Skip to main content

Applications of Pollen Analysis in Estuarine Systems

  • Chapter
  • First Online:

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 20))

Abstract

Pollen and spores have an outer covering that is resistant to decay in anaerobic estuarine sediment, and their morphological and textural features, such as shape, size, aperture type and ornamentation, enable microscopic identification. Pollen analysis compares assemblages of pollen and spores in stratigraphic cores relative to the modern environment to reconstruct vegetation assemblages of past environments. Stratigraphic cores from estuarine deposits provide time-depth sequences of sediment samples, and the laboratory procedure in pollen analysis involves concentration of the pollen and spores. Microscopic examination allows identification, although it is difficult or impossible to distinguish between some genera and species, and down-core assemblages can be interpreted by comparison with those found in surface sediment samples and local and regional community structures of vegetation. Both relative abundance, and absolute concentration, are used to interpret the palaeo environment. Records have shown vegetation changes to be controlled by relative sea level change, and estuarine evolution such as progradation, infill, shoreline retreat, and by human influences. Estuarine sediments with high mixing and inorganic sediment content generally yield poorer pollen analysis records relative to estuarine sediments with an undisturbed time/depth sequence of stratigraphy and with limited reworking. Lower energy zones in central areas of wave and tide dominated estuaries have proven to be most useful for palaeo-environmental reconstruction by pollen analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ajonina GN (2008) Inventory and modeling mangrove forest stand dynamics following different levels of wood exploitation pressures in Douala-Edea Atlantic Coast of Cameroon, Central Africa. Doctoral Dissertation, Albert-Ludwigs-Universitat, Germany

    Google Scholar 

  • Armour RK, Kennedy DM (2005) Comparative palynomorph signals of vegetation change preserved in an adjacent peat swamp and estuary in North‐West Nelson, New Zealand. N Z J Bot 43(2):451–465

    Article  Google Scholar 

  • Bartlett AS, Barghoorn ES (1973) Phytogeographic history of the isthmus of Panama during the past 12,000 years (a history of vegetation, climate and sea level change). In: Graham A (ed) Vegetation and vegetational history of northern Latin America. Elsevier, Amsterdam, pp 203–299

    Google Scholar 

  • Beecher BC, Chmura GL (2004) Pollen-vegetation relationships in Bay of Fundy salt marshes. Botany 82(5):663

    Google Scholar 

  • Behling H, Cohen MCL, Lara RJ (2001) Studies on Holocene mangrove ecosystem dynamics of the Bragança Peninsula in north-eastern Pará, Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 167:225–242

    Article  Google Scholar 

  • Behling H, Cohen MCL, Lara RJ (2004) Late Holocene mangrove dynamics of Marajó Island in Amazonia, northern Pará, Brazil. Veg Hist Archaeobot 13:73–80

    Article  Google Scholar 

  • Bengtsson L, Enell M (1986) Chemical analysis. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology, 1st edn. The Blackburn Press, Caldwell, pp 423–451

    Google Scholar 

  • Benninghoff WS (1962) Calculation of pollen and spores density in sediments by addition of exotic pollen in known quantities. Pollen Spores 4(2):332–333

    Google Scholar 

  • Berglund BE, Ralska-Jasiewiczowa M (1986) Pollen analysis and pollen diagrams. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology, 1st edn. The Blackburn Press, Caldwell, pp 455–484

    Google Scholar 

  • Blasco F (1984) Mangrove evolution and palynology. In: Snedaker SC, Snedaker JG (eds) The mangrove ecosystem: research methods. UNESCO, Paris, pp 36–52

    Google Scholar 

  • Brush GS, DeFries RS (1981) Spatial distributions of pollen in surface sediments of the Potomac estuary. Limnol Oceanogr 26(2):295–309

    Article  Google Scholar 

  • Byrne R, Ingram BL, Starrat S et al (2001) Carbon-isotope, diatom, and pollen evidence for late Holocene salinity change in a brackish marsh in the San Francisco estuary. Quat Res 55:66–76

    Article  CAS  Google Scholar 

  • Campbell ID, Campbell C (1994) Pollen preservation: experimental wet-dry cycles in saline and desalinated sediments. Palynology 18:5–10

    Article  Google Scholar 

  • Caratini C, Tissot C (1988) Palaeogeographic evolution of the Mahakam delta in Kilimantan, Indonesia, during the Quaternary and late Pliocene. Rev Palaeobot Palynol 55:217–228

    Article  Google Scholar 

  • Chappell J, Grindrod J (1985) Pollen analysis: a key to past mangrove communities and successional changes in North Australian coastal environments. In: Bardsley KN, Davie JDS, Woodroffe CD (eds) Coasts and tidal wetlands of the Australian monsoon region. Mangrove monograph 1. Australian National University, Darwin, pp 225–236

    Google Scholar 

  • Cohen AD, Spackman W (1977) Phytogenic organic sediments and sedimentary environments in the Everglades—mangrove complex. Palaeontograph Abt B:10–144

    Google Scholar 

  • Colhoun EA, Van de Geer G, Fitzsimons SJ (1991) Late Glacial and Holocene vegetation history at Governor Bog, King Valley, Western Tasmania, Australia. J Quat Sci 6:53–66

    Article  Google Scholar 

  • Cooper JAG (1993) Sedimentation in a river-dominated estuary. Sedimentology 40:979–1017

    Article  Google Scholar 

  • Cooper JAG (1994) Sedimentary processes in the river-dominated Mvoti estuary, South Africa. Geomorphology 9:271–300

    Article  Google Scholar 

  • Corcoran E, Ravilious C, Skuja M (2007) Mangroves of Western and Central Africa. UNEP—Regional Seas Programme. World Conservation Monitoring Centre, Cambridge

    Google Scholar 

  • Dahdouh-Guebas F, Keodam N (2008) Long-term retrospection on mangrove development using transdisciplinary approaches: a review. Aquat Bot 89(2):80–92

    Article  Google Scholar 

  • Dalrymple RW, Zaitlin BA, Boyd R (1992) Estuarine facies models: conceptual basis and stratigraphic implications. J Sediment Petrol 62:1130–1146

    Article  Google Scholar 

  • Davis MB (1969) Climatic changes in southern Connecticut recorded by pollen deposition at Rogers Lake. Ecology 50:409–422

    Article  CAS  Google Scholar 

  • Davis MB, Brubaker LB (1973) Differential sedimentation of pollen grains in lakes. Limnol Oceanogr 18:635–646

    Article  Google Scholar 

  • Davis MB, Brubaker LB, Beiswenger JM (1971) Pollen grains in lake sediments: pollen percentages in surface sediments from Southern Michigan. Quat Res 1:450–467

    Article  Google Scholar 

  • Delcourt PA, Delcourt HR (1980) Pollen preservation and Quaternary environmental history in the south eastern Unites States. Palynology 4:215–231

    Article  Google Scholar 

  • Deng Y, Horrocks M, Ogden J et al (2006) Modern pollen–vegetation relationships along transects on the Whangapoua Estuary, Great Barrier Island, northern New Zealand. J Biogeogr 33:592–608

    Article  Google Scholar 

  • Ellison JC (1989) Pollen analysis of mangrove sediments as a sea-level indicator: assessment from Tongatapu, Tonga. Palaeogeogr Palaeoclimatol Palaeoecol 74:327–341

    Article  Google Scholar 

  • Ellison JC (1994) Palaeo-lake and swamp stratigraphic records of Holocene vegetational and sea-level changes, Mangaia, Cook Islands. Pac Sci 48:1–15

    Google Scholar 

  • Ellison JC (1996) Pollen evidence of Late Holocene mangrove development in Bermuda. Glob Ecol Biogeogr Lett 5:315–326

    Article  Google Scholar 

  • Ellison JC (2005) Holocene palynology and sea-level change in two estuaries in Southern Irian Jaya. Palaeogeogr Palaeoclimatol Palaeoecol 220:291–309

    Article  Google Scholar 

  • Ellison JC (2008) Long-term retrospection on mangrove development using sediment cores and pollen analysis: a review. Aquat Bot 89(2):93–104

    Article  Google Scholar 

  • Ellison JC (2009a) Wetlands of the Pacific Island region. Wetl Ecol Manag 17:169–206

    Article  Google Scholar 

  • Ellison JC (2009b) Geomorphology and sedimentology of mangrove swamps. In: Wolanski E, Cahoon D, Perillo GME (eds) Coastal wetlands: an ecosystem integrated approach. Elsevier Science, Amsterdam, pp 564–591

    Google Scholar 

  • Ellison JC (2015) Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetl Ecol Manag. 23(2):115–137. doi:10.1007/s11273-014-9397-8

  • Ellison JC, Strickland P (2015) Establishing relative sea level trends where a coast lacks a long term tide gauge. Mitig Adapt Strateg Glob Chang. 23(2):115–137. doi:10.1007/s11027-013-9534-3

  • Ellison JC, Zouh I (2012) Vulnerability to climate change of mangroves: assessment from Cameroon, Central Africa. Biology 1:617–638

    Article  Google Scholar 

  • Erdtman G (1943) An introduction to pollen analysis. Chronica Botanica Company, Waltham

    Google Scholar 

  • Erdtman OGE (1952) Pollen morphology and plant taxonomy. Angiosperms. (An introduction to palynology I). Almquvist & Wiksell, Stockholm

    Google Scholar 

  • Erdtman G (1969) Handbook of palynology. Morphology, taxonomy, ecology. Hafner, New York

    Google Scholar 

  • Faegri K, Iversen J (1975) Textbook of pollen analysis. Hafner, New York

    Google Scholar 

  • Fredoux A (1994) Pollen analysis of a deep sea core in the Gulf of Guinea: vegetation and climatic changes during the last 225,000 years B.P. Palaeogeogr Palaeoclimatol Palaeoecol 109:317–330

    Article  Google Scholar 

  • Gehrke PC, Sheaves MJ, Terry JP et al (2011) Vulnerability of freshwater and estuarine fish habitats in the tropical Pacific to climate change. In: Bell JD, Johnson JE, Hobday AJ (eds) Vulnerability of fisheries and aquaculture in the Pacific to climate change. Secretariat of the Pacific Community, Noumea, pp 369–431

    Google Scholar 

  • Gilman E, Ellison JC, Coleman R (2007) Assessment of mangrove response to projected relative sea-level rise and recent historical reconstruction of shoreline position, American Samoa. Environ Monit Assess 124:105–130

    Article  Google Scholar 

  • Giresse P, Maley J, Kossini A (2005) Sedimentary environmental changes and millennial climatic variability in a tropical shallow lake (Lake Osse, Cameroon) during the Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 218:257–285

    Article  Google Scholar 

  • Grindrod J (1985) The palynology of mangroves on a prograded shore, Princess Charlotte Bay, N. Queensland, Australia. J Biogeogr 12:323–348

    Article  Google Scholar 

  • Grindrod J (1988) The palynology of Holocene mangrove and salt marsh sediments, particularly in Northern Australia. Rev Palaeobot Palynol 55:229–245

    Article  Google Scholar 

  • Heusser CJ (1971) Pollen and spores of Chile. Univ. Arizona Press, Tucson

    Google Scholar 

  • Hopkins JS (1950) Differential flotation and deposition of coniferous and deciduous tree pollen. Ecology 31:633–641

    Article  Google Scholar 

  • Johansson JT (1987) Pollen morphology of the tribe Morindeae (Rubiaceae). Grana 26:134–150

    Article  Google Scholar 

  • Kershaw AP (1976) A Late Pleistocene and Holocene pollen diagram from Lynch’s Crater, Northeastern Queensland, Australia. New Phytol 77(2):469–498

    Article  Google Scholar 

  • Kirch PV (1997) The Lapita peoples: ancestors of the oceanic world. Blackwell, Oxford

    Google Scholar 

  • Kirch PV, Ellison JC (1994) Paleoenvironmental evidence for human colonization of remote oceanic islands. Antiquity 68:310–321

    Article  Google Scholar 

  • Kraus M, Matthiessen J, Stein R (2003) A Holocene marine pollen record from the northern Yenisei Estuary (southeastern Kara Sea, Siberia). In: Stein R, Fahl K, Fütterer DK, et al. (eds) Siberian river run-off in the Kara Sea: characterization, quantification, variability and environmental significance. Proc Mar Sci, vol 6, pp 435–456

    Google Scholar 

  • Leopold EB (1969) Miocene pollen and spore flora of Enewetok Atoll, Marshall Islands. US Geol Surv Prof Pap 260-II

    Google Scholar 

  • Lloyd RM (1980) Reproductive biology and gametophyte morphology of new world populations of Acrostichum aureum. Am Fern J 70:99–110

    Article  Google Scholar 

  • Lucas RM, Ellison JC, Mitchell A et al (2002) Use of stereo aerial photography for assessing changes in the extent and height of mangrove canopies in tropical Australia. Wetl Ecol Manag 10:159–173

    Article  Google Scholar 

  • Malamud-Roam FP, Ingram BL, Hughes M et al (2006) Holocene paleoclimate records from a large California estuarine system and its watershed region: linking watershed climate and bay conditions. Quat Sci Rev 25(13-14):1570–1598

    Article  Google Scholar 

  • Mao L, Batten DJ, Fujiki T et al (2012) Key to mangrove pollen and spores of southern China: an aid to palynological interpretation of Quaternary deposits in the South China Sea. Rev Palaeobot Palynol 176–177:41–67

    Article  Google Scholar 

  • Mertens KN, Verhoeven K, Verleye T et al (2009) Determining the absolute abundance of dinoflagellate cysts in recent marine sediments: the Lycopodium marker-grain method put to the test. Rev Palaeobot Palynol 157:238–252

    Article  Google Scholar 

  • Mertens KN, Price AM, Pospelova V (2012) Determining the absolute abundance of dinoflagellate cysts in recent marine sediments II: Further tests of the Lycopodium marker-grain method. Rev Palaeobot Palynol 184:74–81

    Article  Google Scholar 

  • Moore PD, Webb JA (1978) An illustrated guide to pollen analysis. Hodder and Stoughton, London

    Google Scholar 

  • Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell Scientific, Oxford

    Google Scholar 

  • Morin S (1980) Relief and hydrography. In: Laclavere G, Loung JF (eds) Atlas of the United Republic of Cameroon. Editions Jeune Afrique, Paris, pp 5–8

    Google Scholar 

  • Muller J (1959) Paleontology of recent Orinoco Delta and shelf sediments: reports of the Orinoco Shelf expedition. Micropaleontology 5:1–32

    Article  Google Scholar 

  • Muller J, Caratini C (1977) Pollen of Rhizophora (Rhizophoraceae) as a guide fossil. Pollen Spores 19:361–389

    Google Scholar 

  • NOAA (2012) Tides and currents. Tidal station locations and ranges. http://tidesandcurrents.noaa.gov/tides10/tab2wc3.html. Accessed 18 Dec 2012

  • Pennington W (1979) The origin of pollen in lake sediments: an enclosed lake compared with one receiving inflow streams. New Phytol 83:189–213

    Article  Google Scholar 

  • Rao AN, Ong ET (1974) Pollen morphology of certain tropical plants. J Palynol 10:1–38

    Google Scholar 

  • Rull V (2003) An illustrated key for the identification of pollen from Pantepui and the Gran Sabana (Eastern Venezuelan Guayana). Palynology 27:99–133

    Article  Google Scholar 

  • Skilbeck CG, Trevathan-Tackett S, Apichanangkool P et al (2017) Sediment sampling in estuaries—site selection and sampling techniques. In: Weckström K, Saunders KM, Gell PA, Skilbeck CG (eds) Applications of paleoenvironmental techniques in estuarine studies, Developments in paleoenvironmental research 20. Springer, Dordrecht

    Google Scholar 

  • Tissot C (1973) Palynolgie et evolution recente de deux mangroves du Tamil Nadu (Inde). In: Blasco F, Caratini C, Fredou A, et al. (eds) Les rivages tropicaux—Mangroves d Afrique et d’Asie, vol 1. Centre d'études de géographie tropicale, Talence, pp 1–148

    Google Scholar 

  • Tomlinson PB (1994) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Traverse A, Ginsberg RN (1966) Palynology of surface sediments of Great Bahama Bank, as related to water movement and sedimentation. Mar Geol 4:417–459

    Article  Google Scholar 

  • Van Campo E, Bengo DM (2004) Marine palynology in recent sediments off Cameroon. Mar Geol 208:315–330

    Article  Google Scholar 

  • Vogel JC, Fuls AM, Visser E, Becker B (1993) Pretoria calibration curve for short-lived samples, 1930-3350 BC. Radiocarbon 35:73–85

    Google Scholar 

  • Ward JV (1988) Palynology of Kosrae, Eastern Caroline Islands: recoveries from pollen rain and Holocene deposits. Rev Palaeobot Palynol 55:247–271

    Article  Google Scholar 

  • White JP, Allen J (1980) Melanesian prehistory: some recent advances. Science 207:728–734

    Article  CAS  Google Scholar 

  • Wijmstra TA (1969) Palynology of the alliance well. Geol Mijnb 48:125–134

    Google Scholar 

  • Wilmshurst JM, McGlone MS (2005) Corroded pollen and spores as indicators of changing lake sediment sources and catchment disturbance. J Paleolimnol 34:503–517

    Article  Google Scholar 

  • Woodroffe CD, Mulrennan ME (1993) Geomorphology of the lower Mary River plains, Northern Territory. North Australia Research Unit, Darwin

    Google Scholar 

  • Woodroffe CD, Thom BG, Chappell J (1985) Development of widespread mangrove swamps in mid-Holocene times in northern Australia. Nature 317:711–713

    Article  Google Scholar 

  • Woodroffe CD, Chappell J, Thom BG et al (1989) Depositional model of a macrotidal estuary and floodplain, South Alligator river, Northern Australia. Sedimentology 36:737–756

    Article  Google Scholar 

Download references

Acknowledgements

This research was partly funded by the UNEP GEF project “Coastal Resilience to Climate Change: Developing a Generalizable Method for Assessing Vulnerability and Adaptation of Mangroves and Associated Ecosystems” awarded to the World Wildlife Fund (WWF). The author is grateful to Gordon Ajonina (Cameroon Wildlife Conservation Society) for fieldwork assistance, Pippa Strickland for the Cameroon laboratory analyses, Michael Helman who drew Figs. 18.7 and 18.8, and five anonymous reviewers whose comments allowed improvements to the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna C. Ellison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ellison, J.C. (2017). Applications of Pollen Analysis in Estuarine Systems. In: Weckström, K., Saunders, K., Gell, P., Skilbeck, C. (eds) Applications of Paleoenvironmental Techniques in Estuarine Studies. Developments in Paleoenvironmental Research, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0990-1_18

Download citation

Publish with us

Policies and ethics