Skip to main content

Ab Initio Protein Structure Prediction

  • Chapter
  • First Online:
From Protein Structure to Function with Bioinformatics

Abstract

Predicting a protein’s structure from its amino acid sequence remains an unsolved problem after several decades of efforts. If the query protein has a homolog of known structure, the task is relatively easy and high-resolution models can often be built by copying and refining the framework of the solved structure. However, a template-based modeling procedure does not help answer the questions of how and why a protein adopts its specific structure. In particular, if structural homologs do not exist, or exist but cannot be identified, models have to be constructed from scratch. This procedure, called ab initio modeling, is essential for a complete solution to the protein structure prediction problem; it can also help us understand the physicochemical principle of how proteins fold in nature. Currently, the accuracy of ab initio modeling is low and the success is generally limited to small proteins (<120 residues). With the help of co-evolution based contact map predictions, success in folding larger-size proteins was recently witnessed in blind testing experiments. In this chapter, we give a review on the field of ab initio structure modeling. Our focus will be on three key components of the modeling algorithms: energy function design, conformational search, and model selection. Progress and advances of several representative algorithms will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bairoch A, Apweiler R, Wu CH et al (2005). The universal protein resource (UniProt). Nucleic Acids Res 33(Database issue): D154–159

    Google Scholar 

  • Battey JN, Kopp J, Bordoli L et al (2007) Automated server predictions in CASP7. Proteins 69(S8):68–82

    Article  CAS  PubMed  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF et al (1981) Interaction models for water in relation to protein hydration. Intermolecular forces, Reidel, The Netherlands

    Book  Google Scholar 

  • Berg BA, Neuhaus T (1992) Multicanonical ensemble: a new approach to simulate first-order phase transitions. Physical Review Letters 68(1):9–12

    Article  CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Research 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berrera M, Molinari H, Fogolari F (2003) Amino acid empirical contact energy definitions for fold recognition in the space of contact maps. BMC Bioinform 4:8

    Article  Google Scholar 

  • Best RB, Buchete NV, Hummer G (2008) Are current molecular dynamics force fields too helical? Biophysical Journal 95(1):L07–09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Best RB, Hummer G (2009) Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides. J Phys Chem B 113(26):9004–9015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowie JU, Eisenberg D (1994) An evolutionary approach to folding small alpha-helical proteins that uses sequence information and an empirical guiding fitness function. Proc Natl Acad Sci U S A 91(10):4436–4440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley P, Malmstrom L, Qian B et al (2005a) Free modeling with Rosetta in CASP6. Proteins 61(Suppl 7):128–134

    Article  CAS  PubMed  Google Scholar 

  • Bradley P, Misura KM, Baker D (2005b) Toward high-resolution de novo structure prediction for small proteins. Science 309(5742):1868–1871

    Article  CAS  PubMed  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD et al (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry 4(2):187–217

    Article  CAS  Google Scholar 

  • Bryant SH, Lawrence CE (1993) An empirical energy function for threading protein sequence through the folding motif. Proteins 16(1):92–112

    Article  CAS  PubMed  Google Scholar 

  • Cao R, Bhattacharya D, Adhikari B et al (2015). Massive integration of diverse protein quality assessment methods to improve template based modeling in CASP11. Proteins 84:247–259

    Google Scholar 

  • Case DA, Pearlman DA, Caldwell JA et al (1997). AMBER 5.0, University of California, San Francisco

    Google Scholar 

  • Chen J, Brooks CL 3rd (2007) Can molecular dynamics simulations provide high-resolution refinement of protein structure? Proteins 67(4):922–930

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury S, Lee MC, Xiong GM et al (2003) Ab initio folding simulation of the Trp-cage mini-protein approaches NMR resolution. Journal of Molecular Biology 327(3):711–717

    Article  CAS  PubMed  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Science 2(9):1511–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI et al (1995) A Second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society 117:5179–5197

    Article  CAS  Google Scholar 

  • Cozzetto D, Kryshtafovych A, Fidelis K et al (2009) Evaluation of template-based models in CASP8 with standard measures. Proteins 77(Suppl 9):18–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das R, Qian B, Raman S et al (2007) Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Proteins 69(S8):118–128

    Article  CAS  PubMed  Google Scholar 

  • Deng H, Jia Y, Zhang Y (2016) 3DRobot: automated generation of diverse and well-packed protein structure decoys. Bioinformatics 32(3):378–387

    Article  CAS  PubMed  Google Scholar 

  • Deng HY, Jia Y, Wei YY et al (2012) What is the best reference state for designing statistical atomic potentials in protein structure prediction? Proteins-Structure Function and Bioinformatics 80(9):2311–2322

    Article  CAS  Google Scholar 

  • Dominy BN, Brooks CL (2002) Identifying native-like protein structures using physics-based potentials. Journal of Computational Chemistry 23(1):147–160

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Kollman PA (1998) Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282(5389):740–744

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg D, Luthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods in Enzymology 277:396–404

    Article  CAS  PubMed  Google Scholar 

  • Ensign DL, Kasson PM, Pande VS (2007) Heterogeneity even at the speed limit of folding: large-scale molecular dynamics study of a fast-folding variant of the villin headpiece. Journal of Molecular Biology 374(3):806–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezkurdia I, Grana O, Izarzugaza JM et al (2009) Assessment of domain boundary predictions and the prediction of intramolecular contacts in CASP8. Proteins 77(Suppl 9):196–209

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Mark AE (2004) Refinement of homology-based protein structures by molecular dynamics simulation techniques. Protein Science 13(1):211–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feig M, Brooks CL 3rd (2002) Evaluating CASP4 predictions with physical energy functions. Proteins 49(2):232–245

    Article  CAS  PubMed  Google Scholar 

  • Feig M, Mirjalili V (2015). Protein structure refinement via molecular-dynamics simulations: what works and what does not? Proteins 84:282–292

    Google Scholar 

  • Felts AK, Gallicchio E, Wallqvist A et al (2002) Distinguishing native conformations of proteins from decoys with an effective free energy estimator based on the OPLS all-atom force field and the Surface Generalized Born solvent model. Proteins 48(2):404–422

    Article  CAS  PubMed  Google Scholar 

  • Fischer D (2006) Servers for protein structure prediction. Current Opinion in Structural Biology 16(2):178–182

    Article  CAS  PubMed  Google Scholar 

  • Freddolino PL, Harrison CB, Liu Y et al (2010) Challenges in protein folding simulations: timescale, representation, and analysis. Nature Physics 6(10):751–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freddolino PL, Liu F, Gruebele M et al (2008) Ten-microsecond molecular dynamics simulation of a fast-folding WW domain. Biophysical Journal 94(10):L75–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freddolino PL, Park S, Roux B et al (2009) Force field bias in protein folding simulations. Biophysical Journal 96(9):3772–3780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freddolino PL, Schulten K (2009) Common structural transitions in explicit-solvent simulations of villin headpiece folding. Biophysical Journal 97(8):2338–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujitsuka Y, Chikenji G, Takada S (2006) SimFold energy function for de novo protein structure prediction: consensus with Rosetta. Proteins 62(2):381–398

    Article  CAS  PubMed  Google Scholar 

  • Ginalski K, Elofsson A, Fischer D et al (2003) 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19(8):1015–1018

    Article  CAS  PubMed  Google Scholar 

  • Hagler A, Euler E, Lifson S (1974) Energy functions for peptides and proteins i. derivation of a consistent force field including the hydrogen bond from amide crystals. Journal of the American Chemical Society 96:5319–5327

    Article  CAS  PubMed  Google Scholar 

  • Hamelberg D, Mongan J, McCammon JA (2004) Enhanced sampling of conformational transitions in proteins using full atomistic accelerated molecular dynamics simulations. Protein Science 13:76

    Google Scholar 

  • Helles G (2008) A comparative study of the reported performance of ab initio protein structure prediction algorithms. Journal of the Royal Society, Interface 5(21):387–396

    Article  CAS  PubMed  Google Scholar 

  • Hendlich M, Lackner P, Weitckus S et al (1990) Identification of native protein folds amongst a large number of incorrect models. The calculation of low energy conformations from potentials of mean force. Journal of Molecular Biology 216(1):167–180

    Article  CAS  PubMed  Google Scholar 

  • Hills RD Jr, Brooks CL 3rd (2009) Insights from coarse-grained go models for protein folding and dynamics. International Journal of Molecular Sciences 10(3):889–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh MJ, Luo R (2004) Physical scoring function based on AMBER force field and poisson-boltzmann implicit solvent for protein structure prediction. Proteins 56(3):475–486

    Article  CAS  PubMed  Google Scholar 

  • Im W, Lee MS, Brooks CL 3rd (2003) Generalized born model with a simple smoothing function. Journal of Computational Chemistry 24(14):1691–1702

    Article  CAS  PubMed  Google Scholar 

  • Jagielska A, Wroblewska L, Skolnick J (2008) Protein model refinement using an optimized physics-based all-atom force field. Proceedings of the National Academy of Sciences of the United States of America 105(24):8268–8273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jauch R, Yeo HC, Kolatkar PR et al (2007) Assessment of CASP7 structure predictions for template free targets. Proteins 69(Suppl 8):57–67

    Article  CAS  PubMed  Google Scholar 

  • Jonassen I, Klose D, Taylor WR (2006) Protein model refinement using structural fragment tessellation. Computational Biology and Chemistry 30(5):360–366

    Article  CAS  PubMed  Google Scholar 

  • Jones DT (1999) GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. Journal of Molecular Biology 287(4):797–815

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Buchan DW, Cozzetto D et al (2012) PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics 28(2):184–190

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society 118:11225–11236

    Article  CAS  Google Scholar 

  • Jorgensen WL, Tirado-Rives J (1988) The OPLS potential functions for proteins. energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society 110:1657–1666

    Article  CAS  PubMed  Google Scholar 

  • Kaminski GA, Friesner RA, Tirado-Rives J et al (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  • Karplus K, Barrett C, Hughey R (1998) Hidden markov models for detecting remote protein homologies. Bioinformatics 14:846–856

    Article  CAS  PubMed  Google Scholar 

  • Kihara D, Lu H, Kolinski A et al (2001) TOUCHSTONE: an ab initio protein structure prediction method that uses threading-based tertiary restraints. Proc Natl Acad Sci U S A 98(18):10125–10130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinch L, Yong Shi S, Cong Q et al (2011) CASP9 assessment of free modeling target predictions. Proteins 79(Suppl 10):59–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinch LN, Li W, Monastyrskyy B, et al. (2015). Evaluation of free modeling targets in CASP11 and ROLL. Proteins 84: 51–66

    Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  CAS  PubMed  Google Scholar 

  • Klepeis JL, Floudas CA (2003) ASTRO-FOLD: a combinatorial and global optimization framework for Ab initio prediction of three-dimensional structures of proteins from the amino acid sequence. Biophysical Journal 85(4):2119–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klepeis JL, Wei Y, Hecht MH et al (2005) Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study. Proteins 58(3):560–570

    Article  CAS  PubMed  Google Scholar 

  • Kocher JP, Rooman MJ, Wodak SJ (1994) Factors influencing the ability of knowledge-based potentials to identify native sequence-structure matches. Journal of Molecular Biology 235(5):1598–1613

    Article  CAS  PubMed  Google Scholar 

  • Kosciolek T, Jones DT (2014) De novo structure prediction of globular proteins aided by sequence variation-derived contacts. PLoS ONE 9(3):e92197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kryshtafovych A, Barbato A, Fidelis K et al (2014) Assessment of the assessment: evaluation of the model quality estimates in CASP10. Proteins 82(Suppl 2):112–126

    Article  CAS  PubMed  Google Scholar 

  • Kryshtafovych A, Barbato A, Monastyrskyy B, et al (2015) Methods of model accuracy estimation can help selecting the best models from decoy sets: Assessment of model accuracy estimations in CASP11. Proteins 84: 349–369

    Google Scholar 

  • Kryshtafovych A, Fidelis K, Tramontano A (2011) Evaluation of model quality predictions in CASP9. Proteins 79(Suppl 10):91–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson P, Skwark MJ, Wallner B et al (2009) Assessment of global and local model quality in CASP8 using Pcons and ProQ. Proteins 77(Suppl 9):167–172

    Article  CAS  PubMed  Google Scholar 

  • Lazaridis T, Karplus M (1999a) Discrimination of the native from misfolded protein models with an energy function including implicit solvation. Journal of Molecular Biology 288(3):477–487

    Article  CAS  PubMed  Google Scholar 

  • Lazaridis T, Karplus M (1999b) Effective energy function for proteins in solution. Proteins 35(2):133–152

    Article  CAS  PubMed  Google Scholar 

  • Lee J (1993) New monte carlo algorithm: entropic sampling. Physical Review Letters 71(2):211–214

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kim SY, Joo K et al (2004) Prediction of protein tertiary structure using PROFESY, a novel method based on fragment assembly and conformational space annealing. Proteins 56(4):704–714

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Scheraga HA, Rackovsky S (1998) Conformational analysis of the 20-residue membrane-bound portion of melittin by conformational space annealing. Biopolymers 46(2):103–116

    Article  CAS  PubMed  Google Scholar 

  • Lee MC, Duan Y (2004) Distinguish protein decoys by using a scoring function based on a new AMBER force field, short molecular dynamics simulations, and the generalized born solvent model. Proteins 55(3):620–634

    Article  CAS  PubMed  Google Scholar 

  • Lee MR, Tsai J, Baker D et al (2001) Molecular dynamics in the endgame of protein structure prediction. Journal of Molecular Biology 313(2):417–430

    Article  CAS  PubMed  Google Scholar 

  • Lei HX, Wu C, Liu HG et al (2007) Folding free-energy landscape of villin headpiece subdomain from molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America 104(12):4925–4930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitt M, Hirshberg M, Sharon R et al (1995) Potential-energy function and parameters for simulations of the molecular-dynamics of proteins and nucleic-acids in solution. Computer Physics Communications 91(1–3):215–231

    Article  CAS  Google Scholar 

  • Li Z, Scheraga HA (1987) Monte carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci U S A 84(19):6611–6615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Modeling 7:306–317

    Article  CAS  Google Scholar 

  • Lindorff-Larsen K, Maragakis P, Piana S et al (2012) Systematic validation of protein force fields against experimental data. PLoS ONE 7(2):e32131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindorff-Larsen K, Piana S, Dror RO et al (2011) How fast-folding proteins fold. Science 334(6055):517–520

    CAS  PubMed  Google Scholar 

  • Lindorff-Larsen K, Piana S, Palmo K et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78(8):1950–1958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liwo A, Khalili M, Scheraga HA (2005) Ab initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains. Proc Natl Acad Sci U S A 102(7):2362–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liwo A, Lee J, Ripoll DR et al (1999) Protein structure prediction by global optimization of a potential energy function. Proc Natl Acad Sci U S A 96(10):5482–5485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liwo A, Pincus MR, Wawak RJ et al (1993) Calculation of protein backbone geometry from alpha-carbon coordinates based on peptide-group dipole alignment. Protein Science 2(10):1697–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Skolnick J (2001) A distance-dependent atomic knowledge-based potential for improved protein structure selection. Proteins 44(3):223–232

    Article  CAS  PubMed  Google Scholar 

  • Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356(6364):83–85

    Article  CAS  PubMed  Google Scholar 

  • MacKerell AD Jr, Bashford D, Bellott M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  PubMed  Google Scholar 

  • Mariani V, Kiefer F, Schmidt T et al (2011) Assessment of template based protein structure predictions in CASP9. Proteins 79(Suppl 10):37–58

    Article  CAS  PubMed  Google Scholar 

  • Marks DS, Colwell LJ, Sheridan R et al (2011) Protein 3D structure computed from evolutionary sequence variation. PLoS ONE 6(12):e28766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marks DS, Hopf TA, Sander C (2012) Protein structure prediction from sequence variation. Nature Biotechnology 30(11):1072–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuffin LJ (2007) Benchmarking consensus model quality assessment for protein fold recognition. BMC Bioinformatics 8:345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melo F, Sanchez R, Sali A (2002) Statistical potentials for fold assessment. Protein Science 11(2):430–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN et al (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  • Miao YL, Feixas F, Eun CS et al (2015) Accelerated molecular dynamics simulations of protein folding. Journal of Computational Chemistry 36(20):1536–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirjalili V, Feig M (2013) Protein structure refinement through structure selection and averaging from molecular dynamics ensembles. Journal of Chemical Theory and Computation 9(2):1294–1303

    Article  CAS  PubMed  Google Scholar 

  • Mitchell M (1996). An Introduction to Genetic Algorithms. Cambridge, MIT Press

    Google Scholar 

  • Mittal J, Best RB (2010) Tackling force-field bias in protein folding simulations: folding of Villin HP35 and Pin WW domains in explicit water. Biophysical Journal 99(3):L26–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montelione GT (2012). Template based modeling assessment in CASP10. 10th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction. Gaeta, Italy

    Google Scholar 

  • Moult J, Fidelis K, Zemla A et al (2001) Critical assessment of methods of protein structure prediction (CASP): round IV. Proteins Suppl 5:2–7

    Article  CAS  Google Scholar 

  • Nemethy G, Gibson KD, Palmer KA et al (1992) Energy parameters in polypeptides. 10. Improved geometric parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides. J Phys Chem B 96:6472–6484

    Article  CAS  Google Scholar 

  • Neria E, Fischer S, Karplus M (1996) Simulation of activation free energies in molecular systems. J Chem Phys 105(5):1902–1921

    Article  CAS  Google Scholar 

  • Nguyen H, Maier J, Huang H et al (2014) Folding simulations for proteins with diverse topologies are accessible in days with a physics-based force field and implicit solvent. Journal of the American Chemical Society 136(40):13959–13962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilges M, Brunger AT (1991) Automated modeling of coiled coils: application to the GCN4 dimerization region. Protein Engineering 4(6):649–659

    Article  CAS  PubMed  Google Scholar 

  • Oldziej S, Czaplewski C, Liwo A et al (2005) Physics-based protein-structure prediction using a hierarchical protocol based on the UNRES force field: assessment in two blind tests. Proceedings of the National Academy of Sciences of the United States of America 102(21):7547–7552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ovchinnikov S, Kim DE, Wang RY, et al (2015) Improved de novo structure prediction in CASP11 by incorporating Co-evolution information into rosetta. Proteins 84:67–75

    Google Scholar 

  • Park B, Levitt M (1996) Energy functions that discriminate X-ray and near native folds from well-constructed decoys. Journal of Molecular Biology 258(2):367–392

    Article  CAS  PubMed  Google Scholar 

  • Petrey D, Honig B (2000) Free energy determinants of tertiary structure and the evaluation of protein models. Protein Science 9(11):2181–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettitt CS, McGuffin LJ, Jones DT (2005) Improving sequence-based fold recognition by using 3D model quality assessment. Bioinformatics 21(17):3509–3515

    Article  CAS  PubMed  Google Scholar 

  • Piana S, Klepeis JL, Shaw DE (2014) Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Current Opinion in Structural Biology 24:98–105

    Article  CAS  PubMed  Google Scholar 

  • Piana S, Lindorff-Larsen K, Shaw DE (2011) How robust are protein folding simulations with respect to force field parameterization? Biophysical Journal 100(9):L47–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piana S, Lindorff-Larsen K, Shaw DE (2012) Protein folding kinetics and thermodynamics from atomistic simulation. Proceedings of the National Academy of Sciences of the United States of America 109(44):17845–17850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piana S, Lindorff-Larsen K, Shaw DE (2013a) Atomic-level description of ubiquitin folding. Proc Natl Acad Sci U S A 110(15):5915–5920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piana S, Lindorff-Larsen K, Shaw DE (2013b) Atomistic description of the folding of a dimeric protein. J Phys Chem B 117(42):12935–12942

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols 5(4):725–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology 234(3):779–815

    Article  CAS  PubMed  Google Scholar 

  • Samudrala R, Moult J (1998) An all-atom distance-dependent conditional probability discriminatory function for protein structure prediction. Journal of Molecular Biology 275(5):895–916

    Article  CAS  PubMed  Google Scholar 

  • Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Science 15(11):2507–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shortle D, Simons KT, Baker D (1998) Clustering of low-energy conformations near the native structures of small proteins. Proc Natl Acad Sci U S A 95(19):11158–11162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons KT, Kooperberg C, Huang E et al (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring functions. Journal of Molecular Biology 268(1):209–225

    Article  CAS  PubMed  Google Scholar 

  • Sippl MJ (1990) Calculation of conformational ensembles from potentials of mean force. an approach to the knowledge-based prediction of local structures in globular proteins. Journal of Molecular Biology 213(4):859–883

    Article  CAS  PubMed  Google Scholar 

  • Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17(4):355–362

    Article  CAS  PubMed  Google Scholar 

  • Skolnick J (2006) In quest of an empirical potential for protein structure prediction. Current Opinion in Structural Biology 16(2):166–171

    Article  CAS  PubMed  Google Scholar 

  • Skolnick J, Jaroszewski L, Kolinski A et al (1997) Derivation and testing of pair potentials for protein folding. When is the quasichemical approximation correct? Protein Science 6:676–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skolnick J, Kihara D, Zhang Y (2004) Development and large scale benchmark testing of the PROSPECTOR 3.0 threading algorithm. Protein 56:502–518

    Article  CAS  Google Scholar 

  • Skolnick J, Zhang Y, Arakaki AK et al (2003) TOUCHSTONE: A unified approach to protein structure prediction. Proteins 53(Suppl 6):469–479

    Article  CAS  PubMed  Google Scholar 

  • Soding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21(7):951–960

    Article  PubMed  Google Scholar 

  • Sorin EJ, Pande VS (2005) Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. Biophysical Journal 88(4):2472–2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters 314(1–2):141–151

    Article  CAS  Google Scholar 

  • Summa CM, Levitt M (2007) Near-native structure refinement using in vacuo energy minimization. Proc Natl Acad Sci U S A 104(9):3177–3182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swendsen RH, Wang JS (1986) Replica Monte Carlo simulation of spin glasses. Physical Review Letters 57(21):2607–2609

    Article  CAS  PubMed  Google Scholar 

  • Tai CH, Bai H, Taylor TJ et al (2014) Assessment of template-free modeling in CASP10 and ROLL. Proteins 82(Suppl 2):57–83

    Article  CAS  PubMed  Google Scholar 

  • Taylor WR, Bartlett GJ, Chelliah V et al (2008) Prediction of protein structure from ideal forms. Proteins 70(4):1610–1619

    Article  CAS  PubMed  Google Scholar 

  • Thomas PD, Dill KA (1996) Statistical potentials extracted from protein structures: how accurate are they? Journal of Molecular Biology 257(2):457–469

    Article  CAS  PubMed  Google Scholar 

  • Tosatto SC (2005) The victor/FRST function for model quality estimation. Journal of Computational Biology 12(10):1316–1327

    Article  CAS  PubMed  Google Scholar 

  • Tozzini V (2005) Coarse-grained models for proteins. Current Opinion in Structural Biology 15(2):144–150

    Article  CAS  PubMed  Google Scholar 

  • Tsai J, Bonneau R, Morozov AV et al (2003) An improved protein decoy set for testing energy functions for protein structure prediction. Proteins 53(1):76–87

    Article  CAS  PubMed  Google Scholar 

  • van Gunsteren WF, Billeter SR, Eising AA et al (1996). Biomolecular simulation: The GROMOS96 Manual and User Guide Univ Publ House, Zurich

    Google Scholar 

  • Vieth M, Kolinski A, Brooks CL et al (1994) Prediction of the folding pathways and structure of the GCN4 leucine zipper. Journal of Molecular Biology 237(4):361–367

    Article  CAS  PubMed  Google Scholar 

  • Wallner B, Elofsson A (2003) Can correct protein models be identified? Protein Science 12(5):1073–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallner B, Elofsson A (2007) Prediction of global and local model quality in CASP7 using Pcons and ProQ. Proteins 69(S8):184–193

    Article  CAS  PubMed  Google Scholar 

  • Wang JM, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry 21(12):1049–1074

    Article  CAS  Google Scholar 

  • Wang K, Fain B, Levit M et al (2004). Improved protein structure selection using decoy-dependent discriminatory functions. BMC Structural Biology 4(8)

    Google Scholar 

  • Weiner SJ, Kollman PA, Case DA et al (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society 106:765–784

    Article  CAS  Google Scholar 

  • Wiederstein M, Sippl MJ (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Web Server issue): W407–410

    Google Scholar 

  • Wroblewska L, Skolnick J (2007) Can a physics-based, all-atom potential find a protein’s native structure among misfolded structures? i. large scale AMBER benchmarking. Journal of Computational Chemistry 28(12):2059–2066

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Skolnick J, Zhang Y (2007) Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biology 5:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu S, Szilagyi A, Zhang Y (2011) Improving protein structure prediction using multiple sequence-based contact predictions. Structure 19(8):1182–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Zhang Y (2007) LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Research 35(10):3375–3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Zhang Y (2008a) A comprehensive assessment of sequence-based and template-based methods for protein contact prediction. Bioinformatics 24(7):924–931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu S, Zhang Y (2008b) MUSTER: Improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins 72(2):547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Zhang Y (2010) Recognizing protein substructure similarity using segmental threading. Structure 18(7):858–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Zhang J, Roy A et al (2011) Automated protein structure modeling in CASP9 by I-TASSER pipeline combined with QUARK-based ab initio folding and FG-MD-based structure refinement. Proteins 79(Suppl 10):147–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Zhang Y (2012) Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80(7):1715–1735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Zhang Y (2013) Toward optimal fragment generations for ab initio protein structure assembly. Proteins 81(2):229–239

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Yan R, Roy A et al (2015a) The I-TASSER Suite: protein structure and function prediction. Nature Methods 12(1):7–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zhang W, He B, et al (2015) Template-based protein structure prediction in CASP11 and retrospect of I-TASSER in the last decade. Proteins 84: 233–246

    Google Scholar 

  • Yang Y, Faraggi E, Zhao H et al (2011) Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates. Bioinformatics 27(15):2076–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zagrovic B, Snow CD, Shirts MR et al (2002) Simulation of folding of a small alpha-helical protein in atomistic detail using worldwide-distributed computing. Journal of Molecular Biology 323(5):927–937

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Kim SH (2000) Environment-dependent residue contact energies for proteins. Proc Natl Acad Sci U S A 97(6):2550–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Liu S, Zhou H et al (2004) An accurate, residue-level, pair potential of mean force for folding and binding based on the distance-scaled, ideal-gas reference state. Protein Science 13(2):400–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Liang Y, Zhang Y (2011) Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling. Structure 19(12):1784–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang Y (2010) A novel side-chain orientation dependent potential derived from random-walk reference state for protein fold selection and structure prediction. PLoS ONE 5(10):e15386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang W, Yang J, He B et al (2015). Integration of QUARK and I-TASSER for Ab initio protein structure prediction in CASP11. Proteins 84: 76–86

    Google Scholar 

  • Zhang Y (2008). Progress and Challenges in protein structure prediction. Curr Opin Struct Biol: In press

    Google Scholar 

  • Zhang Y (2009) I-TASSER: Fully automated protein structure prediction in CASP8. Proteins 77(S9):100–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y (2014) Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10. Proteins 82(Suppl 2):175–187

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Hubner I, Arakaki A et al (2006) On the origin and completeness of highly likely single domain protein structures. Proc Natl Acad Sci U S A 103:2605–2610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Kihara D, Skolnick J (2002) Local energy landscape flattening: parallel hyperbolic monte carlo sampling of protein folding. Proteins-Struct Func Genet 48(2):192–201

    Article  CAS  Google Scholar 

  • Zhang Y, Kolinski A, Skolnick J (2003) TOUCHSTONE II: A new approach to ab initio protein structure prediction. Biophysical Journal 85(2):1145–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Skolnick J (2004a) Automated structure prediction of weakly homologous proteins on a genomic scale. Proceedings of the National Academy of Sciences of the United States of America 101:7594–7599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Skolnick J (2004b) SPICKER: a clustering approach to identify near-native protein folds. Journal of Computational Chemistry 25(6):865–871

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Skolnick J (2005a) The protein structure prediction problem could be solved using the current PDB library. Proc Natl Acad Sci U S A 102:1029–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Skolnick J (2005b) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Research 33(7):2302–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Skolnick J (2013) Segment assembly, structure alignment and iterative simulation in protein structure prediction. BMC Biology 11:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou H, Skolnick J (2007) Ab initio protein structure prediction using chunk-TASSER. Biophysical Journal 93(5):1510–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Skolnick J (2011) GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction. Biophysical Journal 101(8):2043–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Zhou Y (2002) Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Science 11(11):2714–2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou R (2003) Free energy landscape of protein folding in water: explicit vs. implicit solvent. Proteins 53(2):148–161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors want to thank Drs. Sitao Wu and Haiyou Deng for their contribution to the article. The project is supported in part by the National Institute of General Medical Sciences (GM083107, GM116960, and GM097033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lee, J., Freddolino, P.L., Zhang, Y. (2017). Ab Initio Protein Structure Prediction. In: J. Rigden, D. (eds) From Protein Structure to Function with Bioinformatics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1069-3_1

Download citation

Publish with us

Policies and ethics