Skip to main content

Laboratory Experiments

  • Chapter
  • First Online:
Geological Storage of CO2 in Deep Saline Formations

Part of the book series: Theory and Applications of Transport in Porous Media ((TATP,volume 29))

  • 1368 Accesses

Abstract

The hydro-thermo-mechanical and chemical properties of reservoir rocks and the surrounding sealing units are important data for assessing the performance of a CO2 storage . Laboratory measurements on rock samples are the first method to assess these properties and evaluate the reservoir injectivity and storage potential. Beyond standard techniques, this chapter also presents state of the art laboratory experiment s capable of reproducing the in situ conditions during CO2 injection . In addition, these methods are also used to investigate the coupling between the hydro-thermo-mechanical and chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akin S, Kovscek AR (1999) Imbibition studies of low-permeability porous media. Society of Petroleum Engineers

    Google Scholar 

  • Al-Bulushi IR, Al-Maamari RS, Wilson OB (2012) Brine versus Klinkenberg corrected gas permeability correlation for Shuaiba carbonate formation. J Pet Sci Eng 92–93:24–29

    Article  Google Scholar 

  • Andreani M, Luquot L, Gouze P, Godard M, Hoisé E, Gibert B (2009) Experimental alteration of peridotite during injection of CO2-rich fluids. Environ Sci Technol 43:1226–1231

    Article  Google Scholar 

  • Andrew M, Bijeljic B, Blunt MJ (2014) Pore-scale imaging of trapped supercritical carbon dioxide in sandstones and carbonates. Int J Greenh Gas Control 22:1–14

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. American Elsevier, New York, NY

    Google Scholar 

  • Berg S, Oedai S, Ott H (2013) Displacement and mass transfer between saturated and unsaturated CO2–brine systems in sandstone. Int J Greenh Gas Control 12:478–492

    Article  Google Scholar 

  • Berkowitz B, Scher H, Silliman SE (2000) Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour Res 36:149–158

    Article  Google Scholar 

  • Birkholzer JT, Cihan A, Zhou Q (2012) Impact-driven pressure management via targeted brine extraction—conceptual studies of CO2 storage in saline formations. Int J Greenh Gas Control 7:168–180

    Article  Google Scholar 

  • Bloomfield JP, Williams AT (1995) An empirical liquid permeability–gas permeability correlation for use in aquifer properties studies. Q J Eng Geol Hydrogeol 28:S143–S150

    Article  Google Scholar 

  • Brooks RH, Corey AT (1966) Properties of porous media affecting fluid flow. J Irrig Drain Div 92:61–88

    Google Scholar 

  • Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Colorado State University, Colorado

    Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  • Burnside NM, Naylor M (2014) Review and implications of relative permeability of CO2/brine systems and residual trapping of CO2. Int J Greenh Gas Control 23:1–11

    Article  Google Scholar 

  • Carroll S, Hao Y, Smith M, Sholokhova Y, (2013) Development of scaling parameters to describe CO2–rock interactions within Weyburn–Midale carbonate flow units. Int J Greenh Gas Control, The IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project 16, suppl. 1, S185–S193

    Google Scholar 

  • Chang YC, Mohanty KK, Huang DD, Honarpour MM (1997) The impact of wettability and core-scale heterogeneities on relative permeability. J Pet Sci Eng 18:1–19

    Article  Google Scholar 

  • Chierici GL (1984) Novel relations for drainage and imbibition relative permeabilities. Soc Pet Eng J 24:275–276

    Article  Google Scholar 

  • Chiquet P, Broseta D, Thibeau S (2007) Wettability alteration of caprock minerals by carbon dioxide. Geofluids 7:112–122

    Article  Google Scholar 

  • Clennell MB (1997) Tortuosity: a guide through the maze. Geol Soc Lond Spec Publ 122:299–344

    Article  Google Scholar 

  • Coates GR, Denoo SA (1980) Log derived mechanical properties and rock stress. Presented at the SPWLA 21st annual logging symposium, Society of Petrophysicists and Well-Log Analysts

    Google Scholar 

  • Corey AT (1954) The interrelation between gas and oil relative permeabilities. Producers Monthly 19:38–41

    Google Scholar 

  • Cortis A, Berkowitz B (2004) Anomalous transport in “classical” soil and sand columns. Soil Sci Soc Am J 68:1539–1548

    Article  Google Scholar 

  • Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford

    Google Scholar 

  • Cueto-Felgueroso L, Juanes R (2016) A discrete-domain description of multiphase flow in porous media: Rugged energy landscapes and the origin of hysteresis. Geophys Res Lett 43

    Google Scholar 

  • Cui X, Bustin AMM, Bustin RM (2009) Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications. Geofluids 9:208–223

    Article  Google Scholar 

  • Daccord G, Lenormand R, Liétard O (1993) Chemical dissolution of a porous medium by a reactive fluid—I. Model for the “wormholing” phenomenon. Chem Eng Sci 48:169–178

    Article  Google Scholar 

  • Dake L (1978) Fundamentals of reservoir engineering. Elsevier, Amsterdam

    Google Scholar 

  • Dandekar AY (2013) Petroleum reservoir rock and fluid properties, 2nd edn. CRC Press, Taylor & Francis Group, New York

    Google Scholar 

  • Dentz M, Gouze P, Russian A, Dweik J, Delay F (2012) Diffusion and trapping in heterogeneous media: an inhomogeneous continuous time random walk approach. Adv Water Resour 49:13–22

    Article  Google Scholar 

  • Duan Z, Sun R, Zhu C, Chou I-M (2006) An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl, and SO4 2−. Mar Chem 98:131–139

    Article  Google Scholar 

  • Durner W (1994) Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour Res 30:211–223

    Article  Google Scholar 

  • Ebeltoft E, Lomeland F, Brautaset A, Haugen Å (2014). Parameter based scal-analysing relative permeability for full field application. In: International Symposium of the Society of Core Analysis, Avignon, France, 8–11 Sep 2014

    Google Scholar 

  • Edlmann K, Somerville JM, Smart BGD, Hamilton SA, Crawford BR (1998) Predicting rock mechanical properties from wireline porosities. Society of Petroleum Engineers, Norway

    Google Scholar 

  • Edlmann K, Haszeldine S, McDermott C (2013) Experimental investigation into the sealing capability of naturally fractured shale caprocks to supercritical carbon dioxide flow. Environ Earth Sci 70(7): 3393-3409.-17

    Google Scholar 

  • Fischer G (1992) The determination of permeability and storage capacity: pore pressure oscillation method. In: Wong T, Evans B (eds) Fault mechanics and transport properties of rocks. Academic Press, New York, pp 187–211

    Google Scholar 

  • Fjar E, Holt RM, Raaen AM, Risnes R, Horsrud P (1992) Petroleum related rock mechanics. Elsevier Science, London

    Google Scholar 

  • Garrouch AA, Ali L, Qasem F (2001) Using diffusion and electrical measurements to assess tortuosity of porous media. Ind Eng Chem Res 40:4363–4369

    Article  Google Scholar 

  • Gassman F (1951) Uber die elastizitat poroser mediem. Vier der Natur, Gresellschaft in Zurich 1–23

    Google Scholar 

  • Georgiadis A, Maitland G, Trusler JPM, Bismarck A (2010) Interfacial tension measurements of the (H2O + CO2) system at elevated pressures and temperatures. J Chem Eng Data 55:4168–4175

    Article  Google Scholar 

  • Gharbi O (2014) Fluid–rock interactions in carbonates; applications to CO2 storage. Imperial College

    Google Scholar 

  • Giesche H (2006) Mercury porosimetry: a general (practical) overview. Part Part Syst Charact 23:9–19

    Article  Google Scholar 

  • Gjetvaj F, Russian A, Gouze P, Dentz M (2015) Dual control of flow field heterogeneity and immobile porosity on non-Fickian transport in Berea sandstone. Water Resour Res 51:8273–8293

    Article  Google Scholar 

  • Glover P (2009) What is the cementation exponent? A new interpretation. Lead Edge 28:82–85

    Article  Google Scholar 

  • Golfier F, Zarcone C, Bazin B, Lenormand R, Lasseux D, Quintard M (2002) On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J Fluid Mech 457:213–254

    Article  Google Scholar 

  • Gouze P, Le Borgne T, Leprovost R, Lods G, Poidras T, Pezard P (2008) Non-Fickian dispersion in porous media: 1. Multiscale measurements using single-well injection withdrawal tracer tests. Water Resour Res 44:W06426

    Google Scholar 

  • Gouze P, Leprovost R, Poidras T, Le Borgne T, Lods G, Pezard PA (2009) CoFIS and TELog: new downhole tools for characterizing dispersion processes in aquifers by single-well injection-withdrawal tracer tests. Comptes Rendus Geosci Hydrogeophys 341, 965–975

    Google Scholar 

  • Gouze P, Luquot L (2011) X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution. J Contam Hydrol. Reactive Transport in the Subsurface: Mixing, Spreading and Reaction in Heterogeneous Media 120–121, 45–55

    Google Scholar 

  • Guarracino L, Rötting T, Carrera J (2014) A fractal model to describe the evolution of multiphase flow properties during mineral dissolution. Adv Water Resour 67:78–86

    Article  Google Scholar 

  • Haines WB (1930) Studies in the physical properties of soil. V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J Agric Sci 20:97–116

    Article  Google Scholar 

  • Halvorsen C, Hurst A (1990) Principles, practice and applications of laboratory minipermeametry. In: Worthington P (ed) Advances in core evaluation: accuracy and precision in reserves estimation, pp 521–549

    Google Scholar 

  • Hamouda AA, Karoussi O, Chukwudeme EA (2008) Relative permeability as a function of temperature, initial water saturation and flooding fluid compositions for modified oil-wet chalk. J Pet Sci Eng 63:61–72

    Article  Google Scholar 

  • Hassanizadeh SM, Gray WG (1993) Thermodynamic basis of capillary pressure in porous media. Water Resour Res 29:3389–3405

    Article  Google Scholar 

  • Hidalgo JJ, Carrera J (2009) Effect of dispersion on the onset of convection during CO2 sequestration. J Fluid Mech 640:441

    Article  Google Scholar 

  • Hilfer R, Øren PE (1996) Dimensional analysis of pore scale and field scale immiscible displacement. Transp Porous Media 22:53–72

    Article  Google Scholar 

  • Hingerl FF, Yang F, Pini R, Xiao X, Toney MF, Liu Y, Benson SM (2016) Characterization of heterogeneity in the Heletz sandstone from core to pore scale and quantification of its impact on multi-phase flow. Int J Greenh Gas Control

    Google Scholar 

  • Hoefner ML, Fogler HS (1988) Pore evolution and channel formation during flow and reaction in porous media. AIChE J 34:45–54

    Article  Google Scholar 

  • Hoek E, Franklin JA (1968) Simple triaxial cell for field or laboratory testing of rock. Trans Inst Min Met 77:A22–A26

    Google Scholar 

  • Honarpour M, Koederitz L, Harvey AH (1986) Relative permeability of petroleum reservoirs. CRC Press, Boca Raton

    Google Scholar 

  • Hossain Z (2012) Rock physics modeling of CO2 bearing reservoir rocks. Society of Petroleum Engineers, Denmark

    Book  Google Scholar 

  • Huang DD, Honarpour MM (1998) Capillary end effects in coreflood calculations. J Pet Sci Eng 19:103–117

    Article  Google Scholar 

  • Iglauer S, Paluszny A, Pentland CH, Blunt MJ (2011) Residual CO2 imaged with X-ray micro-tomography. Geophys Res Lett 38:L21403

    Article  Google Scholar 

  • Iglauer S, Pentland CH, Busch A (2015) CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration. Water Resour Res 51:729–774

    Article  Google Scholar 

  • Jaeger J, Cook NG, Zimmerman R (2007) Fundamentals of rock mechanics, 4th edn. Wiley-Blackwell, Malden, MA

    Google Scholar 

  • Johnson EF, Bossler DP, Naumann VO (1959) Calculation of relative permeability from displacement experiments 216:370–372

    Google Scholar 

  • Jones SC, Roszelle WO (1978) Graphical techniques for determining relative permeability from displacement experiments. J Pet Technol 30:807–817

    Article  Google Scholar 

  • Juanes R, Spiteri EJ, Orr FM, Blunt MJ (2006) Impact of relative permeability hysteresis on geological CO2 storage. Water Resour Res 42:W12418

    Article  Google Scholar 

  • Kamath J, de Zabala EF, Boyer RE (1995) Water/Oil Relative permeability endpoints of intermediate-wet, low-permeability rocks. SPE Form Eval 10:4–10

    Article  Google Scholar 

  • Klinkenberg LJ (1941) The permeability of porous media to liquids and gases. Presented at the Drilling and Production Practice, American Petroleum Institute, pp 200–213

    Google Scholar 

  • Kosugi K ’ichirou (1996) Lognormal distribution model for unsaturated soil hydraulic properties. Water Resour Res 32:2697–2703

    Article  Google Scholar 

  • Krevor SCM, Pini R, Zuo L, Benson SM (2012) Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions. Water Resour Res 48:W02532

    Article  Google Scholar 

  • Lasaga AC (1998) Kinetic theory in the earth sciences. Princeton University Press, New Jersey, p 811

    Google Scholar 

  • Lee TC, Kashyap RL, Chu CN (1994) Building skeleton models via 3-D medial surface axis thinning algorithms CVGIP Graph. Models Image Process 56:462–478

    Article  Google Scholar 

  • Leverett MC (1941) Capillary behavior in porous solids. Trans AIME 142:152–169

    Article  Google Scholar 

  • Levine JS, Goldberg DS, Lackner KS, Matter JM, Supp MG, Ramakrishnan TS (2014) Relative permeability experiments of carbon dioxide displacing brine and their implications for carbon sequestration. Environ Sci Technol 48:811–818

    Article  Google Scholar 

  • Levy M, Berkowitz B (2003) Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. J Contam Hydrol 64:203–226

    Article  Google Scholar 

  • Li K, Horne RN (2006) Comparison of methods to calculate relative permeability from capillary pressure in consolidated water-wet porous media. Water Resour Res 42:W06405

    Google Scholar 

  • Li K, Horne RN (2002) Experimental verification of methods to calculate relative permeability using capillary pressure data. Society of Petroleum Engineers

    Google Scholar 

  • Lindquist WB, Venkatarangan A (1999) Investigating 3D geometry of porous media from high resolution images. Phys Chem Earth Part Solid Earth Geod 24:593–599

    Article  Google Scholar 

  • Lomeland F, Ebeltoft E, Thomas WH (2005) A new versatile relative permeability correlation. In: International Symposium of the Society of Core Analysts, Toronto, Canada, pp 21–25

    Google Scholar 

  • Lu B, Torquato S (1993) Chord-length and free-path distribution functions for many-body systems. J Chem Phys 98:6472–6482

    Article  Google Scholar 

  • Luquot L, Andreani M, Gouze P, Camps P (2012) CO2 percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation—Otway Basin–Australia). Chem Geol 294–295:75–88

    Article  Google Scholar 

  • Luquot L, Gouze P (2009) Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks. Chem Geol. CO2 geological storage: Integrating geochemical, hydrodynamical, mechanical and biological processes from the pore to the reservoir scale 265, 148–159

    Google Scholar 

  • Luquot L, Gouze P, Niemi A, Bensabat J, Carrera J (2016) CO2-rich brine percolation experiments through Heletz reservoir rock samples (Israel): role of the flow rate and brine composition. Int J Greenh Gas Control

    Google Scholar 

  • Luquot L, Rodriguez O, Gouze P (2014) Experimental characterization of porosity structure and transport property changes in limestone undergoing different dissolution regimes. Transp Porous Media 101:507–532

    Article  Google Scholar 

  • Mathias SA, Gluyas JG, de Miguel GJGM, Bryant SL, Wilson D (2013) On relative permeability data uncertainty and CO2 injectivity estimation for brine aquifers. Int J Greenh Gas Control 12:200–212

    Article  Google Scholar 

  • McCraw C, Edlmann K, Miocic J, Gilfillan S, Haszeldine RS, McDermott CI (2016) Experimental investigation and hybrid numerical analytical hydraulic mechanical simulation of supercritical CO2 flowing through a natural fracture in caprock. Int J Greenh Gas Control 48:120–133. http://www.sciencedirect.com/science/article/pii/S1750583616300020

  • Meijster A, Roerdink JBTM, Hesselink WH (2002) A general algorithm for computing distance transforms in linear time. In: Goutsias J, Vincent L, Bloomberg DS (eds) Mathematical morphology and its applications to image and signal processing, computational imaging and vision. Springer, Berlin, pp 331–340

    Chapter  Google Scholar 

  • Metwally YM, Sondergeld CH (2011) Measuring low permeabilities of gas-sands and shales using a pressure transmission technique. Int J Rock Mech Min Sci 48:1135–1144

    Article  Google Scholar 

  • Moebius F, Or D (2012) Interfacial jumps and pressure bursts during fluid displacement in interacting irregular capillaries. J Colloid Interface Sci 377:406–415

    Article  Google Scholar 

  • Moghadasi L, Guadagnini A, Inzoli F, Bartosek M (2015) Interpretation of two-phase relative permeability curves through multiple formulations and Model Quality criteria. J Pet Sci Eng 135:738–749

    Article  Google Scholar 

  • Morita N, Whitfill DL, Massie I, Knudsen TW (1987) Realistic sand production prediction. In: SPE 16989 62nd Annual Technical Conference and Exhibition. Presented at the The SPE Dallas 1987

    Google Scholar 

  • Morrow NR (1970) Physics and thermodynamics of capillary action in porous media. Ind Eng Chem 62:32–56

    Article  Google Scholar 

  • Navarre-Sitchler A, Steefel CI, Yang L, Tomutsa L, Brantley SL (2009) Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast. J Geophys Res Earth Surf 114

    Google Scholar 

  • Nikolaidis N, Pitas I (2001) 3-D image processing algorithms. Wiley-Interscience, New York

    Google Scholar 

  • Noiriel C, Gouze P, Bernard D (2004) Investigation of porosity and permeability effects from microstructure changes during limestone dissolution. Geophys Res Lett 31:1–4

    Article  Google Scholar 

  • Noiriel C, Luquot L, Madé B, Raimbault L, Gouze P, van der Lee J (2009) Changes in reactive surface area during limestone dissolution: an experimental and modelling study. Chem Geol 265:160–170

    Article  Google Scholar 

  • Oikawa Y, Takehara T, Tosha T (2008) Effect of CO2 injection on mechanical properties of berea sandstone. In: Presented at the The 42nd U.S. Rock Mechanics Symposium (USRMS), American Rock Mechanics Association

    Google Scholar 

  • Pan C, Hilpert M, Miller CT (2001) Pore-scale modeling of saturated permeabilities in random sphere packings. Phys Rev E 64:66702

    Article  Google Scholar 

  • Pentland CH, El-Maghraby R, Iglauer S, Blunt MJ (2011) Measurements of the capillary trapping of super-critical carbon dioxide in Berea sandstone. Geophys Res Lett 38:L06401

    Article  Google Scholar 

  • Perrin J-C, Benson S (2010) An experimental study on the influence of sub-core scale heterogeneities on CO2 distribution in reservoir rocks. Transp Porous Media 82:93–109

    Article  Google Scholar 

  • Pinder GF, Gray WG (2008) Essentials of multiphase flow in porous media, 1st edn. Wiley-Interscience, Hoboken, NJ

    Book  Google Scholar 

  • Pini R, Benson SM (2013) Simultaneous determination of capillary pressure and relative permeability curves from core-flooding experiments with various fluid pairs. Water Resour Res 49:3516–3530

    Article  Google Scholar 

  • Pinter A, Bodi T (2012) Determination of capillary pressure and relative permeability curves with a novel ultra rock centrifuge. Geosci Eng 1:75–86

    Google Scholar 

  • Pokrovsky OS, Golubev SV, Schott J, Castillo A (2009) Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 °C and 1 to 55 atm \( P_{{{\text{CO}}_{ 2} }} \): new constraints on CO2 sequestration in sedimentary basins. Chem. Geol., CO2 geological storage: Integrating geochemical, hydrodynamical, mechanical and biological processes from the pore to the reservoir scale 265, 20–32

    Google Scholar 

  • Purcell WR (1949) Capillary pressures—their measurement using mercury and the calculation of permeability therefrom. J Pet Technol 1:39–48

    Article  Google Scholar 

  • Rahman T, Lebedev M, Barifcani A, Iglauer S (2016) Residual trapping of supercritical CO2 in oil-wet sandstone. J Colloid Interface Sci 469:63–68

    Article  Google Scholar 

  • Ramakrishnan TS, Cappiello A (1991) A new technique to measure static and dynamic properties of a partially saturated porous medium. Chem Eng Sci 46:1157–1163

    Article  Google Scholar 

  • Rashid F, Glover PWJ, Lorinczi P, Collier R, Lawrence J (2015) Porosity and permeability of tight carbonate reservoir rocks in the north of Iraq. J Pet Sci Eng 133:147–161

    Article  Google Scholar 

  • Rege SD, Fogler HS (1987) Network model for straining dominated particle entrapment in porous media. Chem Eng Sci 42:1553–1564

    Article  Google Scholar 

  • Renard F, Gratier J-P, Ortoleva P, Brosse E, Bazin B (1998) Self-organization during reactive fluid flow in a porous medium. Geophys Res Lett 25:385–388

    Article  Google Scholar 

  • Riaz A, Hesse M, Tchelepi HA, Orr FM (2006) Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J Fluid Mech 548:87–111

    Article  Google Scholar 

  • Risnes R, Bratli RK, Horsrud P (1982) Sand stresses around a wellbore. Soc Pet Eng J 22:883–898

    Article  Google Scholar 

  • Russian A, Dentz M, Gouze P (2016) Time domain random walks for hydrodynamic transport in heterogeneous media. Water Resour Res

    Google Scholar 

  • Sahimi M (2011) Flow and transport in porous media and fractured rock: from classical methods to modern approaches, 2nd edn. New York, Wiley

    Book  Google Scholar 

  • Sarda J-P, Kessler N, Wicquart E, Hannaford K, Deflandre J-P (1993) Use of porosity as a strength indicator for sand production evaluation. Society of Petroleum Engineers

    Google Scholar 

  • Schechter RS, Gidley JL (1969) The change in pore size distribution from surface reactions in porous media. AIChE J 15:339–350

    Article  Google Scholar 

  • Scheidegger AE (1974) The physics of flow through porous media, 3rd edn. University of Toronto Press, Toronto, Buffalo NY

    Google Scholar 

  • Schlüter S, Sheppard A, Brown K, Wildenschild D (2014) Image processing of multiphase images obtained via X-ray microtomography: a review. Water Resour Res 50:3615–3639

    Article  Google Scholar 

  • Seki K (2007) SWRC fit a nonlinear fitting program with a water retention curve for soils having unimodal and bimodal pore structure. Hydrol Earth Syst Sci Discuss 4:407–437

    Article  Google Scholar 

  • Sen PN (2004) Time-dependent diffusion coefficient as a probe of geometry. Wiley Subscr Serv Inc Wiley Co 23A:1–21

    Google Scholar 

  • Siddiqi K, Pizer SM (eds) (2008) Medial representations, computational imaging and vision. Springer, Dordrecht

    Google Scholar 

  • Silin D, Tomutsa L, Benson SM, Patzek TW (2011) Microtomography and pore-scale modeling of two-phase fluid distribution. Transp Porous Media 86:495–515

    Article  Google Scholar 

  • Smart BDG, Somerville JM, Crawford BR (1999) A rock test cell with true triaxial capability. Geotech Geol Eng 17:157–176

    Article  Google Scholar 

  • Stein N, Hilchie DW (1972) Estimating the maximum sand free production rates from friable sandstones without using sand control. J Pet Technol

    Google Scholar 

  • Stein N, Odeh AS, Jones LG (1974) Estimating maximum sand free production rates from friable sandstones for different well completion geometries. J Pet Technol

    Google Scholar 

  • Succi S (2001) The Lattice Boltzmann equation for fluid dynamics and beyond, numerical mathematics and scientific computation. Oxford University Press, Oxford

    Google Scholar 

  • Sun R, Dubessy J (2010) Prediction of vapor–liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part I: Application to H2O–CO2 system. Geochim Cosmochim Acta 74:1982–1998

    Article  Google Scholar 

  • Tenchine S, Gouze P (2005) Density contrast effects on tracer dispersion in variable aperture fractures. Adv Water Resour 28:273–289

    Article  Google Scholar 

  • Tinker PB (1969) A steady-state method for determining diffusion coefficients in soil. J Soil Sci 20:336–345

    Article  Google Scholar 

  • Tixier MP, Loveless GW, Anderson RA (1975) Estimation of formation strength from the mechanical-properties log. J Pet Technol 27:283–293

    Article  Google Scholar 

  • Torquato S (2002) Random heterogeneous materials. Interdisciplinary applied mathematics. Springer, New York

    Book  Google Scholar 

  • van Brakel J, Heertjes PM (1974) Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor. Int J Heat Mass Transf 17:1093–1103

    Article  Google Scholar 

  • van Genuchten M (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Van Loon LR, Soler JM, Jakob A, Bradbury MH (2003) Effect of confining pressure on the diffusion of HTO, 36Cl and 125I in a layered argillaceous rock (Opalinus Clay): diffusion perpendicular to the fabric. Appl Geochem 18:1653–1662

    Article  Google Scholar 

  • Virnovsky GA, Skjaeveland SM, Surdal J, Ingsoy P (1995) Steady-state relative permeability measurements corrected for capillary effects. Society of Petroleum Engineers

    Google Scholar 

  • Wang S, Edwards IM, Clarens AF (2012) Wettability phenomena at the CO2–brine–mineral interface: implications for geologic carbon sequestration. Environ Sci Technol 47:234–241

    Article  Google Scholar 

  • Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283

    Article  Google Scholar 

  • Weingarten JS, Perkins TK (1992) Prediction of sand production in gas wells: methods and gulf of mexico case studies. Presented at the SPE Annual Technical Conference and Exhibition, Washington

    Google Scholar 

  • Welge HJ (1952) A simplified method for computing oil recovery by gas or water drive. J Pet Technol 4:91–98

    Article  Google Scholar 

  • Wojtacki K, Lewandowska J, Gouze P, Lipkowski A (2015) Numerical computations of rock dissolution and geomechanical effects for CO2 geological storage. Int J Numer Anal Methods Geomech 39:482–506

    Article  Google Scholar 

  • Wu Y-S, Pruess K, Persoff P (1998) Gas flow in porous media with Klinkenberg effects. Transp Porous Media 32:117–137

    Article  Google Scholar 

  • Zhang H, He S, Jiao C, Luan G, Mo S, Guo X (2014) Determination of dynamic relative permeability in ultra-low permeability sandstones via X-ray CT technique. J Pet Explor Prod Technol 4:443–455

    Article  Google Scholar 

  • Zhang Y, Li H, Yang D (2012) Simultaneous estimation of relative permeability and capillary pressure using ensemble-based history matching techniques. Transp Porous Media 94:259–276

    Article  Google Scholar 

  • Zhu Z, Li M, Lin M, Peng B, Sun L, Chen L (2011) Investigation on variations in wettability of reservoir rock induced by CO2-brine-rock interactions. Society of Petroleum Engineers, SPE-142979-MS

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Gouze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gouze, P., Edlmann, K., McDermott, C.I., Luquot, L. (2017). Laboratory Experiments. In: Niemi, A., Bear, J., Bensabat, J. (eds) Geological Storage of CO2 in Deep Saline Formations. Theory and Applications of Transport in Porous Media, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0996-3_6

Download citation

Publish with us

Policies and ethics