Skip to main content

Palaeoenvironmental History of the Baltic Sea: One of the Largest Brackish-Water Ecosystems in the World

  • Chapter
  • First Online:
Applications of Paleoenvironmental Techniques in Estuarine Studies

Abstract

The past of the Baltic Sea has been intensively investigated using a wealth of techniques. By far the largest number of studies has focused on sea level and salinity changes, driven by global climate and isostatic crustal rebound after the Baltic Sea emerged underneath the Weichselian Ice Sheet ca. 15,000 cal. years BP. The post-glacial history of the Baltic has included both freshwater and brackish water stages depending on the connection of the Baltic Sea with the world’s oceans. As the Baltic is one of the most polluted sea areas in the world, many studies have also focused on both the long-term trends in nutrients and productivity and the relatively recent anthropogenic eutrophication. The long-term changes in the trophic state of the Baltic Sea have been found to be linked to changes in climate, which controls freshwater discharge from the catchment and weathering rates, as well as marine water inflow from the North Sea. The productivity of the Baltic Sea has followed major climate patterns: it was high during warm periods and lower during phases of deteriorating climate. Recent eutrophication of the Baltic Sea can mainly be explained by a marked increase in discharge of nutrients caused by a growing population and changes in the agricultural practice, although long-term climate variability also plays a part. Signs of recovery have recently been detected, however, the Baltic Sea is still far from its pre-industrial trophic state.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-94-024-0990-1_25

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelmann A (1985) Paleoökologische und ökostratigraphische Untersuchungen von Diatomeenassoziationen an holozänen Sedimenten der zentralen Ostsee. Dissertation, Geologisch-Paläontologisches Institut der Universität Kiel

    Google Scholar 

  • Alenius P, Myrberg K, Nekrasov A (1998) The physical oceanography of the Gulf of Finland: a review. Boreal Environ Res 3:97–125

    Google Scholar 

  • Alheit J, Möllmann C, Dutz J et al (2005) Synchronous regime shifts in the central Baltic and the North Sea in the late 1980s. ICES J Mar Sci 62:1205–1215

    Article  Google Scholar 

  • Alley RB, Mayewski PA, Sowers T et al (1997) Holocene climatic instability: a prominent, widespread event 8,200 years ago. Geology 25:483–486

    Article  Google Scholar 

  • Andersen SH (2007) Shell Middens (“Køkkenmøddinger”) in Danish Prehistory as a reflection of the marine environment. In: Milner N. Craig OE, Bailey GN (eds) Shell Middens in Atlantic Europe. Oxbow Books, Oxford, pp 31–45

    Google Scholar 

  • Andersson HC (2002) Influence of long-term regional and large-scale atmospheric circulation on the Baltic Sea level. Tellus A 54:76–88

    Article  Google Scholar 

  • Andrén E (1999) Changes in the composition of the diatom flora during the last century indicate increased eutrophication of the Oder estuary, south-western Baltic Sea. Estuar Coast Shelf Sci 48:665–676

    Article  Google Scholar 

  • Andrén E, Shimmield G, Brand T (1999) Environmental changes of the last three centuries indicated by siliceous microfossil records from the southwestern Baltic Sea. Holocene 9:25–38

    Article  Google Scholar 

  • Andrén E, Andrén T, Kunzendorf H (2000a) Holocene history of the Baltic Sea as a background for assessing records of human impact in the sediments of the Gotland Basin. Holocene 10:687–702

    Article  Google Scholar 

  • Andrén E, Andrén T, Sohlenius G (2000b) The Holocene history of the southwestern Baltic Sea as reflected in a sediment core from the Bornholm Basin. Boreas 29:233–250

    Article  Google Scholar 

  • Andrén E, Clarke AL, Telford RJ et al (2007a) Defining reference conditions for coastal areas in the Baltic Sea. TemaNord 583

    Google Scholar 

  • Andrén T, Lindeberg G, Andrén E (2002) Evidence of the final drainage of the Baltic Ice Lake and the brackish phase of the Yoldia Sea in glacial varves from the Baltic Sea. Boreas 31:226–238

    Article  Google Scholar 

  • Andrén T, Andrén E, Berglund BE et al (2007b) New insights on the Yoldia Sea low stand in the Blekinge archipelago, southern Baltic Sea. GFF 129:273–281

    Article  Google Scholar 

  • Andrén T, Björck S, Andrén E et al (2011) The development of the Baltic Sea Basin during the last 130 ka. In: Harff J, Bjorck S, Hoth P (eds) The Baltic Sea basin. Central and Eastern European Development Studies (CEEDES). Springer, Berlin, pp 75–97

    Google Scholar 

  • Anonymous (2000) Directive 200/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal L 327/1

    Google Scholar 

  • Antoniades D, Francus P, Pienitz R et al (2011) Holocene dynamics of the Arctic’s largest ice shelf. Proc Natl Acad Sci U S A 108:18899–18904

    Article  CAS  Google Scholar 

  • BACC Author Team (2008) Assessment of climate change for the Baltic Sea basin. Springer, Berlin

    Book  Google Scholar 

  • Bäck S, Lehvo A, Rissanen J, et al (2001) Changes in phytobenthos. In: Kauppila P, Bäck S (eds) The state of Finnish coastal waters in the 1990s. The Finnish Environment 472, pp 71–78

    Google Scholar 

  • Bard E, Hamelin B, Arnold M (1996) Deglacial sea level record from Tahiti corals and the timing of global meltwater discharge. Nature 382:242–244

    Article  Google Scholar 

  • Battarbee RW (1994) Diatoms, lake acidification and the Surface Water Acidification Programme (SWAP): a review. Hydrobiologia 274:1–7

    Article  CAS  Google Scholar 

  • Battarbee RW, Carvalho L, Jones VJ et al (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3, Terrestrial, algal, and siliceous indicators, developments in paleoenvironmental research. Springer, Berlin, pp 155–202

    Chapter  Google Scholar 

  • Bennike O, Jensen JB (2011) Postglacial, relative shore-level changes in Lillebælt, Denmark. Geol Surv Den Greenl Bull 23:37–40

    Google Scholar 

  • Bennike O, Jensen JB, Lemke W et al (2004) Late- and postglacial history of the Great Belt, Denmark. Boreas 33:18–33

    Article  Google Scholar 

  • Bennion H, Fluin J, Simpson GL (2004) Assessing eutrophication and reference conditions for Scottish freshwater lochs using subfossil diatoms. J Appl Ecol 41:124–138

    Article  Google Scholar 

  • Berglund BE (1991) The cultural landscape during 6000 years in southern Sweden. Ecol Bull 41

    Google Scholar 

  • Berglund B, Sandgren P, Barnekow L et al (2005) Early Holocene history of the Baltic Sea as reflected in coastal sediments in Blekinge, southeastern Sweden. Quat Int 130:111–139

    Article  Google Scholar 

  • Bergström S, Carlsson B (1994) River runoff to the Baltic Sea: 1950-1990. Ambio 23:280–287

    Google Scholar 

  • Bianchi TS, Rolff C, Lambert CD (1997) Sources and composition of particulate organic carbon in the Baltic Sea: the use of plant pigments and lignin-phenols as biomarkers. Mar Ecol Progr Ser 156:25–31

    Article  CAS  Google Scholar 

  • Bianchi TS, Engelhaupt E, Westman P et al (2000) Cyanobacterial blooms in the Baltic Sea: natural or human-induced? Limnol Oceanogr 45:716–726

    Article  CAS  Google Scholar 

  • Bianchi TS, Rolff C, Widbom B et al (2002a) Phytoplankton pigments in Baltic Sea seston and sediments: seasonal variability, fluxes, and transformations. Estuar Coast Shelf Sci 55:369–383

    Article  CAS  Google Scholar 

  • Bianchi TS, Engelhaupt E, McKee BA et al (2002b) Do sediments from coastal sites accurately reflect time trends in water column phytoplankton? A test from Himmerfjärden Bay (Baltic Sea proper). Limnol Oceanogr 47:1537–1544

    Article  Google Scholar 

  • Birks HJB (1998) Numerical tools in palaeolimnology—progress, potentialities, and problems. J Paleolimnol 20:307–332

    Article  Google Scholar 

  • Birks HJJB, Lotter AF, Juggins S et al (eds) (2012) Tracking Environmental Change Using Lake Sediments – Vol 5: Data Handling and Numerical Techniques, Developments in Paleoenvironmental Research. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Björck S (1995) A review of the history of the Baltic Sea, 13.0-8.0 ka BP. Quat Int 27:19–40

    Article  Google Scholar 

  • Björck S (2008) The late Quaternary development of the Baltic Sea. In: BACC Author Team (ed) Assessment of climate change for the Baltic Sea basin. Springer, Berlin, pp 398–407

    Google Scholar 

  • Björck S, Andrén T, Jensen JB (2008) An attempt to resolve the partly conflicting data and ideas on the Ancylus–Littorina transition. In: Proceedings of the workshop: relative sea level changes, Polish Geological Institute special papers 23, pp 21–26

    Google Scholar 

  • Bjørnsen M, Clemmensen LB, Murray A et al (2008) New evidence of the Littorina transgressions in the Kattegat: optically stimulated luminescence dating of a beach ridge system on Anholt, Denmark. Boreas 37:157–168

    Article  Google Scholar 

  • Blanchon P, Shaw J (1995) Reef drowning during the last deglaciation: evidence for catastrophic sea-level rise and ice-sheet collapse. Geology 23:4–8

    Article  Google Scholar 

  • Bonsdorff E, Blomqvist EM, Mattila J et al (1997) Long-term changes and coastal eutrophication. Examples from the Åland Islands and the Archipelago Sea, northern Baltic Sea. Oceanol Acta 20:319–329

    Google Scholar 

  • Borgendahl J, Westman P (2007) Cyanobacteria as a trigger for increased primary productivity during sapropel formation in the Baltic Sea—a study of the Ancylus/Litorina transition. J Paleolimnol 38:1–12

    Article  Google Scholar 

  • Bradshaw EG, Rasmussen P, Odgaard BV (2005) Mid- to late-Holocene land-use change and lake development at Dallund Sø, Denmark: synthesis of multiproxy data, linking land and lake. Holocene 15:1152–1162

    Article  Google Scholar 

  • Brenner WW (2001a) Distribution of organic walled microfossils within single laminae from Gotland Basin and their environmental evidence. Baltica 14:34–39

    Google Scholar 

  • Brenner WW (2001b) Organic walled microfossils from the central Baltic Sea, indicators of environmental change and base for ecostratigraphic correlation. Baltica 14:40–51

    Google Scholar 

  • Brenner WW (2005) Holocene environmental history of the Gotland Basin (Baltic Sea)—a micropalaeontological model. Palaeogeogr Palaeoclimatol Palaeoecol 220:227–241

    Article  Google Scholar 

  • Brenner WW, Meemken H-J (2002) Öko-und chronostratigraphische Korrelierung der Zentralen Ostsee mit der Kieler Bucht anhand organischwandiger Mikrofossilien. Meyniana 54:17–40

    Google Scholar 

  • Carlson AE, Clark PU, Raisbeck GM et al (2007) Rapid Holocene deglaciation of the Labrador sector of the Laurentide Ice Sheet. J Climate 20:5126–5133

    Article  Google Scholar 

  • Carstensen J, Conley DJ, Bonsdorff E et al (2014) Hypoxia in the Baltic Sea: Biogeochemical cycles, benthic fauna, and management. Ambio 43:26–36

    Google Scholar 

  • Casini M, Lövgren J, Hjelm J et al (2008) Multi-level trophic cascades in a heavily exploited open marine ecosystem. Proc R Soc B 275(1644):1793–1801. doi:10.1098/rspb.2007.1752

    Article  Google Scholar 

  • Cederwall H, Elmgren R (1990) Biological effects of eutrophication in the Baltic Sea, particularly the coastal zone. Ambio 19:109–112

    Google Scholar 

  • Chen D, Hellström C (1999) The influence of the North Atlantic Oscillation on the regional temperature variability in Sweden: spatial and temporal variations. Tellus 51:505–516

    Article  Google Scholar 

  • Chen N, Bianchi TS, McKee BA et al (2001) Historical trends of hypoxia on Louisiana shelf: application of pigments as biomarkers. Org Geochem 32:543–561

    Article  Google Scholar 

  • Christensen C (2001) Coastal settlement and sea level change in the Stone Age. In: Jensen OL, Sørensen SA, Hansen KM (eds) Denmark’s Hunting Stone Age—status and perspectives. Hoersholm Egns Museum, pp 183–193

    Google Scholar 

  • Clarke AL, Juggins S, Conley DJ (2003) A 150-year reconstruction of the history of coastal eutrophication in Roskilde Fjord, Denmark. Mar Pollut Bull 46:1615–1629

    Article  CAS  Google Scholar 

  • Clarke AL, Weckström K, Conley DJ et al (2006) Long-term trends in eutrophication and nutrients in the coastal zone. Limnol Oceanogr 51:385–397

    Article  CAS  Google Scholar 

  • Clemmensen LB, Murray AS, Nielsen L (2012) Quantitative constraints on the sea-level fall that terminated the Littorina Sea Stage, southern Scandinavia. Quat Sci Rev 40:54–63

    Article  Google Scholar 

  • Conley DJ, Schelske CL, Stoermer EF (1993) Modification of the biogeochemical cycle of silica with eutrophication. Mar Ecol Prog Ser 101:179–192

    Article  CAS  Google Scholar 

  • Conley DJ, Björck S, Bonsdorff E et al (2009) Hypoxia-related processes in the Baltic Sea. Environ Sci Technol 43:3412–3420

    Article  CAS  Google Scholar 

  • Conley DJ, Carstensen J, Aigars J et al (2011) Hypoxia is increasing in the coastal zone of the Baltic Sea. Environ Sci Technol 45:6777–6783

    Article  CAS  Google Scholar 

  • Conradsen K, Heier-Nielsen S (1995) Holocene paleoceanography and paleoenvironments of the Skagerrak-Kattegat, Scandinavia. Paleoceanography 10:801–813

    Article  Google Scholar 

  • Cooper SR, Brush GS (1991) Long-term history of Chesapeake Bay anoxia. Science 254:992–996

    Article  CAS  Google Scholar 

  • Cooper SR, McGlothlin SK, Madritch M et al (2004) Paleoecological evidence of human impacts on the Neuse and Pamlico estuaries of North Carolina, USA. Estuaries 27:617–633

    Article  CAS  Google Scholar 

  • Cornwell JC, Conley DJ, Owens M et al (1996) A sediment chronology of the eutrophication of Chesapeake Bay. Estuaries 19:488–499

    Article  CAS  Google Scholar 

  • Dale B, Thorsen TA, Fjellså A (1999) Dinoflagellate cysts as indicators of cultural eutrophication in the Oslofjord, Norway. Estuar Coast Shelf Sci 48:371–382

    Article  Google Scholar 

  • DeNicola DM, de Eyto E, Wemaere A et al (2004) Using epilithic algal communities to assess trophic status in Irish lakes. J Phycol 40:481–495

    Article  Google Scholar 

  • Dickson RR, Osborn TJ, Hurrell JW et al (2000) The Arctic Ocean response to the North Atlantic Oscillation. J Climate 13:2671–2696

    Article  Google Scholar 

  • Dixit SS, Smol JP (1994) Diatoms as indicators in the Environmental Monitoring and Assessment Program-Surface Waters (EMAP-SW). Environ Monit Assess 31:275–306

    CAS  Google Scholar 

  • Ellegaard M (2000) Variations in dinoflagellate cyst morphology under conditions of changing salinity during the last 2000 years in the Limfjord, Denmark. Rev Palaeobot Palynol 109:65–81

    Article  CAS  Google Scholar 

  • Ellegaard M, Clarke AL, Reuss N et al (2006) Long-term changes in plankton community structure and geochemistry in Mariager Fjord, Denmark, linked to increased nutrient loading. Estuar Coast Shelf Sci 68:567–578

    Article  Google Scholar 

  • Elmgren R (1989) Man’s impact on the ecosystem of the Baltic Sea: energy flows today and at the turn of the century. Ambio 18:326–332

    Google Scholar 

  • Emeis KC, Endler R, Struck U et al (2002) The post-glacial evolution of the Baltic Sea. In: Wefer G, Berger WH, Behre KE et al (eds) Climate development and history of the North Atlantic realm. Springer, Berlin, pp 205–221

    Chapter  Google Scholar 

  • Emeis KC, Struck U, Blanz T et al (2003) Salinity changes in the central Baltic Sea (NW Europe) over the last 10 000 years. Holocene 13:411–421

    Article  Google Scholar 

  • Emeis KC, Finney BP, Ganeshram R et al (2010) Impacts of past climate variability on marine ecosystems: lessons from sediment records. J Mar Syst 79:333–342

    Article  Google Scholar 

  • Enghoff IB (2011) Regionality and biotope exploitation in Danish Ertebølle and adjoining periods. The Royal Danish Academy of Sciences and Letters, Scientia Danica, Series B, Biologica 1

    Google Scholar 

  • Eriksson BK, Ljunggren L, Sandström A et al (2009) Declines in predatory fish promote bloom-forming macroalgae. Ecol Appl 19:1975–1988

    Article  Google Scholar 

  • Eronen M (1983) Late Weichselian and Holocene shore displacement in Finland. In: Smith DE, Dawson AG (eds) Shore-lines and isostasy. Academic, London, pp 183–207

    Google Scholar 

  • EurOCEAN (2004) http://www.eurocean2004.com/galway-declaration.html

  • Fairbanks RG (1989) A 17,000 year glacio-eustatic sea-level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642

    Article  Google Scholar 

  • Fonselius SH (1970) Stagnant sea. Environment 12:2–11

    Google Scholar 

  • Fredén C (1986) Quaternary marine shell deposits in the region of Uddevalla and Lake Vänern. Sveriges geologiska undersökning, Rapporter och meddelanden 46

    Google Scholar 

  • Funkey CP, Conley DJ, Reuss NS et al (2014) Hypoxia sustains cyanobacteria blooms in the Baltic Sea. Environ Sci Technol 48:2598–2602

    Article  CAS  Google Scholar 

  • Gelumbauskaitė LŽ (2009) Character of sea level changes in the subsiding south–eastern Baltic Sea during Late Quaternary. Baltica 22:23–36

    Google Scholar 

  • Gooday AJ, Jorissen F, Levin LA et al (2009) Historical records of coastal eutrophication-induced hypoxia. Biogeosciences 6:1707–1745

    Article  CAS  Google Scholar 

  • Goodwin TW (1980) The biogeochemistry of the carotenoids, vol 1, Plants. Chapman and Hall, New York

    Book  Google Scholar 

  • Grigoriev A, Zhamoida V, Spiridonov M et al (2011) Late-glacial and Holocene palaeoenvironments in the Baltic Sea based on a sedimentary record from the Gdansk basin. Clim Res 48:13–21

    Article  Google Scholar 

  • Gustafsson BG, Andersson HC (2001) Modeling the exchange of the Baltic Sea from the meridional atmospheric pressure difference across the North Sea. J Geophys Res 106:19731–19744

    Article  Google Scholar 

  • Gustafsson BG, Westman P (2002) On the causes for salinity variations in the Baltic Sea for the last 8500 years. Paleoceanography 17:1–14

    Article  CAS  Google Scholar 

  • Gyllencreutz R, Kissel C (2006) Lateglacial and Holocene sediment sources and transport patterns in the Skagerrak interpreted from high-resolution magnetic properties and grain size data. Quat Sci Rev 25:1247–1364

    Article  Google Scholar 

  • Haeckey P, Jonsson S, Andersson A (1998) Influence of sea ice on the composition of the spring phytoplankton bloom in northern Baltic Sea. Polar Biol 20:1–8

    Article  Google Scholar 

  • Hänninen J, Vuorinen I, Hjelt P (2000) Climatic factors in the Atlantic control the oceanographic and ecological changes in the Baltic Sea. Limnol Oceanogr 45:703–710

    Article  Google Scholar 

  • Hansen JLS, Josefson AB (2003) Accumulation of algal pigments and live planktonic diatoms in aphotic sediments during the spring bloom in the transition zone of the North and Baltic Seas. Mar Ecol Prog Ser 248:41–54

    Article  Google Scholar 

  • Hansen JM, Aagaard T, Binderup M (2011) Absolute sea levels and isostatic changes of the eastern North Sea to central Baltic region during the last 900 years. Boreas 41:180–208

    Article  Google Scholar 

  • Harff J, Endler R, Emelyanov E, et al (2011) Late Quaternary climate variations reflected in Baltic Sea sediments. In: Harff J, Björck S, Hoth, P (eds) The Baltic Sea basin. Central and Eastern European Development Studies (CEEDES). Springer, Berlin, pp 99–132

    Google Scholar 

  • Harrison PJ, Turpin DH, Bienfang PK et al (1986) Sinking as a factor affecting phytoplankton species succession: the use of selective loss semi-continuous cultures. J Exp Mar Biol Ecol 99:19–30

    Article  Google Scholar 

  • Hedenström A (2001) Early Holocene shore displacement in eastern Svealand, Sweden, based on diatom stratigraphy, radiocarbon chronology and geochemical parameters. Dissertation, Stockholm University, Quaternaria 10 Ser A

    Google Scholar 

  • Hedenström A, Possnert G (2001) Reservoir ages in Baltic Sea sediment—a case study of an isolation sequence from the Litorina Sea stage. Quat Sci Rev 20:1779–1785

    Google Scholar 

  • Heier-Nielsen S, Heinemeier J, Nielsen HL, Rud N (1995) Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37:875–882

    Article  CAS  Google Scholar 

  • Heinsalu A (2000) Diatom stratigraphy and paleoenvironment of the Yoldia Sea in northern Estonia. Proc Est Acad Sci Geol 49:218–243

    Google Scholar 

  • Heinsalu A (2001) Diatom stratigraphy and the paleoenvironment of the Yoldia Sea in the Gulf of Finland, Baltic Sea. Ann Univ Turku A II 144:41

    Google Scholar 

  • HELCOM (1990) Second periodic assessment of the state of the marine environment of the Baltic Sea, 1984–1988; background document. Baltic Sea Environ Proc 35B

    Google Scholar 

  • HELCOM (2007) Climate change in the Baltic Sea area: HELCOM thematic assessment in 2007. Balt Sea Environ Proc 111

    Google Scholar 

  • HELCOM (2009) Eutrophication in the Baltic Sea—an integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. Balt Sea Environ Proc 115B

    Google Scholar 

  • HELCOM (2013) Climate change in the Baltic Sea area: HELCOM thematic assessment in 2013. Balt Sea Environ Proc 137

    Google Scholar 

  • Hodgson DA, McMinn A, Kirkup H et al (2003) Colonization, succession, and extinction of marine floras during a glacial cycle: a case study from the Windmill Islands (east Antarctica) using biomarkers. Paleoceanography. doi:10.1029/2002PA000775

    Google Scholar 

  • Hoffman W, Winn K (2000) The Littorina transgression in the western Baltic Sea as Indicated by Subfossil Chironomidae (Diptera) and Cladocera (Crustacea). Int Rev Hydrobiol 85:267–291

    Article  Google Scholar 

  • Höglander H, Larsson U, Hajdu S (2004) Vertical distribution and settling of spring phytoplankton in the offshore NW Baltic Sea proper. Mar Ecol Prog Ser 283:15–27

    Article  Google Scholar 

  • Holm P, Bager M (2002) The Danish fisheries, c. 1450-1800: medieval and early modern sources and their potential for marine environmental history. In: Holm P, Smith TD, Starkey DJ (eds) The exploited seas: new directions for marine environmental history. Research in maritime history 21 (International Maritime Economic History Association/Census of Marine Life, St. John’s Newfoundland, 2001, St. John’s), pp 97–122

    Google Scholar 

  • Houmark-Nielsen M, Kjær KH (2003) Southwest Scandinavia, 40-15 kyr BP: palaeogeography and environmental change. J Quat Sci 18:769–786

    Article  Google Scholar 

  • Huckriede H, Clasen S, Meischner D (1996) Hydrographic and climatic changes recorded in Holocene sediments of the central Baltic Sea. Baltica 9:76–91

    Google Scholar 

  • Humborg C, Conley DJ, Rahm L et al (2000) Silicon retention in river basins: far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio 29:45–50

    Article  Google Scholar 

  • Hunicke B, Zorita E (2006) Influence of temperature and precipitation on decadal Baltic Sea level variations in the 20th century. Tellus A 58:141–153

    Google Scholar 

  • Hunicke B, Luterbacher J, Pauling A et al (2008) Regional differences in winter sea level variations in the Baltic Sea for the past 200 yr. Tellus A 60:384–393

    Article  Google Scholar 

  • Hurrell J (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  CAS  Google Scholar 

  • Hustedt F (1957) Die Diatomeenflora des fluss-systems der Weser im Gebeit der Hansenstadt Bremen. Abhandlungen herausgegeben vom naturwissenschaflichen Verein zu Bremen 34:181–440

    Google Scholar 

  • Hyvärinen H (1988) Definition of the Baltic stages. Ann Acad Sci Fenn A3(148):7–11

    Google Scholar 

  • Ignatius H, Axberg S, Niemistö L et al (1981) Quaternary geology of the Baltic Sea. In: Voipio A (ed) The Baltic Sea. Elsevier, Amsterdam, pp 54–105

    Google Scholar 

  • Ingólfsson Ó, Hjort C (1999) The Antarctic contribution to global sea level rise. Polar Res 18:323–330

    Article  Google Scholar 

  • IPCC (2014) Climate change: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ et al (eds) Contribution of Working Group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Iversen J (1937) Undersøgelser over Littorina-transgressioner i Danmark: Foreløbig meddelelse. Medd Dansk Geol For 9(2):182–186

    Google Scholar 

  • Jantunen T, Donner J (1996) The formation of raised beaches in southern Finland during the Ancylus and Litorina stages. Bull Geol Soc Finl 68:34–39

    Article  Google Scholar 

  • Jeffrey S, Mantoura R, Wright S (1997) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO, Paris

    Google Scholar 

  • Jensen JB, Bennike O, Witkowski A et al (1999) Early Holocene history of the southwestern Baltic Sea: the Ancylus Lake stage. Boreas 28:437–453

    Article  Google Scholar 

  • Jevrejeva S, Moore JC (2001) Singular spectrum analysis of Baltic Sea ice conditions and large-scale atmospheric patterns since 1708. Geophys Res Lett 28:4503–4506

    Article  Google Scholar 

  • Jevrejeva S, Moore JC, Woodworth PL et al (2005) Influence of large-scale atmospheric circulation on European sea level: results based on the wavelet transform method. Tellus A 57:183–193

    Article  Google Scholar 

  • Jiang H, Björk S, Svensson N-O (1998) Reconstruction of Holocene sea-surface salinity in the Skagerrak-Kattegat: a climatic and environmental record of Scandinavia. J Quat Sci 13:107–114

    Article  Google Scholar 

  • Jilbert T, Slomp CP (2013) Rapid high-amplitude variability in Baltic Sea hypoxia during the Holocene. Geology 41:1183–1186

    Article  CAS  Google Scholar 

  • Johansson M, Boman H, Kahma KK et al (2001) Trends in sea level variability in the Baltic Sea. Boreal Environ Res 6:159–179

    Google Scholar 

  • Jones VJ, Battarbee RW, Rose NL et al (1997) Evidence for pollution of Loch Ness from the analysis of its recent sediments. Sci Total Environ 203:37–49

    Article  CAS  Google Scholar 

  • Jonsson P, Carman R (1994) Changes in deposition of organic matter and nutrients in the Baltic Sea during the twentieth century. Mar Pollut Bull 28:417–426

    Article  CAS  Google Scholar 

  • Jonsson P, Jonsson B (1988) Dramatic changes in Baltic sediments during the last three decades. Ambio 17:158–160

    Google Scholar 

  • Josefson AB, Norkko J, Norkko A (2012) Burial and decomposition of plant pigments in surface sediments of the Baltic Sea: role of oxygen and benthic fauna. Mar Ecol Prog Ser 455:33–49

    Article  CAS  Google Scholar 

  • Juggins S (2013) Quantitative reconstructions in palaeolimnology, new paradigm or sick science. Quaternary Sci Rev 64:20–32

    Google Scholar 

  • Kabel K, Moros M, Porsche C et al (2012) Impact of climate change on the Baltic Sea ecosystem over the past 1,000 years. Nat Clim Change 2:871–874

    Article  Google Scholar 

  • Kauppila P, Lepistö L (2001) Changes in phytoplankton. In: Kauppila P, Bäck S (eds) The state of Finnish coastal waters in the 1990s. The Finnish Environment 472, pp 61–70

    Google Scholar 

  • Kauppila P, Weckström K, Vaalgamaa S et al (2005) Tracing pollution and recovery using sediments in an urban estuary, the northern Baltic Sea: are we far from ecological reference conditions? Mar Ecol Prog Ser 290:35–53

    Article  Google Scholar 

  • Kelly MG, Whitton BA (1995) The Trophic Diatom Index: a new index for monitoring eutrophication in rivers. J Appl Phycol 7:433–444

    Article  Google Scholar 

  • Kelly MG, Cazaubon A, Coring E et al (1998) Recommendations for the routine sampling of diatoms for water quality assessments in Europe. J Appl Phycol 10:215–224

    Article  Google Scholar 

  • Kisum O (2007) Holocæn palæoøkologi i Horsens Fjord—baseret på foraminiferer. M.Sc. thesis, Geologisk Institut, Aarhus Universitet

    Google Scholar 

  • Klais R, Tamminen T, Kremp A et al (2011) Decadal-scale changes of dinoflagellates and diatoms in the anomalous Baltic Sea spring bloom. PLoS One 6:e21567. doi:10.1371/journal.pone.0021567

    Article  CAS  Google Scholar 

  • Knudsen KL (1994) The marine Quaternary in Denmark: a review of new evidence from glacial-interglacial studies. Bull Geol Soc Den 41:203–218

    Google Scholar 

  • Knudsen KL, Kristensen P, Larsen NK (2009) Marine glacial and interglacial stratigraphy in Vendsyssel, northern Denmark: Foraminifera and stable isotopes. Boreas 38:787–810

    Article  Google Scholar 

  • Kohonen T (1974) Suomen rannikon läheisten merialueiden tila vuosina 1966–1970. Vesientutkimuslaitoksen julkaisuja 8, Vesihallitus

    Google Scholar 

  • Kolbe RW (1927) Zur Ökologie, Morphologie, und Systematik der Brackwasser Diatomeen. Pflanzenforschung 7, Jena

    Google Scholar 

  • Korhola A, Grönlund T (1999) Observations of Ebria tripartita (Schumann) Lemmermann in Baltic sediments. J Paleolimnol 21:1–8

    Article  Google Scholar 

  • Kortekaas M, Murray AS, Sandgren P et al (2007) OSL chronology for a sediment core from the southern Baltic Sea: a continuous sedimentation record since deglaciation. Quat Geochron 2:95–101

    Article  Google Scholar 

  • Koslowski G, Glaser R (1995) Reconstruction of the ice winter severity index since 1701 in the Western Baltic. Climate Change 31:79–98

    Article  Google Scholar 

  • Koslowski G, Glaser R (1999) Variations in reconstructed winter severity in the western Baltic from 1501 to 1995, and their implications for the North Atlantic Oscillation. Climate Change 41:175–191

    Article  Google Scholar 

  • Kostecki R, Janczak‐Kostecka B (2011) Holocene evolution of the Pomeranian Bay environment, southern Baltic Sea. Oceanologia 53:471–487

    Article  Google Scholar 

  • Kostecki R, Janczak‐Kostecka B (2012) Holocene environmental changes in the south-western Baltic Sea reflected by the geochemical data and diatoms of the sediment cores. J Mar Syst 105–108:106–114

    Article  Google Scholar 

  • Köster FW, Möllmann C, Hinrichsen H-H et al (2005) Baltic cod recruitment—the impact of climate variability on key processes. ICES J Mar Sci 62:1408–1425

    Article  Google Scholar 

  • Kowalewska G (2001) Algal pigments in Baltic sediments as markers of ecosystem and climate changes. Climate Res 18:89–96

    Article  Google Scholar 

  • Kowalewska G (2005) Algal pigments in sediments as a measure of eutrophication in the Baltic environment. Quat Int 130:141–151

    Article  Google Scholar 

  • Kowalewska G, Winterhalter B, Talbot HM et al (1999) Chlorins in sediments of the Gotland Deep (Baltic Sea). Oceanologica 41:81–97

    Google Scholar 

  • Kowalewska G, Wawrzyniak-Wydrowska B, Szymczak-Zyla M (2004) Chlorophyll a and its derivatives in sediments of the Odra estuary as a measure of its eutrophication. Mar Pollut Bull 49:148–153

    Article  CAS  Google Scholar 

  • Kristensen P, Heier-Nielsen S, Hylleberg J (1995) Late-Holocene salinity fluctuations in Bjørnsholm Bay, Limfjorden, Denmark, as deduced from microfossil and macrofossil analysis. Holocene 5:313–322

    Article  Google Scholar 

  • Krohn CF, Larsen NK, Kronborg C et al (2009) Litho- and chronostratigraphy of the Late Weichselian in Vendsyssel, northern Denmark with special emphasis on tunnel-valley infill in relation to a receding ice margin. Boreas 38:811–833

    Article  Google Scholar 

  • Kunzendorf H, Voss M, Brenner W et al (2001) Molybdenum in sediments of the central Baltic Sea as an indicator for algal blooms. Baltica 14:123–130

    Google Scholar 

  • Lamb PJ, Peppler RA (1987) North Atlantic Oscillation: concept and application. Bull Am Meteorol Soc 68:1218–1225

    Article  Google Scholar 

  • Lambeck K (1995) Late Devensian and Holocene shorelines of the British Isles and North Sea from models of glacio-hydroisostatic rebound. J Geol Soc Lond 152:437–448

    Article  Google Scholar 

  • Lambeck K (1999) Shoreline displacements in southern-central Sweden and the evolution of the Baltic Sea since the last maximum glaciation. J Geol Soc Lond 156:465–486

    Article  Google Scholar 

  • Larsen NK, Knudsen KL, Krohn CF et al (2009) Late Quaternary ice sheet, lake and sea history of southwest Scandinavia—a synthesis. Boreas 38:732–761

    Article  Google Scholar 

  • Larsson U, Elmgren R, Wulff F (1985) Eutrophication and the Baltic Sea: causes and consequences. Ambio 14:9–14

    CAS  Google Scholar 

  • Leavitt PR (1993) A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. J Paleolimnol 9:109–127

    Article  Google Scholar 

  • Leavitt PR, Hodgson DA (2001) Sedimentary pigments. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3, Terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht, pp 295–325

    Chapter  Google Scholar 

  • Lehmann A, Krauss W, Hinrichsen H-H (2002) Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus A 54:299–316

    Article  Google Scholar 

  • Leipe T, Dippner JW, Hille S et al (2008) Environmental changes in the central Baltic Sea during the last 1000 years: inferences from sedimentary records, hydrography and climate. Oceanologia 50:23–41

    Google Scholar 

  • Lemke W (2004) Die kurze und wechselvolle Entwicklungsgeschichte der Ostee-Aktuellemeeresgelogische Forschungen zum Verlauf der Littorina-Transgression. Bodendenkmalpflege in Mecklenburg-Vorpommern, Jahrbuch, pp 34–54

    Google Scholar 

  • Lepland A, Heinsalu A, Stevens RL (1999) The pre-Litorina diatom stratigraphy and sediment sulphidisation record from the west-central Baltic Sea: implications of the water column salinity variations. GFF 121:57–65

    Article  CAS  Google Scholar 

  • Leppäranta M, Myrberg K (2009) Physical oceanography of the Baltic Sea. Springer-Praxis, Heidelberg

    Book  Google Scholar 

  • Lewis JP (2011) Holocene environmental change in coastal Denmark: interactions between land, sea and society. Dissertation, Loughborough University

    Google Scholar 

  • Lewis JP, Ryves DB, Rasmussen P et al (2013) Environmental change in the Limfjord, Denmark (ca 7,500–1500 cal yrs BP): a multiproxy study. Quat Sci Rev 78:126–140

    Article  Google Scholar 

  • Lindegren M, Möllmann C, Nielsen A et al (2009) Preventing the collapse of the Baltic cod stock through an ecosystem-based management approach. Proc Natl Acad Sci U S A 106:14722–14727

    Article  CAS  Google Scholar 

  • Lindström G (1886) Om postglaciala sänkningar af Gotland. Geol Fören Stock För 102 VIII: 251–281

    Google Scholar 

  • Lougheed BC, Snowball I, Moros M (2012) Using an independent geochronology based on palaeomagnetic secular variation (PSV) and atmospheric Pb deposition to date Baltic Sea sediments and infer 14C reservoir age. Quat Sci Rev 42:43–58

    Article  Google Scholar 

  • MacKenzie BR, Köster FW (2004) Fish production and climate: sprat in the Baltic Sea. Ecology 85:784–794

    Article  Google Scholar 

  • MacKenzie BR, Schiedek D (2007) Daily Ocean monitoring since the 1860s shows record warming of northern European seas. Global Change Biol 13:1335–1347

    Article  Google Scholar 

  • MacKenzie BR, Alheit J, Conley DJ et al (2002) Ecological hypotheses for a historical reconstruction of the upper trophic level biomass in the Baltic Sea and Skagerrak. Can J Fish Aquat Sci 59:173–190

    Article  Google Scholar 

  • Madsen AP, Müller S, Neergaard C, et al (1900) Affaldsdynger fra Stenalderen i Danmark. Paris, København, Leipzig

    Google Scholar 

  • Matthäus W (1993) Major inflows of highly saline water into the Baltic Sea—a review. ICES Statutory Meeting 1993, Paper CM 1993/C:52

    Google Scholar 

  • Matthäus W, Schinke H (1994) Mean atmospheric circulation patterns associated with major Baltic inflows. Deutsche Hydrographische Zeitschrift 46:321–338

    Article  Google Scholar 

  • McGowan S (2007) Pigments in sediments of aquatic environments. In: Elias S (ed) Encyclopedia of Quaternary science, pp 2062–2074

    Google Scholar 

  • Mertens KM, Ribeiro S, Bouimetarhan I et al (2009) Process length variation in cysts of a dinoflagellate, Lingulodinium machaerophorum, in surface sediments: investigating its potential as salinity proxy. Mar Micropaleontol 70:54–69

    Article  Google Scholar 

  • Mertens KN, Dale B, Ellegaard M et al (2011) Process length variation in cysts of the dinoflagellate Protoceratium reticulatum, from surface sediments of the Baltic-Kattegat-Skagerrak estuarine system: a regional salinity proxy. Boreas 40:242–255

    Article  Google Scholar 

  • Mertens KN, Bradley LR, Takano Y et al (2012a) Quantitative estimation of Holocene surface salinity variation in the Black Sea using dinoflagellate cyst process length. Quat Sci Rev 39:45–59

    Article  Google Scholar 

  • Mertens KN, Bringue M, Nieuwenhove NV et al (2012b) Process length variation of the cyst of the dinoflagellate Protoceratium reticulatum in the North Pacific and Baltic-Skagerrak region: calibration as an annual density proxy and first evidence of pseudo-cryptic speciation. J Quat Sci 27:734–744

    Article  Google Scholar 

  • Miettinen A (2002) Relative sea level changes in the Eastern part of the Gulf of Finland during the last 8000 years. Ann Acad Sci Fenn Geol Geogr 162

    Google Scholar 

  • Miettinen A, Savalieva L, Subetto DA et al (2007) Palaeoenvironment of the Karelian Isthmus, the easternmost part of the Gulf of Finland, during the Littorina Sea Stage of the Baltic Sea history. Boreas 36:1–18

    Article  Google Scholar 

  • Mikkelsen VM (1949) Præstø Fjord. The development of the post-glacial vegetation and a contribution to the history of the Baltic Sea. Dan Bot Ark 13(5)

    Google Scholar 

  • Miller U (1982) Shore displacement and coastal dwelling in the Stockholm region during the past 5000 years. Ann Acad Sci Fenn A 134:185–211

    Google Scholar 

  • Miller U, Hedin K (1988) The Holocene development of landscape and environment in the south-east Mälaren valley, with special reference to Helgö. Excavations at Helgö XI, Kungliga Vitterhets Historie och Antikvitets Akademien Stockholm

    Google Scholar 

  • Miller U, Risberg J (1990) Environmental changes, mainly eutrophication, as recorded by fossil siliceous micro-algae in two cores from the uppermost sediments of the north-western Baltic. Beihefte zur Nova Hedwigia 100:237–253

    Google Scholar 

  • MOLTEN, DETECT and DEFINE (2006) Coastal ecology and palaeoecology of the Baltic and adjacent seas. http://craticula.ncl.ac.uk/Molten/jsp/index.jsp

  • Mörner N-A (1979) The Fennoscandian uplift and Late Cenozoic geodynamics. GeoJournal 3:287–318

    Article  Google Scholar 

  • Moros M, Lemke W, Kuijpers A et al (2002) Regressions and transgressions of the Baltic basin reflected by a new high-resolution deglacial and postglacial lithostratigraphy for Arkona Basin sediments (western Baltic Sea). Boreas 31:151–162

    Article  Google Scholar 

  • Munthe H (1894) Preliminary report on the physical geography of the Littorina Sea. Bull Geol Soc Univ Uppsala 2:1–38

    Google Scholar 

  • Munthe H (1910) Studier över Gottlands senkvartära historia. Sveriges Geologiska Undersökning, Ser. Ca 4

    Google Scholar 

  • Munthe H (1940) On the late Quaternary development and the Stone Age settlement of north Europe, primarily the Baltic. Kungliga Svenska Vetenskapsakademiens Handlingar 19/1

    Google Scholar 

  • Naughton F, Bourillet JF, Sánchez Goñi MF et al (2007) Long-term and millennial-scale climate variability in northwestern France during the last 8850 years. Holocene 17:939–953

    Article  Google Scholar 

  • Nesje A, Dahl SO (1993) Lateglacial and Holocene glacier fluctuations and climate variations in Western Norway—a review. Quat Sci Rev 12:255–261

    Article  Google Scholar 

  • Neumann T, Eilola K, Gustafsson B et al (2012) Extremes of temperature, oxygen and blooms in the Baltic Sea in a changing climate. Ambio 41:574–585

    Article  Google Scholar 

  • Nissling A, Westin L (1997) Salinity requirements for successful spawning of Baltic and Belt Sea cod and the potential for cod stock interactions in the Baltic Sea. Mar Ecol Prog Ser 152:261–271

    Article  Google Scholar 

  • Nordberg K (1991) Oceanography in the Kattegat & Skagerrak over the past 8,000 years. Paleoceanography 6:461–484

    Article  Google Scholar 

  • Odgaard BV, Rasmussen P (2000) Origin and temporal development of macro-scale vegetation patterns in the cultural landscape of Denmark. J Ecol 88:733–748

    Article  Google Scholar 

  • Officer CB, Ryther JH (1980) The possible importance of silicon in marine eutrophication. Mar Ecol Prog Ser 3:83–91

    Article  CAS  Google Scholar 

  • Olli K, Clarke A, Danielsson Å et al (2008) Diatom stratigraphy and long-term dissolved silica concentrations in the Baltic Sea. J Mar Syst 73:284–299

    Article  Google Scholar 

  • Olsen J, Rasmussen P, Heinemeier J (2009) Holocene spatial and temporal variation in the radiocarbon reservoir age of three Danish Fjords. Boreas 38:458–470

    Article  Google Scholar 

  • Olsen J, Ascough P, Lougheed BC, Rasmussen P (2017) Radiocarbon dating in estuarine environments. In: Weckström K, Saunders KM, Gell PA, Skilbeck CG (eds) Applications of paleoenvironmental techniques in estuarine studies, vol 20, Developments in paleoenvironmental research. Springer, Dordrecht

    Google Scholar 

  • Omstedt A, Chen D (2001) Influence of atmospheric circulation on the maximum ice extent in the Baltic Sea. J Geophys Res 106:4493–4500

    Article  Google Scholar 

  • Omstedt A, Pettersen C, Rodhe J et al (2004) Baltic Sea climate: 200 yr of data on air temperature, sea level variations, ice cover, and atmospheric circulation. Climate Res 25:205–216

    Article  Google Scholar 

  • Omstedt A, Elken J, Lehmann A et al (2014) Progress in physical oceanography of the Baltic Sea during the 2003–2014 period. Prog Oceanogr 128:139–171

    Article  Google Scholar 

  • Paabo K (1985) Diatomological studies of two cores from the western Baltic. Striae 23:83–91

    Google Scholar 

  • Papush L, Danielsson Å (2006) Silicon in the marine environment: dissolved silica trends in the Baltic Sea. Estuar Coast Shelf Sci 67:53–66

    Article  CAS  Google Scholar 

  • Parsons ML, Dortch Q, Turner RE et al (1999) Salinity history of coastal marshes reconstructed from diatom remains. Estuaries 22:1078–1089

    Article  Google Scholar 

  • Passy SI, Bode RW (2004) Diatom model affinity (DMA), a new index for water quality assessment. Hydrobiologia 524:241–251

    Article  Google Scholar 

  • Peltier WR (2002) On eustatic sea level history: Last Glacial Maximum to Holocene. Quat Sci Rev 21:377–396

    Article  Google Scholar 

  • Petersen KS (1981) The Holocene marine transgression and its molluscan fauna in the Skagerrak-Limfjord region, Denmark. Spec Publ Int 5:497–503

    Google Scholar 

  • Petersen KS (1985) Late Quaternary history of Denmark. The Weichselian ice sheet and land/sea configuration in the Late Pleistocene and Holocene. J Danish Archaeol 4:7–22

    Google Scholar 

  • Petersen KS (1993) Environmental changes recorded in the Holocene molluscan faunas from Djursland, Denmark. In: Janssen AW, Janssen R (eds) Proceedings of the symposium molluscan palaeontology. Scripta Geol Special Issue 2, Leiden, pp 359–369

    Google Scholar 

  • Petersen KS (2004) Late Quaternary environmental changes recorded in the Danish marine molluscan faunas. Geol Surv Den Greenl 3

    Google Scholar 

  • Petersen KS, Rasmussen KL, Rasmussen P et al (2005) Main environmental changes since the Weichselian glaciation in the Danish waters between the North Sea and the Baltic Sea as reflected in the molluscan fauna. Quat Int 133–134:33–46

    Article  Google Scholar 

  • Pitkänen H, Kauppila P, Laine Y (2001) Hydrography and oxygen conditions. In: Kauppila P, Bäck S (eds) The state of Finnish coastal waters in the 1990s. The Finnish Environment 472, pp 30–36

    Google Scholar 

  • Poulsen B (2010) The variability of fisheries and fish populations prior to industrialized fishing: an appraisal of the historical evidence. J Mar Syst 79:327–332

    Article  Google Scholar 

  • Punning J-M, Martma T, Kessel H, Vaikme R (1988) The isotopic composition of oxygen and carbon in the subfossil mollusc shells of the Baltic Sea as an indicator of palaeosalinity. Boreas 17:27–31

    Article  Google Scholar 

  • Rabalais NN, Turner RE, Sen Gupta BK et al (2007) Sediments tell the history of eutrophication and hypoxia in the northern Gulf of Mexico. Ecol Appl 17:129–143

    Article  Google Scholar 

  • Rahm L, Conley D, Sandén P et al (1996) Time series analysis of nutrient inputs to the Baltic Sea and changing DSi:DIN ratios. Mar Ecol Prog Ser 130:221–228

    Article  CAS  Google Scholar 

  • Rasmussen P, Petersen KS, Ryves DB (2007) Environmental change in Danish marine waters during the Roman Warm Period inferred from mollusc data. Geol Surv Den Greenl 13:21–24

    Google Scholar 

  • Reckermann M, Brander K, MacKenzie BR et al (eds) (2012) Climate impacts on the Baltic Sea: from science to policy, Springer earth system sciences. Springer, Heidelberg

    Google Scholar 

  • Reuss N (2005) Sediment pigments as biomarkers of environmental change. Dissertation, National Environmental Research Institute, Roskilde, Denmark

    Google Scholar 

  • Reuss N, Conley DJ, Bianchi TS (2005) Preservation conditions and the use of sediment pigments as a tool for recent ecological reconstructions in four Northern European estuaries. Mar Chem 95:283–302

    Article  CAS  Google Scholar 

  • Risberg J (1990) Siliceous microfossil stratigraphy in a superficial sediment sore from the northwestern part of the Baltic Proper. Ambio 19:167–172

    Google Scholar 

  • Risberg J (1991) Palaeoenvironment and sea level changes during the early Holocene on the Södertörn peninsula, Södermanland, eastern Sweden. Dissertation, Department of Quaternary Research, Stockholm University

    Google Scholar 

  • Rodwell MJ, Rodwell DP, Folland CK (1999) Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 398:320–323

    Article  CAS  Google Scholar 

  • Rohling EJ, Pälike H (2005) Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature 434:975–979

    Article  CAS  Google Scholar 

  • Rosenberg R, Elmgren R, Fleischer S et al (1990) Marine eutrophication case studies in Sweden. Ambio 19:102–108

    Google Scholar 

  • Rowley-Conley P (1984) The laziness of the short-distance hunter: the origins of agriculture in western Denmark. J Anthropol Archaeol 3:300–324

    Article  Google Scholar 

  • Roβler D, Moros M, Lemke W (2011) The Littorina transgression in the southwestern Baltic Sea: new insights based on proxy methods and radiocarbon dating of sediment cores. Boreas 40:231–241

    Article  Google Scholar 

  • Ryves DB, Clarke AL, Appleby PG et al (2004) Reconstructing the salinity and environment of the Limfjord and Vejlerne Nature Reserve, Denmark, using a diatom model for brackish lakes and fjords. Can J Fish Aquat Sci 61:1988–2006

    Article  Google Scholar 

  • Sandgren P, Snowball I (2001) The Late Weichselian sea level history of the Kullen Peninsula in northwest Skåne, southern Sweden. Boreas 30:115–130

    Article  Google Scholar 

  • Sandgren P, Snowball I, Hammarlund D et al (1999) Stratigraphic evidence for a high marine shore-line during the Late Weichselian deglaciation on the Kullen Peninsula, southern Sweden. J Quat Sci 14:223–237

    Article  Google Scholar 

  • Savage C, Leavitt PR, Elmgren R (2010) Effects of land use, urbanization, and climate variability on coastal eutrophication in the Baltic Sea. Limnol Oceanogr 55:1033–1046

    Article  CAS  Google Scholar 

  • Sayer C, Roberts N, Sadler J et al (1999) Biodiversity changes in a shallow lake ecosystem: a multi-proxy paleolimnological analysis. J Biogeogr 26:97–114

    Article  Google Scholar 

  • Schelske CL, Stoermer EF, Conley DJ et al (1983) Early eutrophication in the lower Great Lakes: new evidence from biogenic silica in sediments. Science 222:320–322

    Article  CAS  Google Scholar 

  • Schönfelder I, Gelbrecht J, Schönfelder J et al (2002) Relationships between littoral diatoms and their chemical environment in northeastern German lakes and rivers. J Phycol 38:66–82

    Article  Google Scholar 

  • Schoning K (2001) Marine conditions in middle Sweden during the Late Weichselian and Early Holocene as inferred from foraminifera, Ostracoda and stable isotopes. Dissertation, Stockholm University, Quaternaria 8, Ser. A

    Google Scholar 

  • Schoning K, Wastegård S (1999) Ostracod assemblages in late Quaternary varved glaciomarine clay of the Baltic Sea Yoldia stage in eastern middle Sweden. Mar Micropaleontol 37:313–325

    Article  Google Scholar 

  • Segercrantz W (1896) Några förekomster af postglacialt skalgrus i Finland. Fennia 12(8):1–6

    Google Scholar 

  • Seifert T, Kayser B (1995) A high resolution spherical grid topography of the Baltic Sea. Meereswissenschaftliche Berichte 9:72–88

    Google Scholar 

  • Seppä H, Tikkanen M, Shemeikka P (2000) Late-Holocene shore displacement of the Finnish south coast: diatom, litho- and chemostratigraphic evidence from three isolation basins. Boreas 29:219–231

    Article  Google Scholar 

  • Seppä H, Bjune AE, Telford RJ et al (2009) Last nine-thousand years of temperature variability in Northern Europe. Clim Past 5:523–535

    Article  Google Scholar 

  • Siddall M, Rohling EJ, Almogi-Labin A et al (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858

    Article  CAS  Google Scholar 

  • Smittenberg RH, Pancost RD, Hopmans EC et al (2004) 400-Year record of environmental change in an euxinic fjord as revealed by the sedimentary biomarker record. Palaeogeogr Palaeoclimatol Palaeoecol 202:331–351

    Article  Google Scholar 

  • Snoeijs P, Vilbaste S, Potapova M, et al (1993–1998) Intercalibration and distribution of diatom species in the Baltic Sea. Opulus Press, Uppsala

    Google Scholar 

  • Sohlenius G, Westman P (1998) Salinity and redox alternations in the northwestern Baltic proper during the late Holocene. Boreas 27:101–114

    Article  Google Scholar 

  • Sohlenius G, Sternbeck J, Andrén E et al (1996) Holocene history of the Baltic Sea as recorded in a sediment core from the Gotland Deep. Mar Geol 134:183–201

    Article  CAS  Google Scholar 

  • Sohlenius G, Emeis K-C, Andrén E et al (2001) Development of anoxia during the fresh—brackish water transition in the Baltic Sea. Mar Geol 177:221–242

    Article  CAS  Google Scholar 

  • Soininen A (1974) Vanha maataloutemme. Historiallisia tutkimuksia 96, Suomen historiallinen seura

    Google Scholar 

  • Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude and composition of the phytoplankton spring bloom. Global Change Biol 14:1199–1208

    Article  Google Scholar 

  • Sorgenfrei T (1958) Molluscan assemblages from the marine middle Miocene of South Jutland and their environment. Danmarks Geologiske Undersøgelse II Række, Nr 79:356–503

    Google Scholar 

  • Sternbeck J, Sohlenius G, Hallberg RO (2000) Sedimentary trace elements as proxies to depositional changes induced by a Holocene fresh-brackish water transition. Aquat Geochem 6:325–345

    Article  CAS  Google Scholar 

  • Stigebrandt A (2001) Physical oceanography of the Baltic Sea. In: Wulff F, Rahm L, Larsson P (eds) A systems analysis of the Baltic Sea. Springer, Berlin, pp 19–74

    Chapter  Google Scholar 

  • Stigebrandt A, Gustafsson BG (2003) Response of the Baltic Sea to climate change—theory and observations. J Sea Res 49:243–256

    Article  Google Scholar 

  • Stoermer EF, Smol JP (eds) (2001) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge

    Google Scholar 

  • Ston J, Kosakowska A (2000) Qualitative and quantitative analysis of Baltic phytoplankton pigments. Oceanologia 42:449–471

    Google Scholar 

  • Ston J, Kosakowska A, Lotocka M (2002) Pigment composition in relation to phytoplankton community structure and nutrient content in the Baltic Sea. Oceanologia 44:419–437

    Google Scholar 

  • Stramska M, Chudziak N (2013) Recent multiyear trends in the Baltic Sea level. Oceanologia 55:319–337

    Article  Google Scholar 

  • Struck U, Emeis K-C, Voss M et al (2000) Records of southern and central Baltic Sea eutrophication in δ 13C and δ 15N of sedimentary organic matter. Mar Geol 164:157–171

    Article  CAS  Google Scholar 

  • Sundelin U (1922) Några ord angående förläggningen av L.G. i de av transgression ej drabbade delarna av det baltiska området samt angående tidpunkten för Litorinahavets inträ de. Geol Fören Stock För 44:543–544

    Article  Google Scholar 

  • Suursaar Ü, Sooäär J (2007) Decadal variations in mean and extreme sea level values along the Estonian coast of the Baltic Sea. Tellus A 59:249–260

    Article  Google Scholar 

  • Suursaar Ü, Jaagus J, Kullas T (2006) Past and future changes in sea level near the Estonian coast in relation to changes in wind climate. Boreal Environ Res 11:123–142

    Google Scholar 

  • Szymczak-Zyla M, Kowalewska G (2007) Chloropigments a in the Gulf of Gdansk (Baltic Sea) as markers of the state of this environment. Mar Pollut Bull 55:512–528

    Article  CAS  Google Scholar 

  • Thomas ER, Wolff EW, Mulvaney R et al (2007) The 8.2 ka event from Greenland ice cores. Quat Sci Rev 26:70–81

    Article  Google Scholar 

  • Thulin B, Possnert G, Vuorela I (1992) Stratigraphy and age of two postglacial sediment cores from the Baltic Sea. Geol Fören Stock För 114:165–179

    Article  Google Scholar 

  • Tinz B (1996) On the relation between annual maximum extent of ice cover in the Baltic Sea and sea level pressure as well as air temperature field. Geophysica 32:319–341

    Google Scholar 

  • Törnqvist TE, Hijma MP (2012) Links between early Holocene ice-sheet decay, sea-level rise and abrupt climate change. Nat Geosci 5:601–606

    Article  CAS  Google Scholar 

  • Troels-Smith J (1942) Geologisk datering af Dyrholm-fundet. In: Mathiassen T, Degerbøl M, Troels-Smith J (eds) Dyrholmen. En Stenalderboplads paa Djursland. Det Kongelige Danske Videnskabernes Selskab, Arkæologisk-Kunsthistoriske Skrifter I 1, pp 137–212

    Google Scholar 

  • Tuovinen N, Virtasalo JJ, Kotilainen AT (2008) Holocene diatom stratigraphy in the Archipelago Sea, northern Baltic Sea. J Paleolimnol 40:793–807

    Article  Google Scholar 

  • Tuovinen N, Weckström K, Virtasalo J (2010) Assessment of recent eutrophication and climate influence in the Archipelago Sea based on the subfossil diatom record. J Paleolimnol 44:95–108

    Article  Google Scholar 

  • Turner BL, Weckström K (2009) Phytate as a novel phosphorus-specific paleo-indicator in aquatic sediments. J Paleolimnol 42:391–400

    Article  Google Scholar 

  • Uśinowicz S (2003) Relative sea level changes, glacio-isostatic rebound and shoreline displacement in the Southern Baltic. Polish Geol Inst Spec Papers 10:1–80

    Google Scholar 

  • Vaalgamaa S (2004) The effect of urbanisation on Laajalahti Bay, Helsinki City, as reflected by sediment geochemistry. Mar Pollut Bull 48:650–662

    Article  CAS  Google Scholar 

  • Vaalgamaa S, Conley DJ (2008) Detecting environmental change in estuaries: nutrient and heavy metal distributions in sediment cores in estuaries from the Gulf of Finland, Baltic Sea. Estuar Coast Shelf Sci 76:45–56

    Article  Google Scholar 

  • Vaalgamaa S, Korhola A (2004) Searching for order in chaos: a sediment stratigraphical study of a multiple-impacted bay of the Baltic Sea. Estuar Coast Shelf Sci 59:319–332

    Article  CAS  Google Scholar 

  • Väli G, Meier HEM, Elken J (2013) Simulated halocline variability in the Baltic Sea and its impact on hypoxia during 1961–2007. J Geophys Res Oceans 118:6982–7000

    Article  Google Scholar 

  • van der Werff A, Huls H (1957–1974). Diatomeënflora van Nederland. Koeltz, Koenigstein

    Google Scholar 

  • Virtasalo JJ, Kotilainen AT, Gingras MK (2006) Trace fossils as indicators of environmental change in Holocene sediments of the Archipelago Sea, northern Baltic Sea. Palaeogeogr Palaeoclimatol Palaeoecol 240:453–467

    Article  Google Scholar 

  • Voipio A (ed) (1981) The Baltic Sea. Elsevier oceanography series 30

    Google Scholar 

  • Voss M, Kowalewska G, Brenner W (2001) Microfossil and biochemical indicators of environmental changes in the Gotland Deep during the last 10,000 years. Baltica 14:131–140

    Google Scholar 

  • Wasmund N, Uhlig S (2003) Phytoplankton trends in the Baltic Sea. ICES J Mar Sci 60:177–186

    Article  Google Scholar 

  • Wasmund N, Andrushaitis A, Lysiak-Pastuszak E et al (2001) Trophic status of the south-eastern Baltic Sea: a comparison of coastal and open areas. Estuar Coast Shelf Sci 53:849–864

    Article  CAS  Google Scholar 

  • Weckström K (2005) Recent eutrophication of coastal waters of southern Finland—a palaeolimnological assessment. Dissertation, University of Helsinki, Finland

    Google Scholar 

  • Weckström K (2006) Assessing recent eutrophication in coastal waters of the Gulf of Finland (Baltic Sea) using subfossil diatoms. J Paleolimnol 35:571–592

    Article  Google Scholar 

  • Weckström K, Juggins S, Korhola A (2004) Quantifying background nutrient concentrations in coastal waters: a case study from an urban embayment of the Baltic Sea. Ambio 33:324–327

    Article  Google Scholar 

  • Weckström K, Korhola A, Weckström J (2007) Impacts of eutrophication on diatom life forms and species richness in coastal waters of the Baltic Sea. Ambio 36:155–160

    Article  Google Scholar 

  • Westman P, Hedenström A (2002) Environmental change during isolation processes from the Littorina Sea as reflected by diatoms and geochemical reflectors—a case study. Holocene 12:531–540

    Article  Google Scholar 

  • Westman P, Sohlenius G (1995) Chrysophyte cyst and diatom flora of a Litorina sea sediment sequence from the Northwestern Baltic proper. PACT 50:175–184

    Google Scholar 

  • Westman P, Sohlenius G (1999) Diatom stratigraphy in five offshore sediment cores from the northwestern Baltic proper implying large-scale circulation changes during the last 8500 years. J Paleolimnol 22:53–69

    Article  Google Scholar 

  • Westman P, Wastegård S, Schoning K, et al (1999) Salinity change in the Baltic Sea during the last 8,500 years: evidence, causes and models. Swedish Nuclear Fuel and Waste Management Co, Technical Report TR-99-38

    Google Scholar 

  • Widerlund A, Andersson PS (2006) Strontium isotopic composition of modern and Holocene mollusc shells as a paleosalinity indicator for the Baltic Sea. Chem Geol 232:54–66

    Article  CAS  Google Scholar 

  • Widerlund A, Andersson PS (2011) Late Holocene freshening of the Baltic Sea derived from high-resolution strontium isotope analyses of mollusk shells. Geology 39:187–190

    Article  CAS  Google Scholar 

  • Winn K, Averdieck F-R, Erlenkeuser H et al (1988) Hydrography of the Kiel Bay, Western Baltic, during the Littorina transgression. Meyniana 40:61–80

    Google Scholar 

  • Winn K, Erlenkeuser H, Nordberg K et al (1998) Paleohydrography of the Great Belt, Denmark, during the Littorina transgression: the isotope signal. Meyniana 50:237–251

    Google Scholar 

  • Winterhalter B (1992) Late-Quaternary stratigraphy of Baltic Sea basins—a review. Bull Geol Soc Finl 64:189–194

    Article  Google Scholar 

  • Witak M (2013) Diatom biofacies in the SW Gulf of Gdańsk and the Vistula Lagoon (the southern Baltic Sea) as indicators of the basin evolution in the Middle and Late Holocene. Oceanol Hydrobiol Stud 42:70–88

    Google Scholar 

  • Witkowski A (1994) Recent and fossil diatom flora of the Gulf of Gdansk, southern Baltic Sea. Origin, composition and changes of diatom assemblages during the Holocene. Bibliotheca Diatomologica 28. Crammer, Berlin

    Google Scholar 

  • Witkowski A, Pempkowiak J (1995) Reconstructing the development of human impact from diatoms and 210Pb sediment dating (The Gulf of Gdansk—southern Baltic Sea). Geographia Polonica 65:63–78

    Google Scholar 

  • Witkowski A, Lange-Bertalot H, Metzeltin D (2000) Diatom flora of marine coasts I. Iconographia Diatomologica, vol 7. A.R.G. Gantner Verlag K.G., Ruggell

    Google Scholar 

  • Witkowski A, Broszinski A, Bennike O et al (2005) Darss Sill a biological border in the fossil record of the Baltic Sea. Evidences from macrofossil and microfossil (mainly diatoms) analyses. Quat Int 130:97–109

    Article  Google Scholar 

  • Witkowski A, Cedro B, Kierzek A et al (2009) Diatoms as a proxy in reconstructing the Holocene environmental changes in the south-western Baltic Sea: the lower Rega River Valley sedimentary record. Hydrobiologia 631:155–172

    Article  CAS  Google Scholar 

  • Wojciechowski A (2011) Stages of the evolution of the South Baltic coast as recorded in the molluscan fauna. J Coastal Res, SI 64: 711–715 (Proceedings of the 11th International Coastal Symposium)

    Google Scholar 

  • Woolf DK, Shaw AGP, Tsimplis MN (2003) The influence of the North Atlantic Oscillation on sea-level variability in the North Atlantic region. J Atmos Ocean Sci 9:145–167

    Article  Google Scholar 

  • Wulff F, Stigebrandt A, Rahm L (1990) Nutrient dynamics of the Baltic Sea. Ambio 19:126–133

    Google Scholar 

  • Wulff F, Rahm L, Rodriguez-Medina M (1994) Long-term and regional variations of nutrients in the Baltic Sea; 1972-91. Finnish Mar Res 262:35–50

    Google Scholar 

  • Yu S-Y (2003a) The Littorina transgression in southeastern Sweden and its relation to mid-Holocene climate variability. Lundqua Thesis 51, Lund University

    Google Scholar 

  • Yu SY (2003b) Centennial-scale cycles in middle Holocene sea level along the southeastern Swedish Baltic coast. Bull Geol Soc Am 115:1404–1409

    Google Scholar 

  • Yu SY, Berglund BE (2007) A dinoflagellate cyst record of Holocene climate and hydrological changes along the southeastern Swedish Baltic coast. Quat Res 67:215–224

    Article  Google Scholar 

  • Yu S-Y, Berglund BE, Sandgren P et al (2007) Evidence for a rapid sea-level rise 7,600 years ago. Geology 35:891–894

    Article  Google Scholar 

  • Zillén L, Conley DJ (2010) Hypoxia and cyanobacteria blooms—are they really natural features of the late Holocene history of the Baltic Sea? Biogeosciences 7:2567–2580

    Article  Google Scholar 

  • Zillén L, Conley DJ, Andrén T et al (2008) Past occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact. Earth Sci Rev 91:77–92

    Article  Google Scholar 

  • Zorita E, Laine A (2000) Dependence of salinity and oxygen concentrations in the Baltic Sea on large-scale atmospheric circulation. Climate Res 14:25–41

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Stockholm County Council, The Foundation for Baltic and East European Studies and the European Commission (Marie Curie IEF-project CLIMICE, grant agreement 236678) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaarina Weckström .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Weckström, K. et al. (2017). Palaeoenvironmental History of the Baltic Sea: One of the Largest Brackish-Water Ecosystems in the World. In: Weckström, K., Saunders, K., Gell, P., Skilbeck, C. (eds) Applications of Paleoenvironmental Techniques in Estuarine Studies. Developments in Paleoenvironmental Research, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0990-1_24

Download citation

Publish with us

Policies and ethics