Skip to main content

Methods to Measure Water Permeability

  • Chapter
  • First Online:
Aquaporins

Abstract

Water permeability is a key feature of the cell plasma membranes and it has seminal importance for a number of cell functions such as cell volume regulation, cell proliferation, cell migration, and angiogenesis to name a few. The transport of water occurs mainly through plasma membrane water channels , the aquaporins, who have very important function in physiological and pathophysiological states. Due to the above the experimental assessment of the water permeability of cells and tissues is necessary. The development of new methodologies of measuring water permeability is a vibrant scientific field that constantly develops during the past three decades along with the advances in imaging mainly. In this chapter we describe and critically assess several methods that have been developed for the measurement of water permeability both in living cells as well as in tissues with a focus in the first category.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danziger J, Ziedel ML (2015) Osmotic homeostasis. Clin J Am Soc Nephrol 10:852–862

    Article  CAS  PubMed  Google Scholar 

  2. Hoffman EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Phys Rev 89:193–277

    Google Scholar 

  3. Lambert IH, Hoffman EK, Pedersen SF (2008) Cell volume regulation: physiology and pathophysiology. Acts Physiol 194:255–282

    Article  CAS  Google Scholar 

  4. Verkman AS (2011) Aquaporins at a glance. J Cell Sci 124:2107–2112

    Article  CAS  PubMed  Google Scholar 

  5. Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14:265–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma T, Gao H, Fang X, Yang H (2012) Water channel proteins in the peripheral nervous system in health and disease. Mol Asp Med 33:605–611

    Article  Google Scholar 

  7. Verkman AS (2007) Role of aquaporins in lung liquid physiology. Respir Physiol Neurobiol 159:324–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Holmes RP (2012) The role of renal water channels in health and disease. Mol Asp Med 33:547–552

    Article  CAS  Google Scholar 

  9. Rutkovskiy A, Valen G, Vaage J (2013) Cardiac aquaporins. Basic Res Cardiol 108:393–410

    Article  PubMed  Google Scholar 

  10. Laforenza U (2012) Water channels in the gastrointestinal tract. Mol Asp Med 33:642–650

    Article  CAS  Google Scholar 

  11. Zhang D, Tan YJ, Qu F, Sheng JZ, Huang HF (2012) Functions of water channels in male and female reproductive systems. Mol Asp Med 33:676–690

    Article  CAS  Google Scholar 

  12. Eckhard A, Gleiser C, Arnold H, Rask-Andersen H, Kumagami H, Muller M, Hirt B, Lowenheim H (2012) Water channel proteins in the inner ear and their link to hearing impairment and deafness. Mol Asp Med 33:612–637

    Article  CAS  Google Scholar 

  13. Fischbarg J (2012) Water channels and their roles in some ocular tissues. Mol Asp Med 33:638–641

    Article  CAS  Google Scholar 

  14. Hara-Chikuma M, Verkman AS (2008) Roles of aquaporin-3 in the epidermis. J Invest Dermatol 128:2145–2151

    Article  CAS  PubMed  Google Scholar 

  15. Bout-Jabot M, Daraspe J, Bonte F, Perrier E, Schnebert S, Dumas M, Verbavatz JM (2009) Skin aquaporins: function in hydration, wound healing, and skin epidermis homeostasis. Handb Exp Pharmacol 190:205–217

    Article  Google Scholar 

  16. Loonen AJ, Knoers NV, van Os CH, Deen PM (2008) Aquaporin 2 mutations in nephrogenic diabetes insipidus. Semin Nephrol 28:252–265

    Article  CAS  PubMed  Google Scholar 

  17. Verkman AS (2012) Aquaporins in clinical medicine. Annu Rev Med 63:303–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verkman AS, Anderson MO, Papadopoulos MC (2014) Aquaporins: important but elusive drug targets. Nat Rev Drug Discov 13:259–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Strange K (2004) Cellular volume homeostasis. Adv Physiol Educ 28:155–159

    Article  PubMed  Google Scholar 

  20. Ribatti D, Ranieri G, Annese T, Nico B (2014) Aquaporins in cancer. Biochip Biophys Acta 1840:1550–1553

    Article  CAS  Google Scholar 

  21. Verkman AS (2000) Water permeability measurement in living cells and complex tissues. J Membr Biol 173:73–87

    Article  CAS  PubMed  Google Scholar 

  22. Hayden JH, Allen RD (1984) Detection of single microtubules in living cells: particle transport can occur in both directions along the same microtubule. J Cell Biol 99:1785–1793

    Article  CAS  PubMed  Google Scholar 

  23. Allen RD, Weiss DG, Hayden JH, Brown DT, Fujiwake H, Simpson M (1985) Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport. J Cell Biol 100:1736–1752

    Article  CAS  PubMed  Google Scholar 

  24. Foskett JK (1990) [Ca2+]i modulation of Cl− content controls cell volume in single salivary acing cells during fluid secretion. Am J Phys Cell Phys 259:998–1004

    Google Scholar 

  25. Fujiwara S, Shimamoto C, Katsu K, Imai Y, Nakahari T (1999) Isosmotic modulation of Ca2+-regulated exocytosis in guinea-pig astral mucous cells: role of cell volume. J Physiol 516:85–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Solenov EI, Nesterov VV, Baturina GS, Khodus GR, Ivanova LN (2003) Effect of dDAVP on basolateral cell surface water permeability in the outer medullary collecting duct. Eur Biophys J 32:614–619

    Article  CAS  PubMed  Google Scholar 

  27. Foskett JK, Melvin JE (1989) Activation of salivary secretion: coupling of cell volume and [Ca2+]i in single cells. Science 244:1582–1585

    Article  CAS  PubMed  Google Scholar 

  28. Solenov EI, Ivanova LN (1999) Morphometric analysis of the effects of vasopressin in the rat kidney collecting tubules. Ross Fiziol Zh Im I M Sechenova 85:290–297 [Article in Russian]

    Google Scholar 

  29. Maltsev VP (1994) Estimation of morphological characteristics of single particles from light scattering data in flow cytometry. Russ Chem Bull 43:1115–1124

    Article  Google Scholar 

  30. Kuksin D, Kuksin CA, Qiu J, Chan LLY (2016) Cellometer image cytometry as a complementary tool to flow cytometry for verifying gated cell populations. Anal Biochem 503:1–7

    Article  CAS  PubMed  Google Scholar 

  31. Sun P, Laforge FO, Abeyweera TP, Rotenberg SA, Carpino J, Mirkin MV (2008) Nanoelectrochemistry of mammalian cells. PNAS 105:443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Quist AP, Rhee SK, Lin H, Lal R (2000) Physiological role of gap-junctional hemichannels: extracellular calcium-dependent isosmotic volume regulation. J Cell Biol 148:1036–1074

    Article  Google Scholar 

  33. Benitez R, Toca-Herrera JL (2014) Looking at cell mechanics with atomic force microscopy: experiment and theory. Microsc Res Tech 77:947–958

    Article  CAS  PubMed  Google Scholar 

  34. Korchev YE, Bashford CL, Milovanovic M, Vodyanov I, Lab MJ (1997) Scanning ion conductance microscopy of living cells. Biophys J 73:653–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Korchev YE, Milovanovic M, Ashford CL, Bennett DC, Sviderskaya EV, Vodyanoy I, Lab MJ (1997) Specialized scanning ion-conductance microscope for imaging of living cells. J Microsc 188:17–23

    Article  CAS  PubMed  Google Scholar 

  36. Novak P, Li C, Shevchuk AI, Stepanyan R, Caldwell M, Hughes S, Smart TG, Gorelik J, Ostanin VP, Lab MJ, Moss GW, Frolenkov GI, Klenerman D, Korchev YE (2009) Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat Methods 6:279–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fischbarg J, Li J, Kuang K, Echevarria M, Iserovich P (1993) Determination of volume and water permeability of plated cells from measurements of light scattering. Am J Phys Cell Phys 265:1412–1423

    Google Scholar 

  38. Chernyshev AV, Prots VI, Doroshkin AA, Maltsev VP (1995) Measurement of scattering properties of individual particles with a scanning flow cytometer. Appl Opt 34:6301–6305

    Article  CAS  PubMed  Google Scholar 

  39. Maltsev VP, Chernyshev AV, Sem’yanov KA, Soini E (1996) Absolute real-time measurement of particle size distribution with the flying light-scattering indicatrix method. Appl Opt 35:3276–3280

    Article  Google Scholar 

  40. Verkman AS, Dix JA, Seifter JL (1985) Water and urea transport in renal microvillus membrane vesicles. Am J Phys 248:650–655

    Google Scholar 

  41. Mlekoday HJ, Moore R, Levitt DG (1983) Osmotic water permeability of the human red cells, dependence on direction of water flow and cell volume. J Gen Physiol 81:213–220

    Article  CAS  PubMed  Google Scholar 

  42. Gorman A, McCarthy JV, Finnucane D, Reville W, Cotter TG (1996) Morphological aspects of apoptosis and necrosis. In: Cotter TG, Martin SJ (eds) Techniques in apoptosis: a user’s guide. Portland Press Ltd., London

    Google Scholar 

  43. Fischbarg J, Kuang KY, Hirsch J, Lecuona S, Rogozinski L, Silverstein SC, Loike J (1989) Evidence that the glucose transporter serves as a water channel in J774 macrophages. Proc Natl Acad Sci U S A 86:8397–8401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Eto K, Noda Y, Horikawa S, Uchida S, Sasaki S (2010) Phosphorylation of aquaporin-2 regulates its water permeability. J Biol Chem 285:40777–40784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Van Hoek AN, Verkman AS (1992) Functional reconstitution of the isolated erythrocyte water channel CHIP28. J Biol Chem 267:18267–18269

    CAS  PubMed  Google Scholar 

  46. Dobbs L, Gonzalez R, Matthay MA, Carter EP, Allen L, Verkman AS (1998) Highly water-permeable type I alveolar epithelial cells confer high water permeability between the airspace and vasculature in rat lung. PNAS 95:2991–2996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baturina GS, Khodus GR, Nesterov VV, Solenov EI, Ivanova LN (2003) Vasopressin-dependent water permeability of the basolateral membrane of the kidney outer medullary collecting duct in postnatal ontogenesis in rats]. Ross Fiziol Zh Im I M Sechenova 89:605–612 [Article in Russian]

    Google Scholar 

  48. Khodus GR, Solenov EI, Nesterov VV, Katkova LE, Ivanova LN (2006) Calcium dependent mechanisms in vasopressin regulation of osmotic water permeability in the mouse kidney collecting duct cells. Ross Fiziol Zh Im I M Sechenova 92:626–632 [Article in Russian]

    Google Scholar 

  49. Farinas J, Kneen M, Moore M, Verkman AS (1997) Plasma membrane water permeability of cultured cells and epithelia measured by light microscopy with spatial filtering. J Gen Physiol 110:283–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kao HP, Verkman AS (1994) Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys J 67:1291–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maric K, Wiesner B, Lorenz D, Klussmann E, Betz T, Rosenthal W (1993) Cell volume kinetics of adherent epithelial cells measured by laser scanning reflection microscopy: determination of water permeability changes of renal principal cells. Biophys J 80:1783–1790

    Article  Google Scholar 

  52. Farinas J, Verkman AS (1996) Measurement of cell volume and water permeability in epithelial cell layers by interferometry. Biophys J 71:3511–3522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen J, Xue C, Zhao Y, Chen D, Wu MH, Wang J (2015) Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization. Int J Mol Sci 16:9804–9830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bernabini C, Holmes D, Morgan H (2011) Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria. Lab Chip 11:407–412

    Article  CAS  PubMed  Google Scholar 

  55. Ali A, Aboulela Y, Amer S, Fukushima R, Emara S, Equis A, Cotte Y, Masujima T (2016) Quantitative live single-cell mass spectrometry with spatial evaluation by three-dimensional holographic and tomographic laser microscopy. Anal Sci 32:125–127

    Article  CAS  PubMed  Google Scholar 

  56. Sun T, Tsuda S, Zauner KP, Morgan H (2010) On-chip electrical impedance tomography for imaging biological cells. Biosens Bioelectron 25:1109–1115

    Article  CAS  PubMed  Google Scholar 

  57. Bera TK (2014) Bioelectrical impedance methods for noninvasive health monitoring: a review. J Med Eng 2014:381251

    Article  PubMed  PubMed Central  Google Scholar 

  58. Manson MA, Ahmad MR (2015) Single cell electrical characterisation techniques. Int J Mol Sci 16:12686–12712

    Article  Google Scholar 

  59. Zelenina M, Brisker H (2000) Osmotic water permeability measurements using confocal laser scanning microscopy. Our Biophys J 29:165–171

    CAS  Google Scholar 

  60. Ölveczky BP, Periasamy N, Verkman AS (1997) Mapping fluorophore angle-total internal reflection fluorescence microscopy. Biophys J 73:2836–2847

    Article  PubMed  PubMed Central  Google Scholar 

  61. Farinas J, Simenak V, Verkman AS (1995) Cell volume measured in adherent cells by total internal reflection microfluorimetry: application to permeability in cells transfected with water channel homologs. Biophys J 68:1613–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Winterflood CM, Seeger S (2016) Simultaneous surface-near and solution fluorescence correlation spectroscopy. J Fluoresc 26:753–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hamann S, Kiilgaard JF, Litman T, Alvarez-Leefmans FG, Winther BR, Zeuthen T (2002) Measurement of cell volume changes by fluorescence self-quenching. J Fluoresc 12:139–145

    Article  CAS  Google Scholar 

  64. Solenov E, Watanabe H, Manley GT, Vermin AS (2004) Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Phys Cell Phys 286:426–432

    Article  Google Scholar 

  65. Zarogiannis SG, Ilyaskin AV, Baturina GS, Katkova LE, Medvedev DA, Karpov DI, Ershov AP, Solenov EI (2013) Regulatory volume decrease of rat kidney principal cells after successive hypo-osmotic shocks. Math Biosci 244:176–187

    Article  PubMed  Google Scholar 

  66. Jin BJ, Esteva-Font C, Verkman AS (2015) Droplet-based microfluidic platform for measurement of rapid erythrocyte water transport. Lab Chip 15:3380–3390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jin BJ, Battula S, Zachos N, Kovbasnjuk O, Fawlke-Abel J, In J, Donowitz M, Vermin AS (2014) Microfluidics platform for measurement of volume changes in immobilized intestinal enteroids. Biomicrofluidics 8:024106

    Article  PubMed  PubMed Central  Google Scholar 

  68. Santi PA (2011) Light sheet fluorescence microscopy: a review. J Histochem Cytochem 59:129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schacht P, Johnson SB, Santi PA (2010) Implementation of a continuous scanning procedure and a line scan camera for thin-sheet laser imaging microscopy. Biomed Opt Express 1:598–609

    Article  PubMed  PubMed Central  Google Scholar 

  70. Reynaud EG, Peychl J, Huisken J, Tomancak P (2015) Guide to light-sheet microscopy for adventurous biologists. Nat Methods 12:30–34

    Article  CAS  PubMed  Google Scholar 

  71. Dean KM, Roudot P, Reis CR, Welf ES, Mettlen M, Fiolka R (2016) Diagonally scanned light-sheet microscopy for fast volumetric imaging of adherent cells. Biophys J 110:1456–1465

    Article  CAS  PubMed  Google Scholar 

  72. Song Y, Yang B, Matthay MA, Ma T, Verkman AS (2000) Role of aquaporin water channels in pleural fluid dynamics. Am J Phys Cell Phys 279:1744–1750

    Google Scholar 

  73. Jiang J, Hu J, Bai C (2003) Role of aquaporin and sodium channel in pleural water movement. Respir Physiol Neurobiol 139:83–88

    Article  CAS  PubMed  Google Scholar 

  74. Zarogiannis S, Psallidas I, Hatzoglou C, Gourgoulianis KI, Kalomenidis I (2010) Dexamethasone acutely accelerates pleural fluid absorption in mice hydrothoraces. J Physiol Sci 60:299–302

    Article  CAS  PubMed  Google Scholar 

  75. Kouritas VK, Magkouta S, Zisis C, Psallidas I, Gourgoulianis KI, Kalomenidis I (2015) Paracetamol and ibuprofen block hydrothorax absorption in mice. Eur J Cardiothorac Surg 47:426–430

    Article  PubMed  Google Scholar 

  76. Zarogiannis S, Kalomenidis I (2015) Can pharmacologic agents speed the rate of resorption of pleural fluid? Curr Opin Pulm Med 21:372–375

    Article  CAS  PubMed  Google Scholar 

  77. Andersen B, Ussing HH (1957) Solvent drag on non-electrolytes during osmotic flow through isolated toad skin and its response to antidiuretic hormone. Acta Physiol Scand 39:228–239

    Article  CAS  PubMed  Google Scholar 

  78. Hays RM, Franki N, Soberman R (1971) Activation energy for water diffusion across the toad bladder: evidence against the pore enlargement hypothesis. J Clin Invest 50:1016–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Natochin YV, Shakhmatova EI (1976) The effect of diuretics and vasopressin on the osmotic permeability of the frog urinary bladder. Physiol Bohemoslov 25:529–534

    CAS  PubMed  Google Scholar 

  80. Ivanova LN, Melidi NN (2001) Effects of vasopressin on hyaluronate hydrolase activities and water permeability in the frog urinary bladder. Pflugers Arch 443:72–77

    Article  CAS  PubMed  Google Scholar 

  81. Komissarchik YY, Natochin YV, Snigirevskaya ES, Shakhmatova EI (1985) Specific vacuolation of frog urinary bladder granular cell after ADH stimulation of water transport. Gen Physiol Biophys 4:557–572

    CAS  Google Scholar 

  82. Nikitidou O, Peppa VI, Leivaditis K, Eleftheriadis T, Zarogiannis SG, Liakopoulos V (2015) Animal models in peritoneal dialysis. Front Physiol 6:244

    Article  PubMed  PubMed Central  Google Scholar 

  83. Vogiatzidis K, Zarogiannis SG, Aidonidis I, Solenov EI, Molyvdas PA, Gourgoulianis KI, Hatzoglou C (2015) Physiology of pericardial fluid production and drainage. Front Physiol 6:62

    Article  PubMed  PubMed Central  Google Scholar 

  84. Stefanidis I, Liakopoulos V, Kourti P, Zarogiannis S, Poultsidi A, Mertems PR, Salmas M, Hatzoglou C, Gourgoulianis K, Molyvdas PA (2007) Amiloride-sensitive sodium channels on the parietal human peritoneum: evidence by ussing-type chamber experiments. ASAIO J 53:335–338

    Article  CAS  PubMed  Google Scholar 

  85. Liakopoulos V, Zarogiannis S, Hatzoglou C, Kourti P, Poultsidi A, Eleftheriadis T, Gourgoulianis K, Molyvdas PA, Stefanidis I (2006) Inhibition by mercuric chloride of aquaporin-1 in the parietal sheep peritoneum: an electrophysiologic study. Adv Perit Dial 22:7–10

    CAS  PubMed  Google Scholar 

  86. Kouritas VK, Hatzoglou C, Foroulis CN, Hevas A, Gourgoulianis KI, Molyvdas PA (2007) Low glucose level and low pH alter the electrochemical function of human parietal pleura. Eur Respir J 30:354–357

    Article  CAS  PubMed  Google Scholar 

  87. Filippidis AS, Zarogiannis SG, Ioannou M, Gourgoulianis K, Molyvdas PA, Hatzoglou C (2012) Permeability of the arachnoid and pia mater. The role of ion channels in the leptomeningeal physiology. Childs Nerv Syst 28:533–540

    Article  PubMed  Google Scholar 

  88. Garcia GJ, Boucher RC, Elston TC (2013) Biophysical model of ion transport across human respiratory epithelia allows quantification of ion permeabilities. Biophys J 104:716–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Solenov EI, Vetrivel L, Oshio K, Manley GT, Verkman AS (2002) Optical measurement of swelling and water transport in spinal cord slices from aquaporin null mice. J Neurosci Methods 113:85–90

    Article  CAS  PubMed  Google Scholar 

  90. Hays RM, Franki N, Ding G (1987) Effects of antidiuretic hormone on the collecting duct. Kidney Int 31:530–537

    Article  CAS  PubMed  Google Scholar 

  91. Burg MB, Grantham J, Abramow M, Orloff J (1966) Preparation and study of fragments of single rabbit nephrons. Am J Phys 210:1293–1298

    CAS  Google Scholar 

  92. Schafer JA, Patlak CS, Andreoli TE (1974) Osmosis in cortical collecting tubules a theoretical and experimental analysis of the osmotic transient phenomenon. J Gen Physiol 64:201–227

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Nawata CM, Evans KK, Dantzler WH, Pannabecker TL (2014) Transepithelial water and urea permeabilities of isolated perfused Munich-Wistar rat inner medullary thin limbs of Henle’s loop. Am J Phys Renal Phys 306:123–129

    Google Scholar 

  94. Flamion B, Bungay PM, Gibson CC, Spring KR (1991) Flow rate measurements in isolated perfused kidney tubules by fluorescence photobleaching recovery. Biophys J 60:1229–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ecelbarger CA, Chou CL, Lee AJ, Digiovanni SR, Verbalis JG, Knepper MA (1998) Escape from vasopressin-induced antidiuresis: role of vasopressin resistance of the collecting duct. Am J Phys 274:1161–1166

    Google Scholar 

  96. Al-Zahid G, Schafer JA, Troutman SL, Andreoli TE (1977) The effect of antidiuretic hormone on water and solute permeation, and the activation energies for these processes, in mammalian cortical collecting tubules: evidence for parallel ADH-sensitive pathways for water and solute diffusion in luminal plasma membranes. J Membr Biol 31:103–130

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniy I. Solenov Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Solenov, E.I., Baturina, G.S., Katkova, L.E., Zarogiannis, S.G. (2017). Methods to Measure Water Permeability. In: Yang, B. (eds) Aquaporins. Advances in Experimental Medicine and Biology, vol 969. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1057-0_18

Download citation

Publish with us

Policies and ethics