Skip to main content

Transport Characteristics of Aquaporins

  • Chapter
  • First Online:
Aquaporins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 969))

Abstract

Aquaporins (AQPs ) are a class of the integral membrane proteins, which are permeable to water , some small neutral solutes and certain gases across biological membranes. AQPs are considered as critical transport mediators that are involved in many physiological functions and pathological processes such as transepithelial fluid transport , cell migration, brain edema , neuro excitation and carcinoma. This chapter will provide information about the transport characteristics of AQPs .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels – from atomic structure to clinical medicine. J Physiol 542:3–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Benga G (2012) The first discovered water channel protein, later called aquaporin 1: molecular characteristics, functions and medical implications. Mol Asp Med 33:518–534

    Article  CAS  Google Scholar 

  3. Yang B, Verkman AS (1997) Water and glycerol permeabilities of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J Biol Chem 272:16140–16146

    Article  CAS  PubMed  Google Scholar 

  4. Ma T, Yang B, Kuo WL, Verkman AS (1996) cDNA cloning and gene structure of a novel water channel expressed exclusively in human kidney: evidence for a gene cluster of aquaporins at chromosome locus 12q13. Genomics 35:543–550

    Article  CAS  PubMed  Google Scholar 

  5. Yasui M, Hazama A, Kwon TH, Nielsen S, Guggino WB, Agre P (1999) Rapid gating and anion permeability of an intracellular aquaporin. Nature 402:184–187

    Article  CAS  PubMed  Google Scholar 

  6. Nagase H, Agren J, Saito A, Liu K, Agre P, Hazama A, Yasui M (2007) Molecular cloning and characterization of mouse aquaporin 6. Biochem Biophys Res Commun 352:12–16

    Article  CAS  PubMed  Google Scholar 

  7. Geyer RR, Musa-Aziz R, Qin X, Boron WF (2013) Relative CO(2)/NH(3) selectivities of mammalian aquaporins 0-9. Am J Physiol Cell Physiol 304:C985–C994

    Article  PubMed  Google Scholar 

  8. Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F, Sasaki S (1997) Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 272:20782–20786

    Article  CAS  PubMed  Google Scholar 

  9. Ma T, Yang B, Verkman AS (1997) Cloning of a novel water and urea-permeable aquaporin from mouse expressed strongly in colon, placenta, liver, and heart. Biochem Biophys Res Commun 240:324–328

    Article  CAS  PubMed  Google Scholar 

  10. Carbrey JM, Gorelick-Feldman DA, Kozono D, Praetorius J, Nielsen S, Agre P (2003) Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proc Natl Acad Sci U S A 100:2945–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ishibashi K, Morinaga T, Kuwahara M, Sasaki S, Imai M (2002) Cloning and identification of a new member of water channel (AQP10) as an aquaglyceroporin. Biochim Biophys Acta 1576:335–340

    Article  CAS  PubMed  Google Scholar 

  12. Ikeda M, Andoo A, Shimono M, Takamatsu N, Taki A, Muta K, Matsushita W, Uechi T, Matsuzaki T, Kenmochi N, Takata K, Sasaki S, Ito K, Ishibashi K (2011) The NPC motif of aquaporin-11, unlike the NPA motif of known aquaporins, is essential for full expression of molecular function. J Biol Chem 286:3342–3350

    Article  CAS  PubMed  Google Scholar 

  13. Yakata K, Tani K, Fujiyoshi Y (2011) Water permeability and characterization of aquaporin-11. J Struct Biol 174:315–320

    Article  CAS  PubMed  Google Scholar 

  14. Zeuthen T (2002) General models for water transport across leaky epithelia. Int Rev Cytol 215:285–317

    Article  CAS  PubMed  Google Scholar 

  15. O’Donnell MJ, Maddrell SH (1983) Paracellular and transcellular routes for water and solute movements across insect epithelia. J Exp Biol 106:231–253

    PubMed  Google Scholar 

  16. Carlsson O, Nielsen S, Zakaria e-R, Rippe B (1996) In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats. Am J Phys 271:H2254–H2262

    CAS  Google Scholar 

  17. Li C, Wang W (2014) Urea transport mediated by aquaporin water channel proteins. Subcell Biochem 73:227–265

    Article  CAS  PubMed  Google Scholar 

  18. Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    Article  CAS  PubMed  Google Scholar 

  19. Zeidel ML, Ambudkar SV, Smith BL, Agre P (1992) Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31:7436–7440

    Article  CAS  PubMed  Google Scholar 

  20. Zeidel ML, Nielsen S, Smith BL, Ambudkar SV, Maunsbach AB, Agre P (1994) Ultrastructure, pharmacologic inhibition, and transport selectivity of aquaporin channel-forming integral protein in proteoliposomes. Biochemistry 33:1606–1615

    Article  CAS  PubMed  Google Scholar 

  21. Hirano Y, Okimoto N, Kadohira I, Suematsu M, Yasuoka K, Yasui M (2010) Molecular mechanisms of how mercury inhibits water permeation through aquaporin-1: understanding by molecular dynamics simulation. Biophys J 98:1512–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuwahara M, Gu Y, Ishibashi K, Marumo F, Sasaki S (1997) Mercury-sensitive residues and pore site in AQP3 water channel. Biochemistry 36:13973–13978

    Article  CAS  PubMed  Google Scholar 

  23. Yang B, Brown D, Verkman AS (1996) The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells. J Biol Chem 271:4577–4580

    Article  CAS  PubMed  Google Scholar 

  24. Yasui M (2009) pH regulated anion permeability of aquaporin-6. Handb Exp Pharmacol:299–308

    Google Scholar 

  25. Sui H, Han BG, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    Article  CAS  PubMed  Google Scholar 

  26. de Groot BL, Grubmuller H (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294:2353–2357

    Article  PubMed  Google Scholar 

  27. Tajkhorshid E, Nollert P, Jensen MO, Miercke LJ, O’Connell J, Stroud RM, Schulten K (2002) Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296:525–530

    Article  CAS  PubMed  Google Scholar 

  28. Agre P (2004) Aquaporin water channels (Nobel Lecture). Angew Chem 43:4278–4290

    Article  CAS  Google Scholar 

  29. Kozono D, Yasui M, King LS, Agre P (2002) Aquaporin water channels: atomic structure molecular dynamics meet clinical medicine. J Clin Invest 109:1395–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hub JS, de Groot BL (2008) Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci U S A 105:1198–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma T, Frigeri A, Hasegawa H, Verkman AS (1994) Cloning of a water channel homolog expressed in brain meningeal cells and kidney collecting duct that functions as a stilbene-sensitive glycerol transporter. J Biol Chem 269:21845–21849

    CAS  PubMed  Google Scholar 

  32. Ishibashi K, Sasaki S, Fushimi K, Uchida S, Kuwahara M, Saito H, Furukawa T, Nakajima K, Yamaguchi Y, Gojobori T et al (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci U S A 91:6269–6273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Echevarria M, Windhager EE, Tate SS, Frindt G (1994) Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc Natl Acad Sci U S A 91:10997–11001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225–3232

    Article  CAS  PubMed  Google Scholar 

  35. Hara-Chikuma M, Verkman AS (2006) Physiological roles of glycerol-transporting aquaporins: the aquaglyceroporins. Cell Mol Life Sci 63:1386–1392

    Article  CAS  PubMed  Google Scholar 

  36. Ma T, Hara M, Sougrat R, Verbavatz JM, Verkman AS (2002) Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. J Biol Chem 277:17147–17153

    Article  CAS  PubMed  Google Scholar 

  37. Hara M, Ma T, Verkman AS (2002) Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, and barrier recovery. J Biol Chem 277:46616–46621

    Article  CAS  PubMed  Google Scholar 

  38. Miranda M, Escote X, Ceperuelo-Mallafre V, Alcaide MJ, Simon I, Vilarrasa N, Wabitsch M, Vendrell J (2010) Paired subcutaneous and visceral adipose tissue aquaporin-7 expression in human obesity and type 2 diabetes: differences and similarities between depots. J Clin Endocrinol Metab 95:3470–3479

    Article  CAS  PubMed  Google Scholar 

  39. Rodriguez A, Catalan V, Gomez-Ambrosi J, Fruhbeck G (2011) Aquaglyceroporins serve as metabolic gateways in adiposity and insulin resistance control. Cell Cycle 10:1548–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rodriguez A, Catalan V, Gomez-Ambrosi J, Garcia-Navarro S, Rotellar F, Valenti V, Silva C, Gil MJ, Salvador J, Burrell MA, Calamita G, Malagon MM, Fruhbeck G (2011) Insulin- and leptin-mediated control of aquaglyceroporins in human adipocytes and hepatocytes is mediated via the PI3K/Akt/mTOR signaling cascade. J Clin Endocrinol Metab 96:E586–E597

    Article  CAS  PubMed  Google Scholar 

  41. Maeda N, Funahashi T, Shimomura I (2008) Metabolic impact of adipose and hepatic glycerol channels aquaporin 7 and aquaporin 9, Nature clinical practice. Endocrinol Metab 4:627–634

    CAS  Google Scholar 

  42. Elkjaer M, Vajda Z, Nejsum LN, Kwon T, Jensen UB, Amiry-Moghaddam M, Frokiaer J, Nielsen S (2000) Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem Biophys Res Commun 276:1118–1128

    Article  CAS  PubMed  Google Scholar 

  43. Ishibashi K, Kuwahara M, Gu Y, Tanaka Y, Marumo F, Sasaki S (1998) Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem Biophys Res Commun 244:268–274

    Article  CAS  PubMed  Google Scholar 

  44. Tsukaguchi H, Shayakul C, Berger UV, Mackenzie B, Devidas S, Guggino WB, van Hoek AN, Hediger MA (1998) Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem 273:24737–24743

    Article  CAS  PubMed  Google Scholar 

  45. Ko SB, Uchida S, Naruse S, Kuwahara M, Ishibashi K, Marumo F, Hayakawa T, Sasaki S (1999) Cloning and functional expression of rAOP9L a new member of aquaporin family from rat liver. Biochem Mol Biol Int 47:309–318

    CAS  PubMed  Google Scholar 

  46. Hatakeyama S, Yoshida Y, Tani T, Koyama Y, Nihei K, Ohshiro K, Kamiie JI, Yaoita E, Suda T, Hatakeyama K, Yamamoto T (2001) Cloning of a new aquaporin (AQP10) abundantly expressed in duodenum and jejunum. Biochem Biophys Res Commun 287:814–819

    Article  CAS  PubMed  Google Scholar 

  47. Cushny AR (1917) The excretion of urea and sugar by the kidney. J Physiol 51:36–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sands JM, Layton HE (2014) Advances in understanding the urine-concentrating mechanism. Annu Rev Physiol 76:387–409

    Article  CAS  PubMed  Google Scholar 

  49. Ishibashi K, Imai M, Sasaki S (2000) Cellular localization of aquaporin 7 in the rat kidney. Exp Nephrol 8:252–257

    Article  CAS  PubMed  Google Scholar 

  50. Holm LM, Klaerke DA, Zeuthen T (2004) Aquaporin 6 is permeable to glycerol and urea. Pflugers Arch – Eur J Physiol 448:181–186

    Article  CAS  Google Scholar 

  51. Meinild AK, Klaerke DA, Zeuthen T (1998) Bidirectional water fluxes and specificity for small hydrophilic molecules in aquaporins 0-5. J Biol Chem 273:32446–32451

    Article  CAS  PubMed  Google Scholar 

  52. Kitchen P, Day RE, Salman MM, Conner MT, Bill RM, Conner AC (2015) Beyond water homeostasis: diverse functional roles of mammalian aquaporins. Biochim Biophys Acta 1850:2410–2421

    Article  CAS  PubMed  Google Scholar 

  53. Sugiyama Y, Ota Y, Hara M, Inoue S (2001) Osmotic stress up-regulates aquaporin-3 gene expression in cultured human keratinocytes. Biochim Biophys Acta 1522:82–88

    Article  CAS  PubMed  Google Scholar 

  54. Laforenza U, Gastaldi G, Grazioli M, Cova E, Tritto S, Faelli A, Calamita G, Ventura U (2005) Expression and immunolocalization of aquaporin-7 in rat gastrointestinal tract. Biol Cell/Under Auspice Eur Cell Biol Organ 97:605–613

    Article  CAS  Google Scholar 

  55. Grether-Beck S, Felsner I, Brenden H, Kohne Z, Majora M, Marini A, Jaenicke T, Rodriguez-Martin M, Trullas C, Hupe M, Elias PM, Krutmann J (2012) Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression. J Invest Dermatol 132:1561–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (2000) Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci U S A 97:4386–4391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhao D, Bankir L, Qian L, Yang D, Yang B (2006) Urea and urine concentrating ability in mice lacking AQP1 and AQP3. Am J Physiol Ren Physiol 291:F429–F438

    Article  CAS  Google Scholar 

  58. Prasad GV, Coury LA, Finn F, Zeidel ML (1998) Reconstituted aquaporin 1 water channels transport CO2 across membranes. J Biol Chem 273:33123–33126

    Article  CAS  PubMed  Google Scholar 

  59. Cooper GJ, Boron WF (1998) Effect of PCMBS on CO2 permeability of Xenopus oocytes expressing aquaporin 1 or its C189S mutant. Am J Phys 275:C1481–C1486

    CAS  Google Scholar 

  60. Endeward V, Musa-Aziz R, Cooper GJ, Chen LM, Pelletier MF, Virkki LV, Supuran CT, King LS, Boron WF, Gros G (2006) Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB J Off Publ Fed Am Soc Exp Biol 20:1974–1981

    CAS  Google Scholar 

  61. Itel F, Al-Samir S, Oberg F, Chami M, Kumar M, Supuran CT, Deen PM, Meier W, Hedfalk K, Gros G, Endeward V (2012) CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels. FASEB J Off Publ Fed Am Soc Exp Biol 26:5182–5191

    CAS  Google Scholar 

  62. Fang X, Yang B, Matthay MA, Verkman AS (2002) Evidence against aquaporin-1-dependent CO2 permeability in lung and kidney. J Physiol 542:63–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang B, Fukuda N, van Hoek A, Matthay MA, Ma T, Verkman AS (2000) Carbon dioxide permeability of aquaporin-1 measured in erythrocytes and lung of aquaporin-1 null mice and in reconstituted proteoliposomes. J Biol Chem 275:2686–2692

    Article  CAS  PubMed  Google Scholar 

  64. Furchgott RF (1990) The 1989 Ulf von Euler lecture. Studies on endothelium-dependent vasodilation and the endothelium-derived relaxing factor. Acta Physiol Scand 139:257–270

    Article  CAS  PubMed  Google Scholar 

  65. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  CAS  PubMed  Google Scholar 

  66. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  CAS  PubMed  Google Scholar 

  67. Gannon BJ, Carati CJ (2003) Endothelial distribution of the membrane water channel molecule aquaporin-1: implications for tissue and lymph fluid physiology? Lymphat Res Biol 1:55–66

    Article  CAS  PubMed  Google Scholar 

  68. Herrera M, Hong NJ, Garvin JL (2006) Aquaporin-1 transports NO across cell membranes. Hypertension 48:157–164

    Article  CAS  PubMed  Google Scholar 

  69. Herrera M, Garvin JL (2007) Novel role of AQP-1 in NO-dependent vasorelaxation. Am J Physiol Ren Physiol 292:F1443–F1451

    Article  CAS  Google Scholar 

  70. Herrera M, Garvin JL (2011) Aquaporins as gas channels. Pflugers Arch – Eur J Physiol 462:623–630

    Article  CAS  Google Scholar 

  71. Wang Y, Tajkhorshid E (2010) Nitric oxide conduction by the brain aquaporin AQP4. Proteins 78:661–670

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Holm LM, Jahn TP, Moller AL, Schjoerring JK, Ferri D, Klaerke DA, Zeuthen T (2005) NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes. Pflugers Arch – Eur J Physiol 450:415–428

    Article  CAS  Google Scholar 

  73. Musa-Aziz R, Chen LM, Pelletier MF, Boron WF (2009) Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc Natl Acad Sci U S A 106:5406–5411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Saparov SM, Liu K, Agre P, Pohl P (2007) Fast and selective ammonia transport by aquaporin-8. J Biol Chem 282:5296–5301

    Article  CAS  PubMed  Google Scholar 

  75. Wang Y, Cohen J, Boron WF, Schulten K, Tajkhorshid E (2007) Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics. J Struct Biol 157:534–544

    Article  CAS  PubMed  Google Scholar 

  76. Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  CAS  PubMed  Google Scholar 

  77. Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  CAS  PubMed  Google Scholar 

  78. Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta 1840:1596–1604

    Article  CAS  PubMed  Google Scholar 

  79. Vieceli Dalla Sega F, Zambonin L, Fiorentini D, Rizzo B, Caliceti C, Landi L, Hrelia S, Prata C (2014) Specific aquaporins facilitate Nox-produced hydrogen peroxide transport through plasma membrane in leukaemia cells. Biochim Biophys Acta 1843:806–814

    Article  CAS  PubMed  Google Scholar 

  80. Hara-Chikuma M, Chikuma S, Sugiyama Y, Kabashima K, Verkman AS, Inoue S, Miyachi Y (2012) Chemokine-dependent T cell migration requires aquaporin-3-mediated hydrogen peroxide uptake. J Exp Med 209:1743–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Miller EW, Dickinson BC, Chang CJ (2010) Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci U S A 107:15681–15686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J Biol Chem 277:39873–39879

    Article  CAS  PubMed  Google Scholar 

  83. Yool AJ, Weinstein AM (2002) New roles for old holes: ion channel function in aquaporin-1. News Physiol Sci Int J Physiol Prod Joint Int Union Physiol Sci Am Physiol Soc 17:68–72

    CAS  Google Scholar 

  84. Yool AJ, Stamer WD, Regan JW (1996) Forskolin stimulation of water and cation permeability in aquaporin 1 water channels. Science 273:1216–1218

    Article  CAS  PubMed  Google Scholar 

  85. Anthony TL, Brooks HL, Boassa D, Leonov S, Yanochko GM, Regan JW, Yool AJ (2000) Cloned human aquaporin-1 is a cyclic GMP-gated ion channel. Mol Pharmacol 57:576–588

    CAS  PubMed  Google Scholar 

  86. Yool AJ, Campbell EM (2012) Structure, function and translational relevance of aquaporin dual water and ion channels. Mol Asp Med 33:553–561

    Article  CAS  Google Scholar 

  87. Zampighi GA, Hall JE, Kreman M (1985) Purified lens junctional protein forms channels in planar lipid films. Proc Natl Acad Sci U S A 82:8468–8472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hazama A, Kozono D, Guggino WB, Agre P, Yasui M (2002) Ion permeation of AQP6 water channel protein. Single channel recordings after Hg2+ activation. J Biol Chem 277:29224–29230

    Article  CAS  PubMed  Google Scholar 

  89. Modesto E, Barcellos L, Campos-de-Carvalho AC (1990) MIP 28 forms channels in planar lipid bilayers. Braz J Med Biol Res = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica … [et al.] 23:1029–1032

    CAS  Google Scholar 

  90. Yool AJ (2007) Aquaporins: multiple roles in the central nervous system. Neurosci Rev J Bring Neurobiol Neurol Psychiatry 13:470–485

    CAS  Google Scholar 

  91. Garneau AP, Carpentier GA, Marcoux AA, Frenette-Cotton R, Simard CF, Remus-Borel W, Caron L, Jacob-Wagner M, Noel M, Powell JJ, Belanger R, Cote F, Isenring P (2015) Aquaporins mediate silicon transport in humans. PLoS One 10:e0136149

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoxue Yang M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Geng, X., Yang, B. (2017). Transport Characteristics of Aquaporins. In: Yang, B. (eds) Aquaporins. Advances in Experimental Medicine and Biology, vol 969. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1057-0_3

Download citation

Publish with us

Policies and ethics