification of proteins database. Nucleic Acids Res 28(1):257–259

    Article  PubMed  PubMed Central  Google Scholar 

  • Devos D, Valencia A (2001) Intrinsic errors in genome annotation. Trends Genet 17(8):429–431

    Article  CAS  PubMed  Google Scholar 

  • Di Gennaro JA, Siew N, Hoffman BT, Zhang L, Skolnick J, Neilson LI, Fetrow JS (2001) Enhanced functional annotation of protein sequences via the use of structural descriptors. J Struct Biol 134(2–3):232–245

    Article  PubMed  CAS  Google Scholar 

  • Favia AD, Nobeli I, Glaser F, Thornton JM (2008) Molecular docking for substrate identification: the short-chain dehydrogenases/reductases. J Mol Biol 375(3):855–874

    Article  CAS  PubMed  Google Scholar 

  • Fetrow JS, Skolnick J (1998) Method for prediction of protein function from sequence using the sequence-to-structure-to-function paradigm with application to glutaredoxins/thioredoxins and T1 ribonucleases. J Mol Biol 281(5):949–968

    Article  CAS  PubMed  Google Scholar 

  • Fischer D, Wolfson H, Lin SL, Nussinov R (1994) Three-dimensional, sequence order-independent structural comparison of a serine protease against the crystallographic database reveals active site similarities: potential implications to evolution and to protein folding. Protein Sci 3(5):769–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furnham N, Holliday GL, de Beer TA, Jacobsen JO, Pearson WR, Thornton JM (2014) The catalytic site atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Res 42 (D1):D485–D489

    Google Scholar 

  • Galperin MY, Walker DR, Koonin EV (1998) Analogous enzymes: independent inventions in enzyme evolution. Genome Res 8(8):779–790

    CAS  PubMed  Google Scholar 

  • Gerlt JA, Allen KN, Almo SC, Armstrong RN, Babbitt PC, Cronan JE, Dunaway-Mariano D, Imker HJ, Jacobson MP, Minor W (2011) The enzyme function initiative. Biochem

    Google Scholar 

  • Gerlt JA, Babbitt PC (2001) Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. Annu Rev Biochem 70(1):209–246

    Article  CAS  PubMed  Google Scholar 

  • Gerlt JA, Babbitt PC, Jacobson MP, Almo SC (2012) Divergent evolution in enolase superfamily: strategies for assigning functions. J Biol Chem 287(1):29–34

    Article  CAS  PubMed  Google Scholar 

  • Glanville JG, Kirshner D, Krishnamurthy N, Sjölander K (2007) Berkeley phylogenomics group web servers: resources for structural phylogenomic analysis. Nucleic Acids Res 35(suppl 2):W27–W32

    Article  PubMed  PubMed Central  Google Scholar 

  • Glazer DS, Radmer RJ, Altman RB Combining molecular dynamics and machine learning to improve protein function recognition. In: Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 2008. NIH Public Access, p 332

    Google Scholar 

  • Gold ND, Jackson RM (2006a) Fold independent structural comparisons of protein-ligand binding sites for exploring functional relationships. J Mol Biol 355(5):1112–1124

    Article  CAS  PubMed  Google Scholar 

  • Gold ND, Jackson RM (2006b) SitesBase: a database for structure-based protein–ligand binding site comparisons. Nucleic Acids Res 34(suppl 1):D231–D234

    Article  CAS  PubMed  Google Scholar 

  • Goyal K, Mande SC (2008) Exploiting 3D structural templates for detection of metal-binding sites in protein structures. Proteins 70(4):1206–1218

    Article  CAS  PubMed  Google Scholar 

  • Goyal K, Mohanty D, Mande SC (2007) PAR-3D: a server to predict protein active site residues. Nucleic Acids Res 35 (Web Server issue):W503–505

    Google Scholar 

  • Halgren T (2007) New method for fast and accurate binding-site Identification and analysis. Chem Biol Drug Des 69(2):146–148

    Article  CAS  PubMed  Google Scholar 

  • Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49(2):377–389

    Article  CAS  PubMed  Google Scholar 

  • Hermann JC, Marti-Arbona R, Fedorov AA, Fedorov E, Almo SC, Shoichet BK, Raushel FM (2007) Structure-based activity prediction for an enzyme of unknown function. Nature 448(7155):775–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holliday GL, Almonacid DE, Bartlett GJ, O’Boyle NM, Torrance JW, Murray-Rust P, Mitchell JBO, Thornton JM (2007) MACiE (mechanism, annotation and classification in enzymes): novel tools for searching catalytic mechanisms. Nucleic Acids Res 35(suppl 1):D515–D520

    Article  CAS  PubMed  Google Scholar 

  • Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49(23):6789–6801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Union of Biochemistry and Molecular Biology: Nomenclature Committee, Webb EC (1992) Enzyme nomenclature 1992: recommendations of the nomenclature committee of the international union of biochemistry and molecular biology on the nomenclature and classification of enzymes. Academic Press, San Diego

    Google Scholar 

  • Ivanisenko VA, Pintus SS, Grigorovich DA, Kolchanov NA (2004) PDBSiteScan: a program for searching for active, binding and posttranslational modification sites in the 3D structures of proteins. Nucleic Acids Res 32(Web Server issue):W549–554

    Google Scholar 

  • Ivanisenko VA, Pintus SS, Grigorovich DA, Kolchanov NA (2005) PDBSite: a database of the 3D structure of protein functional sites. Nucleic Acids Res 33(Database issue):D183–187

    Google Scholar 

  • Jacobson MP, Kalyanaraman C, Zhao S, Tian B (2014) Leveraging structure for enzyme function prediction: methods, opportunities, and challenges. Trends Biochem Sci 39(8):363–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jambon M, Andrieu O, Combet C, Deléage G, Delfaud F, Geourjon C (2005) The SuMo server: 3D search for protein functional sites. Bioinformatics 21(20):3929–3930

    Article  CAS  PubMed  Google Scholar 

  • Jambon M, Imberty A, Deléage G, Geourjon C (2003) A new bioinformatic approach to detect common 3D sites in protein structures. Proteins Struct Funct Bioinf 52(2):137–145

    Article  CAS  Google Scholar 

  • Kalyanaraman C, Bernacki K, Jacobson MP (2005) Virtual screening against highly charged active sites: identifying substrates of alpha-beta barrel enzymes. Biochemistry 44(6):2059–2071

    Article  CAS  PubMed  Google Scholar 

  • Kalyanaraman C, Imker HJ, Fedorov AA, Fedorov EV, Glasner ME, Babbitt PC, Almo SC, Gerlt JA, Jacobson MP (2008) Discovery of a dipeptide epimerase enzymatic function guided by homology modeling and virtual screening. Structure 16(11):1668–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105(28):6474–6487

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kar S, Vijayakeerthi D, Tendulkar AV, Ravindran B Functional site prediction by exploiting correlations between labels of interacting residues. In: Proceedings of the ACM conference on bioinformatics, computational biology and biomedicine, 2012. ACM, pp 76–83

    Google Scholar 

  • Kinjo AR, Nakamura H (2007) Similarity search for local protein structures at atomic resolution by exploiting a database management system. Biophysics 3:75–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita K, Nakamura H (2003) Identification of protein biochemical functions by similarity search using the molecular surface database eF-site. Protein Sci 12(8):1589–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirshner DA, Nilmeier JP, Lightstone FC (2013) Catalytic site identification—a web server to identify catalytic site structural matches throughout PDB. Nucleic Acids Res 41(W1):W256–W265

    Article  PubMed  PubMed Central  Google Scholar 

  • Kleywegt GJ (1999) Recognition of spatial motifs in protein structures. J Mol Biol 285(4):1887–1897

    Article  CAS  PubMed  Google Scholar 

  • Kleywegt GJ, Jones TA (1997) Detecting folding motifs and similarities in protein structures. Methods Enzymol 277:525–545

    Article  CAS  PubMed  Google Scholar 

  • Kleywegt GJ, Lamerichs RMJN, Boelens R, Kaptein R (1989) Toward automatic assignment of protein 1H NMR spectra. J Magn Reson 85(1):186–197

    CAS  Google Scholar 

  • Kobayashi N, Go N (1997) A method to search for similar protein local structures at ligand binding sites and its application to adenine recognition. Eur Biophys J 26(2):135–144

    Article  CAS  PubMed  Google Scholar 

  • Konc J, Janežič D (2010) ProBiS algorithm for detection of structurally similar protein binding sites by local structural alignment. Bioinformatics 26(9):1160–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konc J, Janežič D (2012) ProBiS-2012: web server and web services for detection of structurally similar binding sites in proteins. Nucleic Acids Res 40(W1):W214–W221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamurthy N, Brown DP, Kirshner D, Sjölander K (2006) PhyloFacts: an online structural phylogenomic encyclopedia for protein functional and structural classification. Genome Biol 7(9):R83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krogh A, Brown M, Mian IS, Sjolander K, Haussler D (1994) Hidden Markov models in computational biology: applications to protein modeling. J Mol Biol 235(5):1501–1531

    Article  CAS  PubMed  Google Scholar 

  • Kuhn D, Weskamp N, Schmitt S, Hullermeier E, Klebe G (2006) From the similarity analysis of protein cavities to the functional classification of protein families using cavbase. J Mol Biol 359(4):1023–1044

    Article  CAS  PubMed  Google Scholar 

  • Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, Valentin F, Wallace I, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, Watson JD, Thornton JM (2005) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res 33(Web Server issue):W89–W93

    Google Scholar 

  • Liang MP, Banatao DR, Klein TE, Brutlag DL, Altman RB (2003) WebFEATURE: an interactive web tool for identifying and visualizing functional sites on macromolecular structures. Nucleic Acids Res 31(13):3324–3327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtarge O, Bourne HR, Cohen FE (1996) An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol 257(2):342–358

    Article  CAS  PubMed  Google Scholar 

  • Macchiarulo A, Nobeli I, Thornton JM (2004) Ligand selectivity and competition between enzymes in silico. Nat Biotechnol 22(8):1039–1045

    Article  CAS  PubMed  Google Scholar 

  • Meng EC, Polacco BJ, Babbitt PC (2004) Superfamily active site templates. Proteins Struct Funct Bioinf 55(4):962–976

    Article  CAS  Google Scholar 

  • Meng EC, Shoichet BK, Kuntz ID (1992) Automated docking with grid-based energy evaluation. J Comput Chem 13(4):505–524

    Article  CAS  Google Scholar 

  • Milik M, Szalma S, Olszewski KA (2003) Common structural cliques: a tool for protein structure and function analysis. Protein Eng 16(8):543–552

    Article  CAS  PubMed  Google Scholar 

  • Mitchell EM, Artymiuk PJ, Rice DW, Willett P (1990) Use of techniques derived from graph theory to compare secondary structure motifs in proteins. J Mol Biol 212(1):151–166

    Article  CAS  PubMed  Google Scholar 

  • Moll M, Bryant DH, Kavraki LE (2010) The LabelHash algorithm for substructure matching. BMC Bioinform 11(1):555

    Article  Google Scholar 

  • Moll M, Bryant DH, Kavraki LE (2011) The LabelHash server and tools for substructure-based functional annotation. Bioinformatics 27(15):2161–2162

    Article  CAS  PubMed  Google Scholar 

  • Moll M, Kavraki LE (2008) LabelHash: a flexible and extensible method for matching structural motifs. Available from Nature Precedings. http://dx.doi.org/10.1038/npre.2008.2199.1

  • Mooney SD, Liang MH, DeConde R, Altman RB (2005) Structural characterization of proteins using residue environments. Proteins 61(4):741–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247(4):536–540

    CAS  PubMed  Google Scholar 

  • Nebel JC (2006) Generation of 3D templates of active sites of proteins with rigid prosthetic groups. Bioinformatics 22(10):1183–1189

    Article  CAS  PubMed  Google Scholar 

  • Nebel JC, Herzyk P, Gilbert DR (2007) Automatic generation of 3D motifs for classification of protein binding sites. BMC Bioinformatics 8(1):321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nilmeier JP, Kirshner DA, Wong SE, Lightstone FC (2013) Rapid catalytic template searching as an enzyme function prediction procedure. Publ Libr Sci One 8(5):e62535

    CAS  Google Scholar 

  • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldfield TJ (2002) Data mining the protein data bank: residue interactions. Proteins 49(4):510–528

    Article  CAS  PubMed  Google Scholar 

  • Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (1997) CATH–a hierarchic classification of protein domain structures. Structure 5(8):1093–1108

    Article  CAS  PubMed  Google Scholar 

  • Orengo CA, Pearl FMG, Bray JE, Todd AE, Martin A, Conte LL, Thornton JM (1999) The CATH Database provides insights into protein structure/function relationships. Nucleic Acids Res 27(1):275–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orengo CA, Pearl FMG, Thornton JM (2003) The CATH domain structure database. Struct Bioinform 249–271

    Google Scholar 

  • Pal D, Eisenberg D (2005) Inference of protein function from protein structure. Structure 13(1):121–130

    Article  CAS  PubMed  Google Scholar 

  • Paul N, Kellenberger E, Bret G, Muller P, Rognan D (2004) Recovering the true targets of specific ligands by virtual screening of the protein data bank. Proteins 54(4):671–680

    Article  CAS  PubMed  Google Scholar 

  • Pegg SC, Brown S, Ojha S, Huang CC, Ferrin TE, Babbitt PC (2005) Representing structure-function relationships in mechanistically diverse enzyme superfamilies. Pac Symp Biocomput 358–369

    Google Scholar 

  • Pegg SCH, Brown SD, Ojha S, Seffernick J, Meng EC, Morris JH, Chang PJ, Huang CC, Ferrin TE, Babbitt PC (2006) Leveraging enzyme structure-function relationships for functional inference and experimental design: the structure-function linkage database. Biochemistry 45(8):2545–2555

    Article  CAS  PubMed  Google Scholar 

  • Pennec X, Ayache N (1998) A geometric algorithm to find small but highly similar 3D substructures in proteins. Bioinformatics 14(6):516–522

    Article  CAS  PubMed  Google Scholar 

  • Peters B, Moad C, Youn E, Buffington K, Heiland R, Mooney S (2006) Identification of similar regions of protein structures using integrated sequence and structure analysis tools. BMC Struct Biol 6:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. Journal of Computaional Chemistry 25(13):1605–1612

    Article  CAS  Google Scholar 

  • Polacco BJ, Babbitt PC (2006) Automated discovery of 3D motifs for protein function annotation. Bioinformatics 22(6):723–730

    Article  CAS  PubMed  Google Scholar 

  • Porter CT, Bartlett GJ, Thornton JM (2004) The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res 32(suppl 1):D129–D133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T, Sokolov A, Graim K, Funk C, Verspoor K, Ben-Hur A (2013) A large-scale evaluation of computational protein function prediction. Nat Methods 10(3):221–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J, Xie L, Li WW, Bourne PE (2010) SMAP-WS: a parallel web service for structural proteome-wide ligand-binding site comparison. Nucleic Acids Res 38(suppl 2):W441–W444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson JS (1981) The anatomy and taxonomy of protein structure. Adv Protein Chem 34:167–339

    Article  CAS  PubMed  Google Scholar 

  • Rost B (1997) Protein structures sustain evolutionary drift. Fold Des 2(3):S19–S24

    Article  CAS  PubMed  Google Scholar 

  • Rost B (2002) Enzyme function less conserved than anticipated. J Mol Biol 318(2):595–608

    Article  CAS  PubMed  Google Scholar 

  • Russell RB (1998) Detection of protein three-dimensional side-chain patterns: new examples of convergent evolution. J Mol Biol 279(5):1211–1227

    Article  CAS  PubMed  Google Scholar 

  • Sankararaman S, Sha F, Kirsch JF, Jordan MI, Sjölander K (2010) Active site prediction using evolutionary and structural information. Bioinformatics 26(5):617–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankararaman S, Sjölander K (2008) INTREPID—INformation-theoretic TREe traversal for Protein functional site IDentification. Bioinformatics 24(21):2445–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt S, Kuhn D, Klebe G (2002) A new method to detect related function among proteins independent of sequence and fold homology. J Mol Biol 323(2):387–406

    Article  CAS  PubMed  Google Scholar 

  • Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49(2):534–553

    Article  CAS  PubMed  Google Scholar 

  • Shindyalov IN, Bourne PE (1998) Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11(9):739–747

    Article  CAS  PubMed  Google Scholar 

  • Shindyalov IN, Bourne PE (2001) A database and tools for 3-D protein structure comparison and alignment using the Combinatorial Extension (CE) algorithm. Nucleic Acids Res 29(1):228–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shulman-Peleg A, Nussinov R, Wolfson HJ (2004) Recognition of functional sites in protein structures. J Mol Biol 339(3):607–633

    Article  CAS  PubMed  Google Scholar 

  • Shulman-Peleg A, Nussinov R, Wolfson HJ (2005) SiteEngines: recognition and comparison of binding sites and protein-protein interfaces. Nucleic Acids Res 33(Web Server issue):W337–W341

    Google Scholar 

  • Sjölander K, Karplus K, Brown M, Hughey R, Krogh A, Mian IS, Haussler D (1996) Dirichlet mixtures: a method for improved detection of weak but significant protein sequence homology. Comput Appl Biosci CABIOS 12(4):327–345

    PubMed  Google Scholar 

  • Skolnick J, Brylinski M (2009) FINDSITE: a combined evolution/structure-based approach to protein function prediction. Briefings Bioinform 10(4):378–391

    Article  CAS  Google Scholar 

  • Song L, Kalyanaraman C, Fedorov AA, Fedorov EV, Glasner ME, Brown S, Imker HJ, Babbitt PC, Almo SC, Jacobson MP (2007) Prediction and assignment of function for a divergent N-succinyl amino acid racemase. Nat Chem Biol 3(8):486–491

    Article  CAS  PubMed  Google Scholar 

  • Spriggs RV, Artymiuk PJ, Willett P (2003) Searching for patterns of amino acids in 3D protein structures. J Chem Inf Comput Sci 43(2):412–421

    Article  CAS  PubMed  Google Scholar 

  • Stark A, Russell RB (2003) Annotation in three dimensions. PINTS: patterns in non-homologous tertiary structures. Nucleic Acids Res 31(13):3341–3344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark A, Shkumatov A, Russell RB (2004) Finding functional sites in structural genomics proteins. Structure 12(8):1405–1412

    Article  CAS  PubMed  Google Scholar 

  • Stark A, Sunyaev S, Russell RB (2003) A model for statistical significance of local similarities in structure. J Mol Biol 326(5):1307–1316

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian W, Arakaki AK, Skolnick J (2004) EFICAz: a comprehensive approach for accurate genome-scale enzyme function inference. Nucleic Acids Res 32(21):6226–6239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian W, Skolnick J (2003) How well is enzyme function conserved as a function of pairwise sequence identity? J Mol Biol 333(4):863–882

    Article  CAS  PubMed  Google Scholar 

  • Todd AE, Orengo CA, Thornton JM (2001) Evolution of function in protein superfamilies, from a structural perspective. J Mol Biol 307(4):1113–1143

    Article  CAS  PubMed  Google Scholar 

  • Todd AE, Orengo CA, Thornton JM (2002) Plasticity of enzyme active sites. Trends Biochem Sci 27(8):419–426

    Article  CAS  PubMed  Google Scholar 

  • Torrance JW, Bartlett GJ, Porter CT, Thornton JM (2005) Using a library of structural templates to recognise catalytic sites and explore their evolution in homologous families. J Mol Biol 347(3):565–581

    Article  CAS  PubMed  Google Scholar 

  • Tseng YY, Dundas J, Liang J (2009) Predicting protein function and binding profile via matching of local evolutionary and geometric surface patterns. J Mol Biol 387(2):451–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng YY, Liang J (2006) Estimation of amino acid residue substitution rates at local spatial regions and application in protein function inference: a Bayesian Monte Carlo approach. Mol Biol Evol 23(2):421–436

    Article  CAS  PubMed  Google Scholar 

  • Tyagi S, Pleiss J (2006) Biochemical profiling in silico–predicting substrate specificities of large enzyme families. J Biotechnol 124(1):108–116

    Article  CAS  PubMed  Google Scholar 

  • Ullmann JR (1976) An algorithm for subgraph isomorphism. J ACM (JACM) 23(1):31–42

    Article  Google Scholar 

  • Wallace AC, Borkakoti N, Thornton JM (1997) TESS: a geometric hashing algorithm for deriving 3D coordinate templates for searching structural databases. Application to enzyme active sites. Protein Sci 6:2308–2323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace AC, Laskowski RA, Thornton JM (1996) Derivation of 3D coordinate templates for searching structural databases: application to Ser-His-Asp catalytic triads in the serine proteinases and lipases. Protein Sci 5(6):1001–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46(12):2287–2303

    Article  CAS  PubMed  Google Scholar 

  • Webb EC (1992) Enzyme nomenclature 1992. In: Recommendations of the nomenclature committee of the international union of biochemistry and molecular biology on the nomenclature and classification of enzymes, vol Ed. 6. Academic Press

    Google Scholar 

  • Whisstock JC, Lesk AM (2003) Prediction of protein function from protein sequence and structure. Q Rev Biophys 36(03):307–340

    Article  CAS  PubMed  Google Scholar 

  • Wolfson HJ, Rigoutsos I (1997) Geometric hashing: An overview. Comput Sci Eng IEEE 4(4):10–21

    Article  Google Scholar 

  • Wright CS, Alden RA, Kraut J (1969) Structure of subtilisin BPN’ at 2.5 angstrom resolution. Nature 221(5177):235–242

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Bourne PE (2008) Detecting evolutionary relationships across existing fold space, using sequence order-independent profile–profile alignments. Proc Natl Acad Sci 105(14):5441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Bourne PE (2009) A unified statistical model to support local sequence order independent similarity searching for ligand-binding sites and its application to genome-based drug discovery. Bioinformatics 25(12):i305–i312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang LW, Bahar I (2005) Coupling between catalytic site and collective dynamics: a requirement for mechanochemical activity of enzymes. Structure 13(6):893–904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zemla A (2003) LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res 31(13):3370–3374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Kumar R, Sakai A, Vetting MW, Wood BM, Brown S, Bonanno JB, Hillerich BS, Seidel RD, Babbitt PC (2013) Discovery of new enzymes and metabolic pathways by using structure and genome context. Nature 502(7473):698–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge support from NIH GM60595 and NSF DBI-0234768. Molecular graphics were produced with the UCSF Chimera package from the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIH P41-GM103311). We thank Jacquelyn Fetrow and Stacy Knutson (Wake Forest University) for providing Fig. 11.5 as an example of a result from their FFF/DASP/PASS motif analysis software. We gratefully acknowledge Dan Kirshner for enlightening discussions and a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome P. Nilmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nilmeier, J.P., Meng, E.C., Polacco, B.J., Babbitt, P.C. (2017). 3D Motifs. In: J. Rigden, D. (eds) From Protein Structure to Function with Bioinformatics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1069-3_11

Download citation

Publish with us

Policies and ethics