Advertisement

Monte Carlo Methods

  • Francesco KnechtliEmail author
  • Michael Günther
  • Michael Peardon
Chapter
  • 842 Downloads
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

No way to compute the path integral of lattice QCD analytically is known. Even on a finite lattice it amounts of solving the very-high-dimensional integral of Eq. ( 1.85).

Keywords

Markov Chain Gauge Group Transition Kernel Uniform Random Number Detailed Balance Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Lüscher, Comput. Phys. Commun. 79, 100 (1994). doi: 10.1016/0010-4655(94)90232-1 ADSCrossRefGoogle Scholar
  2. 2.
    D. Best, N. Fisher, Appl. Statist. 28, 152 (1979)CrossRefGoogle Scholar
  3. 3.
    B. Bunk, Heatbath Update for U(1), Internal notes (1995)Google Scholar
  4. 4.
    K. Fabricius, O. Haan, Phys. Lett. B 143, 459 (1984). doi: 10.1016/0370-2693(84)91502-8 ADSCrossRefGoogle Scholar
  5. 5.
    A. Kennedy, B. Pendleton, Phys. Lett. B 156, 393 (1985). doi: 10.1016/0370-2693(85)91632-6 ADSCrossRefGoogle Scholar
  6. 6.
    M. Creutz, Phys. Rev. D 21, 2308 (1980). doi: 10.1103/PhysRevD.21.2308 ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    P. Weisz, A Haan-Fabricius Updating Program for the APE-100 Parallel Computer, Internal report of the ALPHA collaboration (1993)Google Scholar
  8. 8.
    N. Cabibbo, E. Marinari, Phys. Lett. B 119, 387 (1982). doi: 10.1016/0370-2693(82)90696-7 ADSCrossRefGoogle Scholar
  9. 9.
    P. Weisz, A Cabibbo-Marinari SU(3) Updating Program for the Quadrics Parallel Computer, Internal report of the ALPHA collaboration (1995)Google Scholar
  10. 10.
    M. Creutz, Phys. Rev. D 36, 515 (1987). doi: 10.1103/PhysRevD.36.515 ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    F.R. Brown, T.J. Woch, Phys. Rev. Lett. 58, 2394 (1987). doi: 10.1103/PhysRevLett. 58.2394 ADSCrossRefGoogle Scholar
  12. 12.
    T. DeGrand, C. DeTar, Lattice Methods for Quantum Chromodynamics (World Scientific, Singapure, 2006)Google Scholar
  13. 13.
    I.P. Omelyan, I.M. Mryglod, R. Folk, Phys. Rev. E 65, 056706 (2002). doi: 10.1103/PhysRevE.65.056706
  14. 14.
    I.P. Omelyan, I.M. Mryglod, R. Folk, Phys. Rev. E 66, 026701 (2002). doi: 10.1103/PhysRevE.66.026701
  15. 15.
    M. Wandelt, M. Günther, F. Knechtli, M. Striebel, Appl. Numer. Math. 62(12), 1740 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Lüscher, in Modern Perspectives in Lattice QCD: Quantum Field Theory and High Performance Computing. Proceedings, International School, 93rd Session, Les Houches, France, August 3–28, 2009 (2010), pp. 331–399. https://inspirehep.net/record/846344/files/arXiv:1002.4232.pdf
  17. 17.
    A. Kennedy, P. Silva, M. Clark, Phys. Rev. D 87(3), 034511 (2013). doi: 10.1103/PhysRevD.87.034511 ADSCrossRefGoogle Scholar
  18. 18.
    T. Korzec, U. Wolff, Nucl. Phys. B 871, 145 (2013). doi: 10.1016/j.nuclphysb.2013.02.012 ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    T. Korzec, U. Wolff, PoS LATTICE2010, 029 (2010)Google Scholar
  20. 20.
    Y. Delgado Mercado, C. Gattringer, A. Schmidt, Comput. Phys. Commun. 184, 1535 (2013). doi: 10.1016/j.cpc.2013.02.001

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Francesco Knechtli
    • 1
    Email author
  • Michael Günther
    • 2
  • Michael Peardon
    • 3
  1. 1.Department of Physics, School of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany
  2. 2.Department of Mathematics, School of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany
  3. 3.School of MathematicsTrinity College DublinDublin 2Ireland

Personalised recommendations