Skip to main content

Anatomical and Physiological Perspectives on Human Exposure to Chemicals

  • Chapter
  • First Online:
Public Health Risk Assessment for Human Exposure to Chemicals

Part of the book series: Environmental Pollution ((EPOL,volume 27))

  • 1210 Accesses

Abstract

Human exposure to chemicals is virtually an inevitable part of life in this day and age. Such exposures may occur via different human contact sites and target organs, and also under a variety of exposure scenarios. The contact sites represent the physical areas of initial chemical contacting with the human body, and the target organs are the internal body organs that tend to transport, process, and/or store the absorbed chemicals; an exposure scenario is a description of the activity that brings a human receptor into contact with a chemical material, product, or medium. To evaluate potential receptor impacts upon chemical contacting, chemical exposure investigations—typically consisting of the planned and managed sequence of activities carried out to determine the nature and distribution of hazards associated with potential chemical exposure problems—can be systematically designed and effectively used to address human exposure and response to the chemical toxicants so-encountered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Suggested Reading

  • Adolph, E. F. (1949). Quantitative relations in the physiological constitutions of the mammals. Science, 109, 579–585.

    Article  CAS  Google Scholar 

  • Ashford, N. A., & Miller, C. S. (1998). Chemical exposures: Low levels and high stakes. New York, NY: John Wiley & Sons.

    Google Scholar 

  • Clark, L. H., Setzer, R. W., & Barton, H. A. (2004). Framework for evaluation of physiologically-based pharmacokinetic models for use in safety or risk assessment. Risk Analysis, 24(6), 1697–1717.

    Article  Google Scholar 

  • McLanahan, E. D., White, P., Flowers, L., & Schlosser, P. M. (2014). The use of PBPK models to inform human health risk assessment: Case study on perchlorate and radioiodide human lifestage models. Risk Analysis, 34(2), 356–366.

    Article  Google Scholar 

  • Sherman, J. D. (1994). Chemical exposure and disease. Princeton, NJ: Princeton Scientific Publishing.

    Google Scholar 

  • Silkworth, J. B., & Brown Jr., J. F. (1996). Evaluating the impact of exposure to environmental contaminants on human health. Clinical Chemistry, 42, 1345–1349.

    CAS  Google Scholar 

  • van Veen, M. P. (1996). A general model for exposure and uptake from consumer products. Risk Analysis, 16(3), 331–338.

    Article  Google Scholar 

  • Vermeire, T. G., van der Poel, P., van de Laar, R., & Roelfzema, H. (1993). Estimation of consumer exposure to chemicals: Application of simple models. Science of the Total Environment, 135, 155–176.

    Article  Google Scholar 

Bibliography

  • Andersen, M. E. (2003). Toxicokinetic modeling and its applications in chemical risk assessment. Toxicology Letters, 138(1), 9–27.

    Article  CAS  Google Scholar 

  • Andersen, M. E., Clewell, H. J., & Frederick, C. B. (1995a). Applying simulation modeling to problems in toxicology and risk assessment—A short perspective. Toxicology and Applied Pharmacology, 133(2), 181–187.

    Article  CAS  Google Scholar 

  • Arms, A. D., Travis, C. C. (1988). Reference physiological parameters in pharmacokinetic modeling. Washington, DC: United States Environmental Protection Agency, Office of Health and Environmental Assessment (NTIS PB 88-196019).

    Google Scholar 

  • Barton, H. A., Chiu, W. A., Setzer, R. W., Andersen, M. E., Bailer, A. J., Bois, F. Y., et al. (2007). Characterizing uncertainty and variability in physiologically-based pharmacokinetic (PBPK) models: State of the science and needs for research and implementation. Toxicological Sciences, 99(2), 395–402.

    Article  CAS  Google Scholar 

  • Beliveau, M., Lipscomb, J. C., Tardif, R., & Krishnan, K. (2005). Quantitative structure–property relationships for interspecies extrapolation of the inhalation pharmacokinetics of organic chemicals. Chemical Research in Toxicology, 18, 475–485.

    Article  CAS  Google Scholar 

  • Berlow, P. P., Burton, D. J., & Routh, J. I. (1982). Introduction to the chemistry of life. Philadelphia, PA: Saunders College Publishing.

    Google Scholar 

  • Berne, R. M., & Levy, M. N. (1993). Physiology (3rd ed.). St. Louis, MO: Mosby Year Book.

    Google Scholar 

  • Bois, F. Y. (2001). Applications of population approaches in toxicology. Toxicology Letters, 120(1–3), 385–394.

    Article  CAS  Google Scholar 

  • Brightman, F. A., Leahy, D. E., Searle, G. E., & Thomas, S. (2006). Application of a generic physiologically based pharmacokinetic model to the estimation of xenobiotic levels in rat plasma. Drug Metabolism and Disposition, 34(1), 84–93.

    Article  CAS  Google Scholar 

  • Brooks, S. M., Gochfeld, M., Herzstein, J., Schenker, M. B., & Jackson, R. J. (Eds.). (1995). Environmental medicine. St. Louis, MI: Mosby-Year Book.

    Google Scholar 

  • Brown, R. P., Delp, M. D., Lindstedt, S. L., Rhomberg, L. R., & Beliles, R. P. (1997). Physiological parameter values for physiologically based pharmacokinetic models. Toxicology and Industrial Health, 13, 407–448.

    Article  CAS  Google Scholar 

  • Brum, G., McKane, L., & Karp, G. (1994). Biology: exploring life (2nd ed.). New York: Wiley.

    Google Scholar 

  • Chiu, W. A., Barton, H. A., Dewoskin, R. S., Schlosser, P., Thompson, C. M., Sonawane, B., et al. (2007). Evaluation of physiologically based pharmacokinetic models for use in risk assessment. Journal of Applied Toxicology, 27, 218–237.

    Article  CAS  Google Scholar 

  • Clark, L. H., Setzer, R. W., & Barton, H. A. (2004). Framework for evaluation of physiologically-based pharmacokinetic models for use in safety or risk assessment. Risk Analysis, 24(6), 1697–1717.

    Article  Google Scholar 

  • Clewell, H. J., & Andersen, M. E. (1985). Risk assessment extrapolations and physiological modeling. Toxicology and Industrial Health, 1, 111–132.

    Article  CAS  Google Scholar 

  • Clewell, H. J., Andersen, M. E., & Barton, H. A. (2002). A consistent approach for the application of pharmacokinetic modeling in cancer and noncancer risk assessment. Environmental Health Perspectives, 110, 85–93.

    Article  Google Scholar 

  • Clewell, H. J., Gentry, P. R., Covington, T. R., Sarangapani, R., & Teeguarden, J. G. (2004). Evaluation of the potential impact of age- and gender-specific pharmacokinetic differences on tissue dosimetry. Toxicological Sciences, 79(2), 381–393.

    Article  CAS  Google Scholar 

  • Clewell, R. A., & Clewell, H. J., III. (2008). Development and specification of physiologically based pharmacokinetic models for use in risk assessment. Regulatory Toxicology and Pharmacology, 50(1), 129–143.

    Article  CAS  Google Scholar 

  • Davey, B., & Halliday, T. (Eds.). (1994). Human biology and health: An evolutionary approach. Buckingham, UK: Open University Press.

    Google Scholar 

  • Davies, B., & Morris, T. (1993). Physiological parameters in laboratory animals and humans. Pharmaceutical Research, 10, 1093–1095.

    Article  CAS  Google Scholar 

  • Dedrick, R. L., & Bischoff, K. B. (1980). Species similarities in pharmacokinetics. Federation Proceedings, 39, 54–59.

    CAS  Google Scholar 

  • Dedrick, R. L., Zaharko, D. S., & Lutz, R. J. (1973). Transport and binding of methotrexate in vivo. Journal of Pharmaceutical Sciences, 62, 882–890.

    Article  CAS  Google Scholar 

  • Derelanko, M. J., & Hollinger, M. A. (Eds.). (1995). CRC handbook of toxicology. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Dienhart, C. M. (1973). Basic human anatomy and physiology. Philadelphia, PA: W.B. Saunders.

    Google Scholar 

  • Frohse, F., Brodel, M., & Schlossberg, L. (1961). Atlas of human anatomy. New York: Barnes & Noble Books/Harper & Row Publishers.

    Google Scholar 

  • Gentry, P. R., Clewell, H. J., & Andersen, M. E. (2004). Good modeling practices for pharmacokinetic models in chemical risk assessment. Ottawa, Ontario: Unpublished contract report submitted to Health Canada.

    Google Scholar 

  • Gerlowski, L. E., & Jain, R. K. (1983). Physiologically based pharmacokinetic modeling: Principles and applications. Journal of Pharmaceutical Sciences, 72, 1103–1127.

    Article  CAS  Google Scholar 

  • Grisham, J. W. (Ed.). (1986). Health aspects of the disposal of waste chemicals. Oxford, England: Pergamon Press.

    Google Scholar 

  • Guyton, A. C. (1968). Textbook of medical physiology. Philadelphia, PA: W.B. Saunders.

    Google Scholar 

  • Guyton, A. C. (1971). Basic human physiology: Normal functions and mechanisms of disease. Philadelphia, PA: W.B. Saunders.

    Google Scholar 

  • Guyton, A. C. (1982). Human physiology and mechanisms of disease (3rd ed.). Philadelphia, PA: W.B. Saunders.

    Google Scholar 

  • Guyton, A. C. (1986). Textbook of medical physiology (7th ed.). Philadelphia, PA: W.B. Saunders.

    Google Scholar 

  • Hack, C. E., Chiu, W. A., Zhao, Q. J., & Clewell, H. J. (2006). Bayesian population analysis of a harmonized physiologically based pharmacokinetic model of trichloroethylene and its metabolites. Regulatory Toxicology and Pharmacology, 46(1), 63–83.

    Article  CAS  Google Scholar 

  • Homburger, F., Hayes, J. A., & Pelikan, E. W. (Eds.). (1983). A guide to general toxicology. New York: Karger.

    Google Scholar 

  • Hughes, W. W. (1996). Essentials of environmental toxicology: The effects of environmentally hazardous substances on human health. Washington, DC: Taylor & Francis.

    Google Scholar 

  • ICRP. (1975 – [current]). Publication series of the international commission on radiological protection (ICRP). Oxford, UK: Pergamon Press.

    Google Scholar 

  • Iman, R. L., & Helton, J. C. (1988). An investigation of uncertainty and sensitivity analysis techniques for computer models. Risk Analysis, 8, 71–90.

    Article  Google Scholar 

  • Klaassen, C. D., Amdur, M. O., & Doull, J. (Eds.). (1996). Casarett and Doull’s toxicology: The basic science of poisons (5th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Kohn, M. C. (1995). Achieving credibility in risk assessment models. Toxicology Letters, 79, 107–114.

    Article  CAS  Google Scholar 

  • Krewski, D., Wang, Y., Bartlett, S., & Krishnan, K. (1995). Uncertainty, variability, and sensitivity analysis in physiological pharmacokinetic models. Journal of Biopharmaceutical Statistics, 5, 245–271.

    Article  CAS  Google Scholar 

  • Krishnan, K., & Andersen, M. E. (2007). Physiologically-based pharmacokinetic and toxicokinetic modeling. In A. W. Hayes (Ed.), Principles and methods in toxicology (pp. 232–291). New York, NY: Taylor and Francis.

    Google Scholar 

  • Lipscomb, J. C., & Ohanian, E. V. (Eds.). (2007). Toxicokinetics and risk assessment. New York: Informa Healthcare.

    Google Scholar 

  • Lipscomb, J. C., & Poet, T. S. (2008). In vitro measurements of metabolism for application in pharmacokinetic modeling. Pharmacology & Therapeutics, 118, 82–103.

    Article  CAS  Google Scholar 

  • Lipscomb, J. C., Fisher, J. W., Confer, P. D., & Byczkowski, J. Z. (1998). In vitro to in vivo extrapolation for trichloroethylene metabolism in humans. Toxicology and Applied Pharmacology, 152, 376–387.

    Article  CAS  Google Scholar 

  • Loizou, G., Spendiff, M., Barton, H. A., Bessems, J., Bois, F. Y., d’Yvoire, M. B., et al. (2008). Development of good modeling practice for physiologically based pharmacokinetic models for use in risk assessment: the first steps. Regulatory Toxicology and Pharmacology, 50(3), 400–411.

    Article  CAS  Google Scholar 

  • Marcus, A. H., & Elias, R. (1998). Some useful statistical methods for model validation. Environmental Health Perspectives, 106(6), 1541–1550.

    Article  CAS  Google Scholar 

  • Nestorov, I. A. (2001). Modelling and simulation of variability and uncertainty in toxicokinetics and pharmacokinetics. Toxicology Letters, 120, 411–420.

    Article  CAS  Google Scholar 

  • NRC. (1983). Risk Assessment in the Federal Government: Managing the Process, National Research Council, Committee on the Institutional Means for Assessment of Risks to Public Health. Washington, DC: National Academy Press.

    Google Scholar 

  • NRC. (1987). Pharmacokinetics in risk assessment: drinking water and health (Vol. 8. Prepared by the Safe Drinking Water Committee). National Research Council: Washington, DC, National Academy Press.

    Google Scholar 

  • Ramsey, J. C., & Andersen, M. E. (1984). A physiological model for the inhalation pharmacokinetics of inhaled styrene monomer in rats and humans. Toxicology and Applied Pharmacology, 73, 159–175.

    Article  CAS  Google Scholar 

  • Reddy, M. B., Yang, R. S. H., Clewell, H. J., & Andersen, M. E. (Eds.). (2005). Physiologically based pharmacokinetic modeling: science and application. Hoboken, NJ: Wiley. 420 pp.

    Google Scholar 

  • Rescigno, A., & Beck, J. (1987). The use and abuse of models. Journal of Pharmacokinetics and Biopharmaceutics, 15(3), 327–344.

    Article  CAS  Google Scholar 

  • Rideout, V. C. (1991). Mathematical and computer modeling of physiological systems. New York: Prentice-Hall. 272 pp.

    Google Scholar 

  • Roberts, A. (Ed.). (2014). Human anatomy and coloring book. New York: DK Publishing.

    Google Scholar 

  • Rodgers, T., & Rowland, M. (2007). Mechanistic approaches to volume of distribution predictions: Understanding the processes. Pharmaceutical Research, 24(5), 918–933.

    Article  CAS  Google Scholar 

  • Saleh, M. A., Blancato, J. N., & Nauman, C. H. (Eds.). (1994). Biomarkers of human exposure to resticides (ACS Symposium Series). Washington, DC: American Chemical Society (ACS).

    Google Scholar 

  • Scanlon, V. C., & Sanders, T. (1995). Essentials of anatomy and physiology (2nd ed.). New York: F.A. Davis.

    Google Scholar 

  • Schmitt, W. (2008). General approach for the calculation of tissue to plasma partition coefficients. Toxicology In Vitro, 22(2), 457–467.

    Article  CAS  Google Scholar 

  • Thompson, C. M., Johns, D. O., Sonawane, B., Barton, H. A., Hattis, D., Tardif, R., et al. (2009). Database for physiologically based pharmacokinetic (PBPK) modeling: Physiological data for healthy and health-impaired elderly. Journal of Toxicology and Environmental Health, Part B, 12, 1–24.

    Article  Google Scholar 

  • USEPA. (1992a). Dermal exposure assessment: Principles and applications. EPA/600/8-91/011B, Office of Health and Environmental Assessment, US EPA, Washington, DC.

    Google Scholar 

  • USEPA. (1992b). Framework for ecological risk assessment. EPA/630/R-92/001, February, 1992, Risk Assessment Forum, Washington, DC.

    Google Scholar 

  • USEPA. (1992c). Guidance for data useability in risk assessment (Parts A & B), Publication No. 9285.7-09A&B, Office of Emergency and Remedial Response, USEPA, Washington, DC.

    Google Scholar 

  • USEPA. (1992d). Guidelines for exposure assessment, EPA/600/Z-92/001, Risk Assessment Forum, Office of Research and Development, Office of Health and Environmental Assessment, USEPA, Washington, DC.

    Google Scholar 

  • USEPA. (1992e). Supplemental guidance to RAGS: Calculating the concentration term. Publication No. 9285.7-08I, Office of Emergency and Remedial Response, USEPA, Washington, DC

    Google Scholar 

  • Veerkamp, W., & Wolff, C. (1996). Fate and exposure models in relation to risk assessment. Environmental Science and Pollution Research, 3(2), 91–95.

    Article  CAS  Google Scholar 

  • Verner, M. A., Ayotte, P., Muckle, G., Charbonneau, M., & Haddad, S. (2009). A physiologically based pharmacokinetic model for the assessment of infant exposure to persistent organic pollutants in epidemiologic studies. Environmental Health Perspectives, 117(3), 481–487.

    Article  CAS  Google Scholar 

  • WHO (World Health Organization). (1990). Public health impact of pesticides used in agriculture. World Health Organization and United Nations Environment Programme, WHO, Geneva, Switzerland.

    Google Scholar 

  • WHO. (1999). Principles for the assessment of risks to human health from exposure to chemicals. Geneva, World Health Organization, International Programme on Chemical Safety (Environmental Health Criteria 210).

    Google Scholar 

  • WHO. (2005a). Chemical-specific adjustment factors for interspecies differences and human variability: Guidance document for use of data in dose/concentration–response assessment, IPCS Harmonization Project Document No. 2, The International Programme on Chemical Safety (IPCS), WHO Press, World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • WHO. (2005b). Principles of characterizing and applying human exposure models. IPCS Harmonization Project Document No. 3, The International Programme on Chemical Safety (IPCS), WHO Press, World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • WHO. (2010a). WHO human health risk assessment toolkit: chemical hazards, IPCS Harmonization Project Document No. 8, The International Programme on Chemical Safety (IPCS), WHO Press, World Health Organization, Geneva, Switzerland

    Google Scholar 

  • WHO. (2010b). Characterization and application of physiologically based pharmacokinetic models in risk assessment. IPCS Harmonization Project Document No. 9, The International Programme on Chemical Safety (IPCS), WHO Press, World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • Williams, P. L., & Burson, J. L. (Eds.). (1985). Industrial toxicology. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Willis, M. C. (1996). Medical terminology: The language of health care. Baltimore, MD: Williams & Wilkins.

    Google Scholar 

  • Barter, Z. E., Bayliss, M. K., Beaune, P. H., Boobis, A. R., Carlile, D. J., Edwards, R. J., Houston, J. B., Lake, B. G., Lipscomb, J. C., Pelkonen, O. R., Tucker, G. T., & Rostami-Hodjegan, A. (2007). Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: Reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. Current Drug Metabolism, 8, 33–45.

    Article  CAS  Google Scholar 

  • Farrar, D., Allen, B., Crump, K., & Shipp, A. (1989). Evaluation of uncertainty in input parameters to pharmacokinetic models and the resulting uncertainties in output. Toxicology Letters, 49, 371–385.

    Article  CAS  Google Scholar 

  • Campolongo, F., & Saltelli, A. (1997). Sensitivity analysis of an environmental model: An application of different analysis methods. Reliability Engineering and System Safety, 57(1), 49–69.

    Article  Google Scholar 

  • Gueorguieva, I., Aarons, L., & Rowland, M. (2006a). Diazepam pharmacokinetics from preclinical to phase I using a Bayesian population physiologically based pharmacokinetic model with informative prior distributions in WinBUGS. Journal of Pharmacokinetics and Pharmacodynamics, 33(5), 571–594.

    Article  CAS  Google Scholar 

  • Gueorguieva, I., Nestorov, I. A., & Rowland, M. (2006b). Reducing whole body physiologically based pharmacokinetic models using global sensitivity analysis: Diazepam case study. Journal of Pharmacokinetics and Pharmacodynamics, 33(1), 1–27.

    Article  CAS  Google Scholar 

  • Clewell III, H. J., & Andersen, M. E. (1987). Dose, species, and route extrapolation using physiologically based pharmacokinetic models. In Pharmacokinetics in risk assessment: Drinking water and health (Vol. 8, pp. 159–184). Washington, DC: National Academy Press.

    Google Scholar 

  • Yoon, M., & Barton, H. A. (2008). Predicting maternal rat and pup exposures: How different are they? Toxicological Sciences, 102(1), 15–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Asante-Duah, K. (2017). Anatomical and Physiological Perspectives on Human Exposure to Chemicals. In: Public Health Risk Assessment for Human Exposure to Chemicals. Environmental Pollution, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1039-6_2

Download citation

Publish with us

Policies and ethics