Skip to main content

Mapping the Universe

  • Chapter
  • First Online:
Mapping Across Academia
  • 844 Accesses

Abstract

The varieties of astronomical mapping are presented, starting with maps of the celestial sphere. Important map projections are considered, including gnomonic projections which are particularly good for star charts. When telescopes arrived, astronomers began to make maps of other worlds, including influential maps of Mars by Schiaparelli and maps of the Moon made during the Apollo era. I discuss map projections specifically designed for Mars and the Moon. Map distortions are examined: area, local shape, flexion, lopsidedness, distances, and boundary cuts. Spacetime maps include Martin Kruskal’s map of the interior of the black hole. Our map of the Sloan Great Wall of Galaxies , 1.37 billion light-years long, and the famous WMAP satellite map of the cosmic microwave background are described. Finally, my “Map of the Universe” displays everything in the universe on a logarithmic map: from the Earth to manmade satellites; to the Moon, Sun, and planets; to nearby stars; to our Milky Way, and other galaxies in the Local Group and Virgo supercluster; to the distant galaxies in the Sloan Digital Sky Survey; and finally, to the Cosmic Microwave Background, the most distant thing we can see.

I am teaching a new course this year at Princeton University called “Mapping the Universe.” Astronomical maps have had a long and interesting history, but are of particular interest today. When Mercator made his great map of the Earth in 1569 it was interesting not only because it portrayed local shapes and compass directions correctly, but also because for the first time it was able to show the coastlines of North America and South America more or less correctly. Today, astronomical maps are able to capture, for the first time, the entire visible universe on a single map. This has been due to the WMAP (Wilkinson Microwave Anisotropy Probe) satellite which measures the cosmic microwave background, the most distant thing we can observe, and the Sloan Digital Sky Survey (for a description see York et al. 2000) which has mapped the locations of a million galaxies in space. However let me start my story nearer the beginning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpher, R. A., & Herman, R. (1948). Evolution of the universe. Nature, 162, 774.

    Article  Google Scholar 

  • Asimov, I. (1976). Isaac Asimov’s biographical encyclopedia of science and technology. New York: Avon Books.

    Google Scholar 

  • Carter, B. (1966). Complete analytic extension of the symmetry axis of Kerr’s solution of Einstein’s equations. Physical Review, 141, 1242.

    Article  Google Scholar 

  • Carter, B. (1968). Global structure of the Kerr family of gravitational fields. Physical Review, 174, 1559.

    Article  Google Scholar 

  • Copernican Derivations. University of Nebraska-Lincoln Astronomy Education Group. http://astro.unl.edu/naap/ssm/ssm_advanced.html

  • Friedmann, A. Z. (1922). Uber die Krümmung des Raumes (On space curvature). Zeitschrift für Phys, 10, 377.

    Article  Google Scholar 

  • Friedmann, A. Z. (1924). Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes (On the possibility of a world with constant negative curvature of space). Zeitschrift für Phys., 21, 326.

    Article  Google Scholar 

  • Gallant, Roy. (1956). Exploring Mars. Garden City, NY: Garden City Books.

    Google Scholar 

  • Gamow, G. (1948a). The origin of elements and the separation of galaxies. Physical Review, 74, 505.

    Article  Google Scholar 

  • Gamow, G. (1948b). The evolution of the universe. Nature, 162, 680.

    Article  Google Scholar 

  • Geller, M. J., & Huchra, J. P. (1989). Mapping the universe. Science, 246, 897–903.

    Article  Google Scholar 

  • Gilbert, E. N. (1974). Distortion in maps. Society for Industrial and Applied Mathematics Review, 16(1), 47–62.

    Google Scholar 

  • Goldberg, D., & Gott, J. R. (2007). Flexion and skewness in map projections of the Earth. Cartographica, 42, 297–318.

    Article  Google Scholar 

  • Gott, J. R. (2001). Time Travel in Einstein’s Universe. Boston: Houghton Mifflin.

    Google Scholar 

  • Gott, J. R., Choi, Y.-Y., Park, C., & Kim, J. (2009). Three-dimensional genus topology of luminous red galaxies. Astrophysical Journal Letters, 695, L45–L48.

    Article  Google Scholar 

  • Gott, J. R., Juric, M., Schlegel, D., Hoyle, F., Vogeley, M., Tegmark, M., et al. (2005). A map of the universe. Astrophysical Journal, 624, 463–484.

    Article  Google Scholar 

  • Gott, J. R., Melott, A., & Dickinson, M. (1986). The spongelike topology of large scale structure. Astrophysical Journal, 306, 341.

    Article  Google Scholar 

  • Gott, J. R., Mugnolo, C., & Colley, W. N. (2007). Map projections minimizing distance errors. Cartographica, 42, 219–234.

    Article  Google Scholar 

  • Gott, J. R., & Vanderbei, R. J. (2010). Sizing up the universe. Washington, DC: National Geographic Society.

    Google Scholar 

  • Hawking, S. W., & Ellis, G. F. R. (1975). The large-scale structure of space-time, Cambridge monographs on mathematical physics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kim, R. (1993). The life & times of E. M. Antoniadi (1870–1944), Part I: An astronomer in the making. Journal of the British Astronomical Association, 103, 4.

    Google Scholar 

  • Kruskal, M. (1960). Maximal extension of Schwarzschild metric. Physical Review, 119, 1743–1745.

    Article  Google Scholar 

  • Laskowski, P. (1997a). Part 1: Distortion-spectrum fundamentals: A new tool for analyzing and visualizing map distortions. Cartographica, 34(3), 3–18.

    Article  Google Scholar 

  • Laskowski, P. (1997b). Part 2: Distortion-spectrum applications: Projections cross-breeding. Cartographica, 34(3), 19–39.

    Article  Google Scholar 

  • Lemonick, M. (2009). The Georgian Star: How William and Caroline Herschel revolutionized our understanding of the cosmos. New York: Norton.

    Google Scholar 

  • Minkowski, H. (1908). Raum und Zeit, 80. Versammlung Deutscher Naturforscher (Koln, 1908). Physikalische Zeitschrift, 10, 75–88.

    Google Scholar 

  • National Geographic Staff. (1969). “The earth’s moon,” printed map included with National Geographic magazine (February).

    Google Scholar 

  • Penrose, R. (1964). Conformal treatment of infinity. In C. M. de Witt (Ed.), Relativity, Groups and Topology, 1963 (Les Houches Lectures) Relativite, Groupes et Topologie. New York: Gordon and Breach.

    Google Scholar 

  • Penzias, A., & Wilson, R. W. (1965). A measurement of excess antenna temperature at 4080 Mc/s. Astrophysical Journal, 142, 419.

    Article  Google Scholar 

  • Peters, A. B. (1975). Wie man unsere Weltcarten der Erde ahnlicher machen kann. Kartographische Nachrichten, 25(5), 173–183.

    Google Scholar 

  • Peters, A. B. (1978). Uber Weltkartenverzerrungen und Weltkartenmittelpunkte. Kartographische Nachrichten, 28(3), 106–113.

    Google Scholar 

  • Peters, A. B. (1984). Distance related maps. The American Cartographer, 11(2), 119–131.

    Article  Google Scholar 

  • Saunders, R. S., et al. (1992). Magellan mission summary. Journal of Geophysical Research, 97(E8), 13067–13090.

    Article  Google Scholar 

  • Schiaparelli, A. (1888). Map of Mars. In: Meyers Konversations-Lexikon, 4th ed.

    Google Scholar 

  • Schwarzschild, K. (1916). Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin (p. 189). Physik und Technik: Klasse für Mathematik.

    Google Scholar 

  • Shapley, H. (1918). Globular clusters and the structure of the galactic system. Publications of the Astronomical Society of the Pacific, 30(173), 42.

    Article  Google Scholar 

  • Society for the Diffusion of Useful Knowledge (Great Britain). (1831). Six maps of the stars. London: Baldwin and Cradock.

    Google Scholar 

  • Spergel, D. N., Verde, L., Peiris, H. V., Komatsu, E., Nolta, M. R., Bennett, C. L., et al. (2003). First-tear Wilkinson microwave anisotropy probe (WMAP) observations: Determination of cosmological parameters. The Astrophysical Journal Supplement Series, 148, 175–194.

    Article  Google Scholar 

  • Tissot, N. A. (1881). Mémoire sur la répresentation des surfaces et les projections des cartes géographiques. Paris: Gauthier Villars.

    Google Scholar 

  • Tulley, R. B., & Fisher, J. R. (1987). Nearby galaxies atlas. Cambridge: Cambridge University Press.

    Google Scholar 

  • York, D. G., et al. (2000). The sloan digital sky survey: Technical summary. Astronomical Journal, 120(3), 1579.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Richard Gott III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gott, J.R. (2017). Mapping the Universe. In: Brunn, S., Dodge, M. (eds) Mapping Across Academia. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1011-2_5

Download citation

Publish with us

Policies and ethics