Skip to main content

Translational Research in Drug Discovery and Development

  • Chapter
  • First Online:
Translational Bioinformatics and Its Application

Part of the book series: Translational Medicine Research ((TRAMERE))

Abstract

Translational research facilitates the application of basic scientific discoveries in clinical and community settings to prevent and treat human diseases. The translation of knowledge and innovations from basic laboratory experiments to point-of-care patient applications; production of new drugs, devices, and healthcare products; and promising treatments for patients is referred to as benchside to bedside transition. Numerous opportunities encompass translational research. However, there are several obstacles involved in the process that make the translational journey quite challenging. The major challenges that hamper the growth of translational research include insufficient resources, inadequate funding and infrastructure, shortage of qualified researchers, and lack of sufficient experience in essential techniques. Translational drug discovery and development is an exceedingly difficult, expensive, time-consuming, and risky process. Despite thousands of pharmaceutical companies working to develop and get new drugs to market, and billions of dollars spent every year, only a few new molecular entities (NMEs) receive marketing approval from the FDA per year. Translational drug discovery demands both the need for cooperation between clinical and pharmacological research and the significance of the role of academia in target identification and drug discovery, design, and development. This chapter highlights an overview of translational research in a drug discovery and development perspective. We further discussed associated opportunities and challenges, as well as possible strategies that could be used to overcome the challenges. Certain strategies like prioritizing research area, clearer vision on the project, committed team of researchers, established infrastructure, sufficient funding, and meaningful collaborations could be highly beneficial in accelerating the hunt to discover new drugs and for the establishment of successful translational drug discovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BrIDGs:

Bridging Interventional Development Gaps

FASEB:

Federation of American Societies for Experimental Biology

FDA:

Food and Drug Administration

GWAS:

Genome-wide association study

ITHS:

Institute of Translational Health Sciences

MHRA:

Medicines and Healthcare Products Regulatory Agency

NCATS:

National Center for Advancing Translational Science

NCI:

National Cancer Institute

NIH:

National Institutes of Health

TRWG:

Translational Research Working Group

CRC:

Colorectal cancer

ALL:

Acute lymphoblastic leukemia

References

  • Achenbach J, Tiikkainen P, Franke L, Proschak E. Computational tools for polypharmacology and repurposing. Future Med Chem. 2011;3:961–8.

    Article  CAS  PubMed  Google Scholar 

  • Andrews J. Prioritization criteria methodology for future research needs proposals within the effective health care program: PiCMe-prioritization criteria methods. Methods future res needs reports. Rockville: Agency for Healthcare Research and Quality (US); 2013.

    Google Scholar 

  • Andronis C, Sharma A, Virvilis V, Deftereos S, Persidis A. Literature mining, ontologies and information visualization for drug repurposing. Brief Bioinform. 2011;12:357–68.

    Article  CAS  PubMed  Google Scholar 

  • Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673–83.

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  • Benson JD, Chen YN, Cornell-Kennon SA, Dorsch M, Kim S, Leszczyniecka M, Sellers WR, Lengauer C. Validating cancer drug targets. Nature. 2006;441:451–6.

    Article  CAS  PubMed  Google Scholar 

  • Berk M, Dean OM, Cotton SM, Gama CS, Kapczinski F, Fernandes B, Kohlmann K, Jeavons S, Hewitt K, Moss K, Allwang C, Schapkaitz I, Cobb H, Bush AI, Dodd S, Malhi GS. Maintenance N-acetyl cysteine treatment for bipolar disorder: a double-blind randomized placebo controlled trial. BMC Med. 2012;10:91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blondeau S, Do QT, Scior T, Bernard P, Morin-Allory L. Reverse pharmacognosy: another way to harness the generosity of nature. Curr Pharm Des. 2010;16:1682–96.

    Article  CAS  PubMed  Google Scholar 

  • Buchan NS, Rajpal DK, Webster Y, Alatorre C, Gudivada RC, Zheng C, Sanseau P, Koehler J. The role of translational bioinformatics in drug discovery. Drug Discov Today. 2011;16:426–34.

    Article  CAS  PubMed  Google Scholar 

  • Bulusu KC, Tym JE, Coker EA, Schierz AC, Al-Lazikani B. canSAR: updated cancer research and drug discovery knowledgebase. Nucleic Acids Res. 2014;42:D1040–7.

    Article  CAS  PubMed  Google Scholar 

  • Butini S, Brogi S, Novellino E, Campiani G, Ghosh AK, Brindisi M, Gemma S. The structural evolution of β-secretase inhibitors: a focus on the development of small-molecule inhibitors. Curr Top Med Chem. 2013;13(15):1787–807.

    Article  CAS  PubMed  Google Scholar 

  • Butler D. Translational research: crossing the valley of death. Nature. 2008;453:840–2.

    Article  CAS  PubMed  Google Scholar 

  • Cheever MA, Schlom J, Weiner LM, et al. Translational Research Working Group developmental pathway for immune response modifiers. Clin Cancer Res. 2008;14:5692–9.

    Article  CAS  PubMed  Google Scholar 

  • Cheever MA, Allison JP, Ferris AS, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009;15(17):5323–37.

    Article  PubMed  Google Scholar 

  • Chen B, Ding Y, Wild DJ. Assessing drug target association using semantic linked data. PLoS Comput Biol. 2012;8:e1002574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho WC. Conquering cancer through discovery research. IUBMB Life. 2010;62(9):655–9.

    Article  CAS  PubMed  Google Scholar 

  • Collins FS. Reengineering translational science: the time is right. Sci Transl Med. 2011;3(90):90cm17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dean OM, Maes M, Ashton M, et al. Protocol and rationale-the efficacy of minocycline as an adjunctive treatment for major depressive disorder: a double blind, randomised, placebo controlled trial. Clin Psychopharmacol Neurosci. 2014;12(3):180–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doboszewska U, Szewczyk B, Sowa-Kućma M, Noworyta-Sokołowska K, Misztak P, Gołębiowska J, Młyniec K, Ostachowicz B, Krośniak M, Wojtanowska-Krośniak A, Gołembiowska K, Lankosz M, Piekoszewski W, Nowak G. Alterations of bio-elements, oxidative, and inflammatory status in the zinc deficiency model in rats. Neurotox Res. 2016;29(1):143–54.

    Article  CAS  PubMed  Google Scholar 

  • Drolet BC, Lorenzi NM. Translational research: understanding the continuum from bench to bedside. Transl Res. 2011;157(1):1–5.

    Article  PubMed  Google Scholar 

  • Drucker DJ, Sherman SI, Gorelick FS, Bergenstal RM, Sherwin RS, Buse JB. Incretin-based therapies for the treatment of type 2 diabetes: evaluation of the risks and benefits. Diabetes Care. 2010;33:428–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekins S, Williams AJ, Krasowski MD, Freundlich JS. In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov Today. 2011;16:298–310.

    Article  PubMed  Google Scholar 

  • Elsayed M, Banasr M, Duric V, Fournier NM, Licznerski P, Duman RS. Antidepressant effects of fibroblast growth factor-2 in behavioral and cellular models of depression. Biol Psychiatry. 2012;72(4):258–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst & Young. Beyond borders: global biotechnology report. New York: Ernst & Young; 2010. http://www.ey.com/publication/vwluassets/beyond_borders/$file/beyond_borders_2010.pdf.

  • Fang FC, Casadevall A. Lost in translation – basic science in the era of translational research. Infect Immun. 2010;78(2):563–6.

    Article  CAS  PubMed  Google Scholar 

  • Ferdinand K, Saini R, Lewin A, Yellen L, Barbosa JA, Kushnir E. Efficacy and safety of omapatrilat with hydrochlorothiazide for the treatment of hypertension in subjects nonresponsive to hydrochlorothiazide alone. Am J Hypertens. 2001;14(8 pt 1):788–93.

    Article  CAS  PubMed  Google Scholar 

  • Ferrell CB. Reengineering clinical research science: a focus on translational research. Behav Modif. 2009;33(1):7–23.

    Article  PubMed  Google Scholar 

  • Feustel SM, Meissner M, Liesenfeld O. Toxoplasma gondii and the blood-brain barrier. Virulence. 2012;3:182–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fishburn CS. Translational research: improving the efficiency of drug development from bench to bedside and back again. Health New. 2011;9:1–5.

    Google Scholar 

  • Fishburn CS. Translational research: the changing landscape of drug discovery. Drug Discov Today. 2013;18(9–10):487–94.

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald GA. Opinion: anticipating change in drug development: the emerging era of translational medicine and therapeutics. Nat Rev Drug Discov. 2005;4(10):815–8.

    Article  CAS  PubMed  Google Scholar 

  • Fowles JS, Dailey DD, Gustafson DL, Thamm DH, Duval DL. The Flint Animal Cancer Center (FACC) canine tumour cell line panel: a resource for veterinary drug discovery, comparative oncology and translational medicine. Vet Comp Oncol. 2016 May 19. doi: 10.1111/vco.12192. [Epub ahead of print]

  • Frijters R, van Vugt M, Smeets R, van Schaik R, de Vlieg J, Alkema W. Literature mining for the discovery of hidden connections between drugs, genes and diseases. PLoS Comput Biol. 2010;6:e1000943.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fron Chabouis H, Chabouis F, Gillaizeau F, Durieux P, Chatellier G, Ruse ND, Attal JP. Randomization in clinical trials: stratification or minimization? The HERMES free simulation software. Clin Oral Invest. 2014;18:25–34.

    Article  Google Scholar 

  • Fruci D, Cho WC, Nobili V, et al. Drug transporters and multiple drug resistance in pediatric solid tumors. Curr Drug Metab. 2016;17(4):308–16.

    Article  CAS  PubMed  Google Scholar 

  • Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014;42:W32–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilliland CT, Zuk D, Kocis P, et al. Putting translational science on to a global stage. Nat Rev Drug Discov. 2016;15(4):217–8.

    Article  CAS  PubMed  Google Scholar 

  • Gong J, Cai C, Liu X, Ku X, Jiang H, Gao D, Li H. ChemMapper: a versatile web server for exploring pharmacology and chemical structure association based on molecular 3D similarity method. Bioinformatics. 2013;29:1827–9.

    Article  CAS  PubMed  Google Scholar 

  • Gostin LO, Lucey D, Phelan A. The Ebola epidemic: a global health emergency. JAMA. 2014;312:1095–6.

    Article  PubMed  Google Scholar 

  • Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregori-Puigjane E, Mestres J. A ligand-based approach to mining the chemogenomic space of drugs. Comb Chem High Throughput Screen. 2008;11:669–76.

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Chen H, Gao X. Nanotherapeutic strategies for the treatment of Alzheimer’s disease. Ther Deliv. 2015;6(2):177–95.

    Article  CAS  PubMed  Google Scholar 

  • Hait WN. Translating research into clinical practice: deliberations from the American Association for Cancer Research. Clin Cancer Res. 2005;11(12):4275–7.

    Article  PubMed  Google Scholar 

  • Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap) – a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81.

    Article  PubMed  Google Scholar 

  • Haupt VJ, Daminelli S, Schroeder M. Drug promiscuity in PDB: protein binding site similarity is key. PLoS One. 2013;8:e65894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawk ET, Matrisian LM, Nelson WG, et al. The translational research working group developmental pathways: introduction and overview. Clin Cancer Res. 2008;14:5664–71.

    Article  PubMed  Google Scholar 

  • Henney JE. Withdrawal of troglitazone and cisapride. J Am Med Assoc. 2000;283:2228.

    Article  Google Scholar 

  • Hess JL, Kawaguchi DM, Wagner KE, Faraone SV, Glatt SJ. The influence of genes on “positive valence systems” constructs: a systematic review. Am J Med Genet B Neuropsychiatr Genet. 2016;171:92–110.

    Article  CAS  Google Scholar 

  • Hillaire-Buys D, Faillie JL, Montastruc JL. Pioglitazone and bladder cancer. Lancet. 2011;378:1543–4.

    Article  PubMed  Google Scholar 

  • Hobin JA, Deschamps AM, Bockman R, Cohen S, Dechow P, Eng C, Galey W, Morris M, Prabhakar S, Raj U, Rubenstein P, Smith JA, Stover P, Sung N, Talman W, Galbraith R. Engaging basic scientists in translational research: identifying opportunities, overcoming obstacles. J Transl Med. 2012;13(10):72.

    Article  Google Scholar 

  • Hoertel N, de Maricourt P, Gorwood P. Novel routes to bipolar disorder drug discovery. Expert Opin Drug Discovery. 2013;8(8):907–18.

    Article  CAS  Google Scholar 

  • Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328:1662–8.

    Article  CAS  PubMed  Google Scholar 

  • Hurle MR, Yang L, Xie Q, Rajpal DK, Sanseau P, Agarwal P. Computational drug repositioning: from data to therapeutics. Clin Pharmacol Ther. 2013;93:335–41.

    Article  CAS  PubMed  Google Scholar 

  • Ioannidis JP. Materializing research promises: opportunities, priorities and conflicts in translational medicine. J Transl Med. 2004;2:5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Issa NT, Byers SW, Dakshanamurthy S. Drug repurposing: translational pharmacology, chemistry, computers and the clinic. Curr Top Med Chem. 2013;13:2328–36.

    Article  CAS  PubMed  Google Scholar 

  • Issa NT, Peters OJ, Byers SW, Dakshanamurthy S. RepurposeVS: a drug repurposing-focused computational method for accurate drug-target signature predictions. Comb Chem High Throughput Screen. 2015;18(8):784–94.

    Article  CAS  PubMed  Google Scholar 

  • Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006;355:1253–61.

    Article  CAS  PubMed  Google Scholar 

  • Karnati HK, Panigrahi MK, Gutti RK, Greig NH, Tamargo IA. miRNAs: key players in neurodegenerative disorders and epilepsy. J Alzheimers Dis. 2015;48:563–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katherine TA. Will biotechnology keep the heart healthy? Biotechnol Healthc. 2007;4(4):43–8.

    Google Scholar 

  • Keramaris NC, Kanakaris NK, Tzioupis C, Kontakis G, Giannoudis PV. Translational research: from benchside to bedside. Injury. 2008;39(6):643–50.

    Article  CAS  PubMed  Google Scholar 

  • Khanna I. Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discov Today. 2012;17:1088–102.

    Article  PubMed  Google Scholar 

  • Kharkar PS, Warrier S, Gaud RS. Reverse docking: a powerful tool for drug repositioning and drug rescue. Future Med Chem. 2014;6:333–42.

    Article  CAS  PubMed  Google Scholar 

  • Khoury MJ, Gwinn M, Yoon PW, Dowling N, Moore CA, Bradley L. The continuum of translation research in genomic medicine: how can we accelerate the appropriate integration of human genome discoveries into health care and disease prevention? Genitourin Med. 2007;9(10):665–74.

    Article  Google Scholar 

  • Koshland DE. Basic research (I). Science. 1993;259:291.

    Article  PubMed  Google Scholar 

  • Lally J, MacCabe JH. Antipsychotic medication in schizophrenia: a review. Br Med Bull. 2015;114(1):169–79.

    Article  PubMed  Google Scholar 

  • Law GL, Tisoncik-Go J, Korth MJ, Katze MG. Drug repurposing: a better approach for infectious disease drug discovery? Curr Opin Immunol. 2013;25:588–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le-Niculescu H, Balaraman Y, Patel SD, Ayalew M, Gupta J, Kuczenski R, Shekhar A, Schork N, Geyer MA, Niculescu AB. Convergent functional genomics of anxiety disorders: translational identification of genes, biomarkers, pathways and mechanisms. Transl Psychiatry. 2011;1:e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Littman BH, Di Mario L, Plebani M, Marincola FM. What’s next in translational medicine? Clin Sci (London, England). 2007;112(4):217–27.

    Article  Google Scholar 

  • Liu X, Ouyang S, Yu B, Liu Y, Huang K, Gong J, Zheng S, Li Z, Li H, Jiang H. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010;38:W609–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Fu Q, Du Y, et al. MicroRNA as regulators of cancer stem cells and chemoresistance in colorectal cancer. Curr Cancer Drug Targets. 2016;16:738–54.

    Article  CAS  PubMed  Google Scholar 

  • Lotrich FE, Butters MA, Aizenstein H, Marron MM, Reynolds CF, Gildengers AG. The relationship between interleukin-1 receptor antagonist and cognitive function in older adults with bipolar disorder. Int J Geriatr Psychopharmacol. 2014;29(6):635–44.

    Article  Google Scholar 

  • Lowe HJ, Ferris TA, Hernandez PM, Weber SC. STRIDE – an integrated standards-based translational research informatics platform. AMIA Annu Symp Proc. 2009;2009:391–5.

    PubMed  PubMed Central  Google Scholar 

  • Madhavan S, Zenklusen JC, Kotliarov Y, Sahni H, Fine HA, Buetow K. Rembrandt: helping personalized medicine become a reality through integrative translational research. Mol Cancer Res. 2009;7:157–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35(3):676–92.

    Article  CAS  Google Scholar 

  • Maes M, Fišar Z, Medina M, Scapagnini G, Nowak G, Berk M. New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates – Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology. 2012;20(3):127–50.

    Article  CAS  PubMed  Google Scholar 

  • Matter A. Bridging academic science and clinical research in the search for novel targeted anti-cancer agents. Cancer Biol Med. 2015;12(4):316–27.

    PubMed  PubMed Central  Google Scholar 

  • Maurya PK, Noto C, Rizzo LB, Rios AC, Nunes SO, Barbosa DS, Sethi S, Zeni M, Mansur RB, Maes M, Brietzke E. The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2016;65:134–44.

    Article  CAS  PubMed  Google Scholar 

  • McClure J. The value of basic research shouldn’t be lost in translation. ASBMB; 2012.

    Google Scholar 

  • McDermott U, Downing JR, Stratton MR. Genomics and the continuum of cancer care. N Engl J Med. 2011;364:340–50.

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ. Multi-target strategies for the improved treatment of depressive states: conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther. 2006;110(2):135–370.

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ, Goodwin GM, Meyer-Lindenberg A, Ögren SO. 60 years of advances in neuropsychopharmacology for improving brain health, renewed hope for progress. Eur Neurol. 2015;5(5):591–8.

    Google Scholar 

  • Morel J, Singer M. Statins, fibrates, thiazolidinediones and resveratrol as adjunctive therapies in sepsis: could mitochondria be a common target? Intensive Care Med Exp. 2014;2:9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morinet F. Aging of the brain, dementias, role of infectious proteins: facts and theories. Interdiscip Top Gerontol. 2014;39:177–86.

    Article  PubMed  Google Scholar 

  • Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013;34(3):137–43.

    Article  CAS  PubMed  Google Scholar 

  • Najjar S, Pearlman DM, Alper K, Najjar A, Devinsky O. Neuroinflammation and psychiatric illness. J Neuroinflammation. 2013;10:43.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–71.

    Article  CAS  PubMed  Google Scholar 

  • Nowacka MM, Obuchowicz E. Vascular endothelial growth factor (VEGF) and its role in the central nervous system: a new element in the neurotrophic hypothesis of antidepressant drug action. Neuropeptides. 2012;46(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  • Old LJ. Cancer vaccines: an overview. Cancer Immun. 2008;8(1):1.

    PubMed  Google Scholar 

  • Oprea TI, Bauman JE, Bologa CG, et al. Drug repurposing from an academic perspective. Drug Discov Today Ther Strateg. 2011;8:61–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Padhy BM, Gupta YK. Drug repositioning: re-investigating existing drugs for new therapeutic indications. J Postgrad Med. 2011;57:153–60.

    Article  CAS  PubMed  Google Scholar 

  • Palma M, Hanahan D. The biology of personalized cancer medicine: facing individual complexities underlying hallmark capabilities. Mol Oncol. 2012;6:111–27.

    Article  PubMed  Google Scholar 

  • Pandya CD, Howell KR, Pillai A. Antioxidants as potential therapeutics for neuropsychiatric disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;46:214–23.

    Article  CAS  Google Scholar 

  • Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lidborg SR, Schacht AL. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9:203–14.

    CAS  PubMed  Google Scholar 

  • Pober JS, Neuhauser CS, Pober JM. Obstacles facing translational research in academic medical centers. FASEB J. 2001;15:2303–13.

    Article  CAS  PubMed  Google Scholar 

  • Sanseau P, Koehler J. Editorial: computational methods for drug repurposing. Brief Bioinform. 2011;12:301–2.

    Article  PubMed  Google Scholar 

  • Sanseau P, Agarwal P, Barnes MR, Pastinen T, Richards JB, Cardon LR, Mooser V. Use of genome-wide association studies for drug repositioning. Nat Biotechnol. 2012;30:317–20.

    Article  CAS  PubMed  Google Scholar 

  • Santiago DN, Pevzner Y, Durand AA, Tran M, Scheerer RR, Daniel K, Sung SS, Woodcock HL, Guida WC, Brooks WH. Virtual target screening: validation using kinase inhibitors. J Chem Inf Model. 2012;52:2192–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardana D, Zhu C, Zhang M, Gudivada RC, Yang L, Jegga AG. Drug repositioning for orphan diseases. Brief Bioinform. 2011;12:346–56.

    Article  CAS  PubMed  Google Scholar 

  • Schrimpf D, Plotnicki L, Pilz LR. Web-based open source application for the randomization process in clinical trials: RANDI2. Int J Clin Pharmacol Ther. 2010;48:465–7.

    Article  CAS  PubMed  Google Scholar 

  • Selep M. Translational research vs. basic science: comparing apples to upside-down apples. PLOS Blogs. 2013.

    Google Scholar 

  • Sellers WR. A blueprint for advancing genetics-based cancer therapy. Cell. 2011;147:26–31.

    Article  CAS  PubMed  Google Scholar 

  • Stadler K, Masignani V, Eickmann M, Becker S, Abrignani S, Klenk HD, Rappuoli R. SARS – beginning to understand a new virus. Nat Rev Microbiol. 2003;1:209–18.

    Article  CAS  PubMed  Google Scholar 

  • Sugarman J, McKenna WG. Ethical hurdles for translational research. Radiat Res. 2003;160:1–4.

    Article  CAS  PubMed  Google Scholar 

  • Tall AR, Yvan-Charvet L, Wang N. The failure of torcetrapib. Was it the molecule or the mechanism? Arterioscler Thromb Vasc Biol. 2007;27:257–60.

    Article  CAS  PubMed  Google Scholar 

  • Tufts. What is translational science. http://tuftsctsi.org/. Tufts Clinical and Translational Science Institute; 2015.

  • Ungvari Z, Sonntag WE, de Cabo R, Baur JA, Csiszar A. Mitochondrial protection by resveratrol. Exerc Sport Sci Rev. 2011;39(3):128–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verdine GL, Walensky LD. The challenge of drugging undruggable targets in cancer: lessons learned from targeting BCL-2 family members. Clin Cancer Res. 2007;13:7264–70.

    Article  CAS  PubMed  Google Scholar 

  • Villamon E, Piqueras M, Meseguer J, Blanquer I, Berbegall AP, Tadeo I, Hernandez V, Navarro S, Noguera R. NeuPAT: an intranet database supporting translational research in neuroblastic tumors. Comput Biol Med. 2013;43:219–28.

    Article  CAS  PubMed  Google Scholar 

  • Villar EL, Wang X, Madero L, Cho WC. Application of oncoproteomics to aberrant signalling networks in changing the treatment paradigm in acute lymphoblastic leukaemia. J Cell Mol Med. 2015;19(1):46–52.

    Article  CAS  Google Scholar 

  • Wang Y, Li Y, Liu X, et al. Genetic and epigenetic studies for determining molecular targets of natural product anticancer agents. Curr Cancer Drug Targets. 2013;13(5):506–18.

    Article  CAS  PubMed  Google Scholar 

  • Watson MS, Epstein C, Howell RR, Jones MC, Korf BR, McCabe ER, Simpson JL. Developing a national collaborative study system for rare genetic diseases. Genitourin Med. 2008;10:325–9.

    Article  Google Scholar 

  • Wędzony K, Chocyk A, Maćkowiak M. Potential roles of NCAM/PSA-NCAM proteins in depression and the mechanism of action of antidepressant drugs. Pharmacol Rep. 2013;65(6):1471–8.

    Article  PubMed  Google Scholar 

  • Wesnes KA, Edgar CJ. The role of human cognitive neuroscience in drug discovery for the dementias. Curr Opin Pharmacol. 2014;14:62–73.

    Article  CAS  PubMed  Google Scholar 

  • White HD, Van de Werf FJJ. Clinical cardiology: new frontiers thrombolysis for acute myocardial infarction harvey. Circulation. 1998;97:1632–46.

    Article  CAS  PubMed  Google Scholar 

  • WHO Geneva. 2004. http://www.who.int/whr/2004/en/

  • Wilson D. Drug firms face billions in losses in ‘11 as patents end. The New York Times; 2011. http://www.nytimes.com/2011/03/07/business/07drug.html.

  • Winchester CL, Pratt JA, Morris BJ. Risk genes for schizophrenia: translational opportunities for drug discovery. Pharmacol Ther. 2014;143(1):34–50.

    Article  CAS  PubMed  Google Scholar 

  • Woolf SH. The meaning of translational research and why it matters. JAMA. 2008;299(2):211–3.

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Aldrich MC, Chen Q, et al. Validating drug repurposing signals using electronic health records: a case study of metformin associated with reduced cancer mortality. J Am Med Inform Assoc. 2015;22:179–91.

    PubMed  Google Scholar 

  • Yang L, Agarwal P. Systematic drug repositioning based on clinical side-effects. PLoS One. 2011;6:e28025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerhouni E. The NIH roadmap. Science. 2003;302:63–72.

    Article  CAS  PubMed  Google Scholar 

  • Zerhouni EA. Translational and clinical science – time for a new vision. N Engl J Med. 2005;353:1621–3.

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Wang Y, Lu A, et al. Systems pharmacology in small molecular drug discovery. Int J Mol Sci. 2016;17(2):246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Kacker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Shanghai Jiao Tong University Press, Shanghai and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Arora, N., Maurya, P.K., Kacker, P. (2017). Translational Research in Drug Discovery and Development. In: Wei, DQ., Ma, Y., Cho, W., Xu, Q., Zhou, F. (eds) Translational Bioinformatics and Its Application. Translational Medicine Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1045-7_3

Download citation

Publish with us

Policies and ethics