Skip to main content

Radiocarbon Dating in Estuarine Environments

  • Chapter
  • First Online:
Book cover Applications of Paleoenvironmental Techniques in Estuarine Studies

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 20))

Abstract

Radiocarbon (14C) is a radioactive cosmogenic isotope continuously produced in the upper atmosphere where it rapidly oxidises to 14CO2. As 14CO2, 14C enters the global carbon cycle and is incorporated into living organisms which can be radiocarbon dated following death. Radiocarbon is among the most common radiometric methods used to provide age estimates some 40–50,000 years back in time. Here, a review of the radiocarbon method covering commonly encountered problems in estuarine environments is given. Emphasis will be on methodological procedures concerning how to estimate the 14C reservoir age in these environments, including how reliably error estimates can be calculated. Subsequently, three case studies are presented, providing a short overview of investigations of 14C reservoir age variability in estuarine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adolphi F (2010) Holocene temperature reconstruction in Baltic Sea sediments for the last 2000 years using the biomarker TEX86. MSc thesis, Technical University Bergakademie Freiburg 94 pp

    Google Scholar 

  • Ascough PL, Cook GT, Dugmore AJ et al (2004) Holocene variations in the Scottish marine radiocarbon reservoir effect. Radiocarbon 42:611–620

    Article  Google Scholar 

  • Ascough PL, Cook GT, Dugmore AJ (2005) Methodological approaches to determining the marine radiocarbon reservoir effect. Prog Phys Geogr 29:532–547

    Article  Google Scholar 

  • Ascough PL, Cook GT, Church MJ et al (2006) Variability in North Atlantic marine radiocarbon reservoir effects at c. AD 1000. Holocene 16:131–136

    Article  Google Scholar 

  • Ascough PL, Cook GT, Dugmore AJ (2009) North Atlantic marine 14C reservoir effects: implications for late-Holocene chronological studies. Quat Geochronol 4:171–180

    Article  Google Scholar 

  • Austin WEN, Telford RJ, Ninnemann US et al (2011) North Atlantic reservoir ages linked to high Younger Dryas atmospheric radiocarbon concentrations. Global Planet Change 79:226–233

    Article  Google Scholar 

  • Berglund BE, Sandgren P, Barnekow L et al (2005) Early Holocene history of the Baltic Sea as reflected in coastal sediments in Blekinge southeastern Sweden. Quat Int 130:111–139

    Article  Google Scholar 

  • BGR Hannover EGS Brussels UNESCO (2008) International hydrogeological map of Europe (1:5,000,000). UNESCO, Paris

    Google Scholar 

  • Björck S, Wohlfarth B (2001) 14C chronostratigraphy techniques in paleolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments physicals and geochemical methods. Kluwer Academic, Dordrecht, pp 205–246

    Google Scholar 

  • Blaauw M, Christen JA (2005) Radiocarbon peat chronologies and environmental change. Appl Stat C 54:805–816

    Google Scholar 

  • Blaauw M, Christen JA, Mauquoy D et al (2007) Testing the timing of radiocarbon-dated events between proxy archives. Holocene 17:283–288

    Article  Google Scholar 

  • Blockley SPE, Blaauw M, Ramsey CB et al (2007) Building and testing age models for radiocarbon dates in Lateglacial and Early Holocene sediments. Quat Sci Rev 26:1915–1926

    Article  Google Scholar 

  • Blockley SPE, Ramsey CB, Lane CS et al (2008) Improved age modelling approaches as exemplified by the revised chronology for the Central European varved lake Soppensee. Quat Sci Rev 27:61–71

    Article  Google Scholar 

  • Boaretto E, Thorling L, Sveinbjörndöttir AE et al (1998) Study of the effect of fossil organic carbon on 14C in groundwater from Hvinningdal Denmark. Radiocarbon 40:915–920

    Article  CAS  Google Scholar 

  • Brock F, Higham T, Ditchfield P et al (2010) Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103–112

    Article  CAS  Google Scholar 

  • Bronk Ramsey C (2008) Deposition models for chronological records. Quat Sci Rev 27:42–60

    Article  Google Scholar 

  • Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360

    Article  Google Scholar 

  • Bugna GC, Chanton JP, Cable JE et al (1996) The importance of groundwater discharge to the methane budgets of nearshore and continental shelf waters of the northeastern Gulf of Mexico. Geochim Cosmochim Acta 60:4735–4746

    Article  CAS  Google Scholar 

  • Cage AG, Heinemeier J, Austin WEN (2006) Marine radiocarbon reservoir ages in Scottish coastal and fjordic waters. Radiocarbon 48:1–43

    Article  Google Scholar 

  • Cook GT, van der Plicht J (2006) Radiocarbon dating: conventional method. In: Elias S (ed) Encyclopedia of Quaternary science. Elsevier, Amsterdam, pp 2899–2911

    Google Scholar 

  • Damon PE, Lerman JC, Long A (1978) Temporal fluctuations of atmospheric 14C: causal factors and implications. Annu Rev Earth Planet Sci 6:457–494

    Article  CAS  Google Scholar 

  • Damon PE, Lerman JC, Long A et al (1980) Report on the workshop on the calibration of the radiocarbon dating time scale. Radiocarbon 22:947–949

    Article  Google Scholar 

  • Davies SM, Abbott PM, Pearce NJG et al (2012) Integrating the INTIMATE records using tephrochronology: rising to the challenge. Quat Sci Rev 36:11–27

    Article  Google Scholar 

  • de Boyer Montegut C, Madec G, Fischer AS et al (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile‐based climatology. J Geophys Res Oceans 109:1978–2012

    Article  Google Scholar 

  • Dunai TJ (2010) Cosmogenic nuclides: principles concepts and applications in the earth surface sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Durand NP, Deschamps E, Bard B et al (2013) Comparison of C-14 and U-Th ages in corals from IODP #310 cores offshore Tahiti. Radiocarbon 55:1947–1974

    Article  CAS  Google Scholar 

  • Dye T (1994) Apparent ages of marine shells: implications for archaeological dating in Hawaii. Radiocarbon 36:51–57

    Article  CAS  Google Scholar 

  • Eiríksson J, Larsen G, Knudsen KL et al (2004) Marine reservoir age variability and water mass distribution in the Iceland Sea. Quat Sci Rev 23:2247–2268

    Article  Google Scholar 

  • Eiríksson J, Knudsen KL, Larsen G et al (2011) Coupling of palaeoceanographic shifts and changes in marine reservoir ages off North Iceland through the last millennium. Paleogeogr Paleoclimatol Paleoecol 302:95–108

    Article  Google Scholar 

  • Eisma D, Mook WG, Das HA (1976) Shell characteristics isotopic composition and trace-element contents of some euryhaline mollusks as indicators of salinity. Paleogeogr Paleoclimatol Paleoecol 9:245–263

    Google Scholar 

  • Epstein S, Mayeda TK (1953) Variations of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224

    Article  CAS  Google Scholar 

  • Fairbanks RG, Mortlock RA, Chiu T-C et al (2005) Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quat Sci Rev 24:1781–1796

    Article  Google Scholar 

  • Forman SL, Polyak L (1997) Radiocarbon content of pre-bomb marine mollusks and variations in the 14C reservoir age for coastal areas of the Barents and Kara seas Russia. Geophys Res Lett 24:885–888

    Article  CAS  Google Scholar 

  • Godwin H (1962) Half-life of radiocarbon. Nature 195:984

    Article  CAS  Google Scholar 

  • Gómez EA, Borel CM, Aguirre ML, Martínez DE (2008) Radiocarbon reservoir ages and hardwater effect for the northeastern coastal waters of Argentina. Radiocarbon 50(1):119–130

    Article  Google Scholar 

  • Grove JM (1988) The Little Ice Age. Methuen, London

    Book  Google Scholar 

  • Grove JM (2001) The initiation of the “Little Ice Age” in regions round the North Atlantic. Clim Change 48:53–82

    Article  Google Scholar 

  • Gudmundsdottir ERG, Larsen G, Eiriksson J (2012) Tephra stratigraphy on the North Icelandic shelf: extending tephrochronology into marine sediments off North Iceland. Boreas 41:718–734

    Article  Google Scholar 

  • Gustafsson B, Stigebrandt A (1996) Dynamics of the freshwater-influenced surface layers in the Skagerrak. J Sea Res 35:39–53

    Article  Google Scholar 

  • Haslett J, Parnell A (2008) A simple monotone process with application to radiocarbon-dated depth chronologies. Appl Stat C 57:399–418

    Google Scholar 

  • Hedenström A, Possnert G (2001) Reservoir ages in Baltic Sea sediment—a case study of an isolation sequence from the Litorina stage. Quat Sci Rev 20:1779–1785

    Article  Google Scholar 

  • Heier-Nielsen S, Heinemeier J, Nielsen HL et al (1995) Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37:875–882

    Article  CAS  Google Scholar 

  • HELCOM (2013) Approaches and methods for eutrophication target setting in the Baltic Sea region. In: Baltic Sea environment proceedings.

    Google Scholar 

  • Hickson JA, Johnson ALA, Heaton THE et al (1999) The shell of the Queen Scallop Aequipecten opercularis (L.) as a promising tool for palaeoenvironmental reconstruction: evidence and reasons for equilibrium stable-isotope incorporation. Paleogeogr Paleoclimatol Paleoecol 154:325–337

    Article  Google Scholar 

  • Hofmann AF, Soetaert K, Middelburg JJ (2008) Present nitrogen and carbon dynamics in the Scheldt estuary using a novel 1-D model. Biogeosciences 5:981–1006

    Article  CAS  Google Scholar 

  • Hogg AGQ, Hua PG, Blackwell M et al (2013) SHCal13 Southern Hemisphere calibration 0–50,000 years cal BP. Radiocarbon 55:1889–1903

    Article  CAS  Google Scholar 

  • Jull AJT, Burr GS, Hodgins GWL (2013) Radiocarbon dating reservoir effects and calibration. Quat Int 299:64–71

    Article  Google Scholar 

  • Kalberg T, Suuroja A, Põldvere A, et al (2007) Bedrock geological map of Estonia. Geological Survey of Estonia and Geological Society of Estonia

    Google Scholar 

  • Kamermans P (1994) Similarity in food source and timing of feeding in deposit- and suspension-feeding bivalves. Mar Ecol Prog Ser 104:63–75

    Article  Google Scholar 

  • Kilian MR, Van der Plicht J, Van Geel B (1995) Dating raised bogs: new aspects of AMS 14 C wiggle matching, a reservoir effect and climatic change. Quat Sci Rev 14(10):959–966

    Article  Google Scholar 

  • Kortekaas M, Murray AS, Sandgren P et al (2007) OSL chronology for a sediment core from the southern Baltic Sea: a continuous sedimentation record since deglaciation. Quat Geochronol 2:95–101

    Article  Google Scholar 

  • Kuliński K, Pempkowiak J (2011) The carbon budget of the Baltic Sea. Biogeosciences 8:3219–3230

    Article  CAS  Google Scholar 

  • Levin I, Hesshaimer V (2000) Radiocarbon—a unique tracer of global carbon cycle dynamics. Radiocarbon 42:69–80

    Article  CAS  Google Scholar 

  • Levin I, Munnich KO, Weiss W (1980) The effect of anthropogenic CO2 and C-14 sources on the distribution of C-14 in the atmosphere. Radiocarbon 22:379–391

    Article  CAS  Google Scholar 

  • Libby WF (1955) Radiocarbon dating. University of Chicago Press, Chicago

    Google Scholar 

  • Lougheed BC, Snowball I, Moros M et al (2012) Using an independent geochronology based on palaeomagnetic secular variation (PSV) and atmospheric Pb deposition to date Baltic Sea sediments and infer C-14 reservoir age. Quat Sci Rev 42:43–58

    Article  Google Scholar 

  • Lougheed BC, Filipsson HL, Snowball I (2013) Large spatial variations in coastal 14C reservoir age—a case study from the Baltic Sea. Clim Past 9:1015–1028

    Article  Google Scholar 

  • Lyons MG, Balls PW, Turrell WR (1993) A preliminary study of the relative importance of riverine nutrient inputs to the Scottish North Sea Coastal Zone. Mar Pollut Bull 26:620–628

    Article  CAS  Google Scholar 

  • Mangerud J, Bondevik S, Gulliksen S et al (2006) Marine 14C reservoir ages for 19th century whales and molluscs from the North Atlantic. Quat Sci Rev 25:3228–3245

    Article  Google Scholar 

  • Matsumoto K (2007) Radiocarbon-based circulation age of the world oceans. J Geophys Res Oceans 112. doi:10.1029/2007JC004095

  • McCormac FG, Hogg AG, Blackwell PG et al (2004) SHCal04 Southern Hemisphere calibration 0-11.0 cal kyr BP. Radiocarbon 46:1087–1092

    Article  CAS  Google Scholar 

  • Mellström A, Muscheler R, Snowball I, Ning W, Haltia E (2013) Radiocarbon wiggle-match dating of bulk sediments—how accurate can it be? Radiocarbon 55(2–3):1173–1186

    Article  Google Scholar 

  • Mook WG (1971) Paleotemperatures and chlorinates from stable carbon and oxygen isotopes in shell carbonate. Paleogeogr Paleoclimatol Paleoecol 9:245–263

    Article  CAS  Google Scholar 

  • Nadeau MJ, Grootes PM, Voelker A et al (2001) Carbonate 14C background: does it have multiple personalities? Radiocarbon 43:169–176

    Article  Google Scholar 

  • Olsen J, Rasmussen P, Heinemeier J (2009) Holocene temporal and spatial variation in the radiocarbon reservoir age of three Danish fjords. Boreas 38:458–470

    Article  Google Scholar 

  • Olsen JTL, Rasmussen P, Reimer PJ (2014) North Atlantic marine radiocarbon reservoir ages through the Heinrich event H4: a new method for marine age model construction. In: Austin WEN, Abbott PM, Davies SM et al (eds) Marine tephrochronology, vol 398. Geological Society, London, pp 95–122, Special Publications

    Google Scholar 

  • Pearson G (1986) Precise calendrical dating of known growth-period samples using a “curve fitting” technique. Radiocarbon 28(2A):292–299

    Article  CAS  Google Scholar 

  • Philippsen B, Olsen J, Lewis JP et al (2013) Mid- to late-Holocene reservoir age variability and isotope-based palaeoenvironmental reconstruction in the Limfjord, Denmark. Holocene 23:1015–1025

    Article  Google Scholar 

  • Reimer PJ, Reimer RW (2001) A marine reservoir correction database and on-line interface. Radiocarbon 43:461–463

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E et al (2004a) IntCal04 terrestrial radiocarbon age calibration 0-26 cal kyr BP. Radiocarbon 46:1029–1058

    Article  CAS  Google Scholar 

  • Reimer PJ, Brown TA, Reimer RW (2004b) Discussion: reporting and calibration of post-bomb C-14 data. Radiocarbon 46:1299–1304

    Article  CAS  Google Scholar 

  • Reimer PJ, Bard E, Bayliss A et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887

    Article  CAS  Google Scholar 

  • Roberts AP, Winklhofer M (2004) Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modelling. Earth Planet Sci Lett 227:345–359

    Article  CAS  Google Scholar 

  • Rodhe J (1996) On the dynamics of the large-scale circulation of the Skagerrak. J Sea Res 35:9–21

    Google Scholar 

  • Russell N, Cook GT, Ascough PL et al (2010) Spatial variation in the marine radiocarbon reservoir effect throughout the Scottish post-Roman to late Medieval period: North Sea values (500-1350 BP). Radiocarbon 52:1166–1181

    Article  CAS  Google Scholar 

  • Russell N, Cook GT, Ascough P et al (2011a) Species specific marine radiocarbon reservoir effect: a comparison of [Delta]R values between Patella vulgata (limpet) shell carbonate and Gadus morhua (Atlantic cod) bone collagen. J Archaeol Sci 38:1008–1015

    Article  Google Scholar 

  • Russell N, Cook GT, Ascough PL et al (2011b) Examining the inherent variability in DR values and implication for MRE studies. Radiocarbon 53:1166–1181

    Article  Google Scholar 

  • Schwartz MC (2003) Significant groundwater input to a coastal plain estuary: assessment from excess radon. Estuar Coast Shelf Sci 56:31–42

    Article  Google Scholar 

  • Slota PJ, Jull AJT, Linick TW et al (1987) Preparation of small samples for C-14 accelerator targets by catalytic reduction of CO. Radiocarbon 29:303–306

    Article  CAS  Google Scholar 

  • Snowball I, Zillen L, Ojala A et al (2007) FENNOSTACK and FENNORPIS: varve dated Holocene palaeomagnetic secular variation and relative palaeointensity stacks for Fennoscandia. Earth Planet Sci Lett 255:106–116

    Article  CAS  Google Scholar 

  • Snowball I, Mellström A, Ahlstrand E et al (2013) An estimate of post-depositional remanent magnetization lock-in depth in organic rich varved lake sediments. Global Planet Change 110:264–277

    Article  Google Scholar 

  • Southon J, Kashgarian M, Fontugne M et al (2002) Marine reservoir corrections for the Indian Ocean and southeast Asia. Radiocarbon 44:167–180

    Article  Google Scholar 

  • Stephens MB, Wahlgren C-H, Weihed P (1994) Tektoniska enheter in den svenska berggrunden. Swedish Geological Survey (SGU), Uppsala

    Google Scholar 

  • Storch HV, Omstedt A (2008) Introduction and summary. In: The BACC II Author Team (ed) Assessment of climate change for the Baltic Sea. Springer, Berlin, pp 1–31

    Google Scholar 

  • Stuiver M (1998) INTCAL98 radiocarbon age calibration 24,000-0 cal BP. Radiocarbon 40:1041–1083

    Article  CAS  Google Scholar 

  • Stuiver M, Braziunas TF (1993) Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35:137–189

    Article  CAS  Google Scholar 

  • Stuiver M, Polach HA (1977) Reporting of C-14 data. Radiocarbon 19:355–363

    Article  Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230

    Article  Google Scholar 

  • Stuiver M, Suess HE (1966) On relationship between radiocarbon dates and true sample ages. Radiocarbon 8:534–540

    Article  Google Scholar 

  • Stuiver M, Denton GH, Hughes TJ et al (1981) History of the last glaciation: a working hypothesis. In: Denton GH, Hughes TJ (eds) The last great ice sheets. Wiley, New York, pp 319–440

    Google Scholar 

  • Stuiver M, Pearson GW, Braziunas T (1986) Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28:980–1021

    Article  CAS  Google Scholar 

  • Suess HE (1965) Secular variations of cosmic-ray-produced carbon 14 in atmosphere and their interpretations. J Geophys Res 70:5937–5952

    Article  CAS  Google Scholar 

  • Tanaka A, Monaghan MC, Rye DM (1986) Contribution of metabolic carbon to mollusc and barnacle shell carbonate. Nature 320:520–523

    Article  CAS  Google Scholar 

  • Turrell WR, Henderson EWR, Slesser G et al (1992) Seasonal changes in the circulation of the northern North Sea. Cont Shelf Res 12:257–286

    Article  Google Scholar 

  • Van Geel B, Mook WG (1989) High-resolution C-14 dating of organic deposits using natural atmospheric C-14 variations. Radiocarbon 31(2):151–155

    Article  Google Scholar 

  • Vandeputte K, Moens L, Dams R (1996) Improved sealed-tube combustion of organic samples to CO2 for stable carbon isotope analysis radiocarbon dating and percent carbon determinations. Anal Lett 29:2761–2773

    Article  CAS  Google Scholar 

  • Vogel JS, Southon JR, Nelson DE (1987) Catalyst and binder effects in the use of filamentous graphite for AMS. Nucl Instrum Meth B 29:50–56

    Article  Google Scholar 

  • Wacker L, Lippold J, Molnar M et al (2013) Towards radiocarbon dating of single foraminifera with a gas ion source. Nucl Instrum Meth B 294:307–310

    Article  CAS  Google Scholar 

  • Walton A, Baxter MS (1968) Calibration of the radiocarbon time scale. Nature 220:475–476

    Article  CAS  Google Scholar 

  • Ward GK, Wilson SR (1978) Procedures for comparing and combining radiocarbon age determinations; a critique. Archaeometry 20:19–31

    Article  CAS  Google Scholar 

  • Wastegård S (2005) Late Quaternary tephrochronology of Sweden: a review. Quat Int 130:49–62

    Article  Google Scholar 

  • Wastegård S, Davies SM (2009) An overview of distal tephrochronology in northern Europe during the last 1000 years. J Quat Sci 24:500–512

    Article  Google Scholar 

  • Wastegård S, Björck S, Greve C et al (2005) A tephra-based correlation between the Faroe Islands and the Norwegian Sea raises questions about chronological relationships during the last interglacial. Terra Nova 17:7–12

    Article  CAS  Google Scholar 

  • Weninger B, Jöris O (2008) A 14C age calibration curve for the last 60 ka: the Greenland-Hulu U/Th timescale and its impact on understanding the Middle to Upper Paleolithic transition in Western Eurasia. J Hum Evol 55:772–781

    Article  Google Scholar 

  • Winther NG, Johannessen JA (2006) North Sea circulation: Atlantic inflow and its destination. J Geophys Res Oceans 111:C12018

    Article  Google Scholar 

  • Wolfe AP, Miller GH, Olsen CA et al (2004) Geochronology of high latitude lake sediments. In: Pienitz R, Douglas MSV, Smol JP (eds) Long-term environmental change in Arctic and Antarctic lakes. Springer, Dordrecht, pp 19–52

    Chapter  Google Scholar 

Download references

Acknowledgements

B.C. Lougheed’s Baltic Sea research was partly funded by BONUS INFLOW, part of the European Community’s seventh framework programme (FP/2007–2013) under grant agreement no. 217246 made with BONUS, the joint Baltic Sea research and development programme. The North Sea case study was funded via NERC (NE/F002211/1) and Historic Scotland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Olsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Olsen, J., Ascough, P., Lougheed, B.C., Rasmussen, P. (2017). Radiocarbon Dating in Estuarine Environments. In: Weckström, K., Saunders, K., Gell, P., Skilbeck, C. (eds) Applications of Paleoenvironmental Techniques in Estuarine Studies. Developments in Paleoenvironmental Research, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0990-1_7

Download citation

Publish with us

Policies and ethics