Advertisement

Handling Fermions on the Lattice

  • Francesco KnechtliEmail author
  • Michael Günther
  • Michael Peardon
Chapter
  • 828 Downloads
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

In Chap.  2, the ideas of Monte Carlo estimation of the path integral of a bosonic field were introduced. Consider now the problem of evaluating path integrals of fermions, remembering that defining the fermion path integral means introducing Grassmann integrals, see Sect.  1.3.2.

Keywords

Dirac Operator Krylov Subspace Quark Propagator Wilson Fermion Fermion Determinant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Rubow, U. Wolff, Comput. Phys. Commun. 182, 2530 (2011). doi: 10.1016/j.cpc.2011.07.010 ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Lüscher, JHEP 07, 081 (2007). doi: 10.1088/1126-6708/2007/07/081 CrossRefGoogle Scholar
  3. 3.
    L. Giusti, C. Hoelbling, M. Luscher, H. Wittig, Comput. Phys. Commun. 153, 31 (2003). doi: 10.1016/S0010-4655(02)00874-3 ADSCrossRefGoogle Scholar
  4. 4.
    L. Del Debbio, L. Giusti, C. Pica, Phys. Rev. Lett. 94, 032003 (2005). doi: 10.1103/PhysRevLett.94.032003 ADSCrossRefGoogle Scholar
  5. 5.
    R.G. Edwards, U.M. Heller, R. Narayanan, Nucl. Phys. B 540, 457 (1999). doi: 10.1016/S0550-3213(98)00694-4 ADSCrossRefGoogle Scholar
  6. 6.
    J. van den Eshof, A. Frommer, T. Lippert, K. Schilling, H.A. van der Vorst, Comput. Phys. Commun. 146, 203 (2002). doi: 10.1016/S0010-4655(02)00455-1 ADSCrossRefGoogle Scholar
  7. 7.
    W. Arndoli, Q. Appl. Math. 9, 17 (1951)Google Scholar
  8. 8.
    C. Lanczos, J. Res. Natl. Bur. Stan. 45, 255 (1950)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Y. Saad, H. Schultz, SIAM J. Sci. Stat. Comput. 7, 856 (1986)MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Greenbaum, V. Ptak, Z. Strakos, SIAM J. Matrix Anal. Appl. 17(3), 465 (1996)MathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Hestenes, Stiefel, J. Res. Natl. Bur. Stan. 49, 409 (1952)MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Lüscher, Comput. Phys. Commun. 156, 209 (2004). doi: 10.1016/S0010-4655(03)00486-7 ADSCrossRefGoogle Scholar
  13. 13.
    A. Frommer, K. Kahl, S. Krieg, B. Leder, M. Rottmann, SIAM, J. Sci. Comput. 36, A1581 (2014). doi: 10.1137/130919507
  14. 14.
    J. Brannick, A. Frommer, K. Kahl, B. Leder, M. Rottmann, A. Strebel, Numer. Math. 132(3), 463 (2015). doi: 10.1007/s00211-015-0725-6
  15. 15.
    Y. Saad, Linear Algebra Appl. 34, 269 (1980)MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Eiermann, O.G. Ernst, SIAM J. Numer. Anal. 44, 2481 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Frommer, S. Güttel, M. Schweitzer, SIAM J. Matrix Anal. Appl. 35, 661 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Finkenrath, F. Knechtli, B. Leder, Nucl. Phys. B 877(441), 2013 (2014). doi: 10.1016/j.nuclphysb.2013.10.019. Corrigendum Nuclear Physics, Section B, pp. 574–575
  19. 19.
  20. 20.
    A. Hasenfratz, R. Hoffmann, S. Schaefer, Phys. Rev. D 78, 014515 (2008). doi: 10.1103/PhysRevD.78.014515 ADSCrossRefGoogle Scholar
  21. 21.
    B. Leder, J. Finkenrath, F. Knechtli, PoS LATTICE2013, 035 (2014)Google Scholar
  22. 22.
    A. Hasenfratz, A. Alexandru, Phys. Rev. D 65, 114506 (2002). doi: 10.1103/PhysRevD.65.114506 ADSCrossRefGoogle Scholar
  23. 23.
    M. Lüscher, Comput. Phys. Commun. 165, 199 (2005). doi: 10.1016/j.cpc.2004.10.004 ADSCrossRefGoogle Scholar
  24. 24.
    M. Lüscher, F. Palombi, PoS LATTICE2008, 049 (2008)Google Scholar
  25. 25.
    L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio, N. Tantalo, JHEP 0602, 011 (2006). doi: 10.1088/1126-6708/2006/02/011 ADSCrossRefGoogle Scholar
  26. 26.
    J. Finkenrath, F. Knechtli, B. Leder, Comput. Phys. Commun. 184, 1522 (2013). doi: 10.1016/j.cpc.2013.01.020 ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Hasenbusch, Phys. Lett. B 519, 177 (2001). doi: 10.1016/S0370-2693(01)01102-9 ADSCrossRefGoogle Scholar
  28. 28.
    M. Hasenbusch, K. Jansen, Nucl. Phys. B 659, 299 (2003). doi: 10.1016/S0550-3213(03)00227-X ADSCrossRefGoogle Scholar
  29. 29.
    S. Duane, A. Kennedy, B. Pendleton, D. Roweth, Phys. Lett. B 195, 216 (1987). doi: 10.1016/0370-2693(87)91197-X ADSCrossRefGoogle Scholar
  30. 30.
    M. Lüscher, in Modern perspectives in lattice QCD: quantum field theory and high performance computing. Proceedings, International School, 93rd Session, Les Houches, France, Aug 3–28, 2009 (2010), pp. 331–399, https://inspirehep.net/record/846344/files/arXiv:1002.4232.pdf
  31. 31.
    A. Borici, A. Frommer, B. Joo, A. Kennedy, B. Pendleton, Monte Carlo Simulations of Lattice QCD. (2005)Google Scholar
  32. 32.
    K. Jansen, C. Liu, Comput. Phys. Commun. 99, 221 (1997). doi: 10.1016/S0010-4655(96)00128-2 ADSCrossRefGoogle Scholar
  33. 33.
    M. Della Morte et al., Comput. Phys. Commun. 156, 62 (2003). doi: 10.1016/S0010-4655(03)00436-3 ADSCrossRefGoogle Scholar
  34. 34.
    C. Urbach, K. Jansen, A. Shindler, U. Wenger, Comput. Phys. Commun. 174, 87 (2006). doi: 10.1016/j.cpc.2005.08.006 ADSCrossRefGoogle Scholar
  35. 35.
    M. Lüscher, S. Schaefer, Comput. Phys. Commun. 184, 519 (2013). doi: 10.1016/j.cpc.2012.10.003 ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    J. Sexton, D. Weingarten, Nucl. Phys. B 380, 665 (1992)ADSCrossRefGoogle Scholar
  37. 37.
    A.D. Kennedy, I. Horvath, S. Sint, Nucl. Phys. Proc. Suppl. 73, 834 (1999). doi: 10.1016/S0920-5632(99)85217-7 ADSCrossRefGoogle Scholar
  38. 38.
    M.A. Clark, A.D. Kennedy, Nucl. Phys. Proc. Suppl. 129, 850 (2004). doi: 10.1016/S0920-5632(03)02732-4.[,850(2003)] ADSCrossRefGoogle Scholar
  39. 39.
    A.D. Kennedy, Nucl. Phys. Proc. Suppl. 128C, 107 (2004). doi: 10.1016/S0920-5632(03)02466-6.[,107(2004)] ADSCrossRefGoogle Scholar
  40. 40.
    A. Frommer, B. Nockel, S. Gusken, T. Lippert, K. Schilling, Int. J. Mod. Phys. C 6, 627 (1995). doi: 10.1142/S0129183195000538 ADSCrossRefGoogle Scholar
  41. 41.
    M.A. Clark, P. de Forcrand, A.D. Kennedy, PoS LAT2005, 115 (2006)Google Scholar
  42. 42.
    T.A. DeGrand, S. Schaefer, Comput. Phys. Commun. 159, 185 (2004). doi: 10.1016/j.cpc.2004.02.006 ADSCrossRefGoogle Scholar
  43. 43.
    L. Giusti, P. Hernandez, M. Laine, P. Weisz, H. Wittig, JHEP 04, 013 (2004). doi: 10.1088/1126-6708/2004/04/013 ADSCrossRefGoogle Scholar
  44. 44.
    T. Blum, T. Izubuchi, E. Shintani, Phys. Rev. D 88(9), 094503 (2013). doi: 10.1103/PhysRevD.88.094503 ADSCrossRefGoogle Scholar
  45. 45.
    E. Shintani, R. Arthur, T. Blum, T. Izubuchi, C. Jung, C. Lehner, Phys. Rev. D 91(11), 114511 (2015). doi: 10.1103/PhysRevD.91.114511 ADSCrossRefGoogle Scholar
  46. 46.
    C. Thron, S. J. Dong, K. F. Liu, H. P. Ying, Pade - Z(2) estimator of determinants. Phys. Rev. D 57, 1642–1653 (1998). doi: 10.1103/PhysRevD.57.1642
  47. 47.
    S. Bernardson, P. McCarty, C. Thron, Comput. Phys. Commun. 78, 256 (1993). doi: 10.1016/0010-4655(94)90004-3 ADSCrossRefGoogle Scholar
  48. 48.
    G.S. Bali, S. Collins, A. Schafer, Comput. Phys. Commun. 181, 1570 (2010). doi: 10.1016/j.cpc.2010.05.008 ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    C. McNeile, C. Michael, Phys. Rev. D 73, 074506 (2006). doi: 10.1103/PhysRevD.73.074506 ADSCrossRefGoogle Scholar
  50. 50.
    B. Blossier, M. Della Morte, N. Garron, G. von Hippel, T. Mendes, H. Simma, R. Sommer, JHEP 05, 074 (2010). doi: 10.1007/JHEP05(2010)074

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Francesco Knechtli
    • 1
    Email author
  • Michael Günther
    • 2
  • Michael Peardon
    • 3
  1. 1.Department of Physics, School of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany
  2. 2.Department of Mathematics, School of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany
  3. 3.School of MathematicsTrinity College DublinDublin 2Ireland

Personalised recommendations