Skip to main content

Corals in Estuarine Environments: Their Response to Environmental Changes and Application in Reconstructing Past Environmental Variability

  • Chapter
  • First Online:
Applications of Paleoenvironmental Techniques in Estuarine Studies

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 20))

Abstract

Corals represent a vast and detailed archive of past environmental changes in regions where instrumental data are limited and where our knowledge of multi-decadal climate variability is incomplete. In estuarine areas, coral skeletal records provide an opportunity to monitor anthropogenic impacts as well as to investigate natural environmental variability through a range of time scales, from seasonal to millennial. This paper analyzes the status of the field of coral sclerochronology (layer analysis) and geochemistry as it relates to the recovery of past records of environmental variability in estuarine settings. Coral biology, density band formation, and factors affecting the uptake of isotopic and elemental signals in the coral skeleton are explored, as they constitute important aspects in understanding corals as environmental proxies. Density bands in coral skeletons, commonly used for first-order dating, are a reliable proxy for long-term seasonal variability and to identify periods of environmental stress. The stable isotopic composition of coral carbonate has been employed to reconstruct sea-surface temperatures and salinities (δ18O), insolation changes (δ13C), pH variability (δ11B), and water quality (δ15N), while changes in the elemental composition of corals constitute robust proxies for sea surface temperature (Sr/Ca) and riverine discharge (Ba/Ca). Additionally, changes in the trace concentration of metals, such as Pb, Cd, Al, Mn and Zn, have been used to monitor pollutants entering estuaries from urban areas and to reconstruct past changes in water quality. However, there is still controversy about the degree to which biological parameters such as metabolism and calcification rate influence the final isotopic and elemental composition of the coral lattice. As a result, a multi-proxy approach to coral-based paleoclimatology has emerged, both from the need to better understand the influences controlling coral environmental records and from recent advances in the analytical techniques for measuring the composition of coral skeletons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharon P (1991) Recorders of reef environment histories: stable isotopes in corals, giant clams, and calcareous algae. Coral Reefs 10(2):71–90

    Article  Google Scholar 

  • Ahmad SM, Padmakumari VM, Raza W et al (2011) High-resolution carbon and oxygen isotope records from a scleractinian (Porites) coral of Lakshadweep Archipelago. Quat Int 238(1):107–114

    Article  Google Scholar 

  • Alibert C, McCulloch MT (1997) Great Barrier Reef as a proxy for sea surface temperature: calibration of the thermometer and monitoring of ENSO. Paleoceanography 12(3):345–363

    Article  Google Scholar 

  • Alibert C, Kinsley L, Fallon SJ et al (2003) Source of trace element variability in Great Barrier Reef corals affected by the Burdekin flood plumes. Geochim Cosmochim Acta 67(2):231–246

    Article  CAS  Google Scholar 

  • Allemand D, Ferrier-Pagès C, Furla P et al (2004) Biomineralization in reef-building corals: from molecular mechanisms to environmental control. Comptes Rendus Palevol 3(6):453–467

    Article  Google Scholar 

  • Allison N, Tudhope AW, Fallick AE (1996) Factors influencing the stable carbon and oxygen isotopic composition of Porites lutea coral skeletons from Phuket, South Thailand. Coral Reefs 15(1):43–57

    Google Scholar 

  • Al-Rousan S, Al-Moghrabi S, Pätzold J et al (2003) Stable oxygen isotopes in Porites corals monitor weekly temperature variations in the northern Gulf of Aqaba, Red Sea. Coral Reefs 22(4):346–356

    Article  Google Scholar 

  • Asami R, Yamada T, Iryu Y et al (2004) Carbon and oxygen isotopic composition of a Guam coral and their relationships to environmental variables in the western Pacific. Palaeogeogr Palaeoclimatol Palaeoecol 212(1):1–22

    Article  Google Scholar 

  • Aucour AM, Sheppard SM, Guyomar O et al (1999) Use of 13C to trace origin and cycling of inorganic carbon in the Rhône river system. Chem Geol 159(1):87–105

    Article  CAS  Google Scholar 

  • Barnes DJ, Lough JM (1999) Porites growth characteristics in a changed environment: Misima Island, Papua New Guinea. Coral Reefs 18(3):213–218

    Article  Google Scholar 

  • Barnes DJ, Taylor RB (2001) On the nature and causes of luminescent lines and bands in coral skeletons. Coral Reefs 19(3):221–230

    Article  Google Scholar 

  • Barnes DJ, Taylor RB (2005) On the nature and causes of luminescent lines and bands in coral skeletons: II. Contribution of skeletal crystals. J Exp Mar Biol Ecol 322(2):135–142

    Article  Google Scholar 

  • Barnes DJ, Taylor RB, Lough JM (2003) Measurement of luminescence in coral skeletons. J Exp Mar Biol Ecol 295(1):91–106

    Article  Google Scholar 

  • Beck JW, Edwards RL, Ito E et al (1992) Sea-surface temperature from coral skeletal strontium/calcium ratios. Science 257(5070):644–647

    Article  CAS  Google Scholar 

  • Bessat F, Buigues D (2001) Two centuries of variation in coral growth in a massive Porites colony from Moorea (French Polynesia): a response of ocean-atmosphere variability from south central Pacific. Palaeogeogr Palaeoclimatol Palaeoecol 175(1):381–392

    Article  Google Scholar 

  • Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16(5):129–138

    Article  Google Scholar 

  • Buddemeier RW (1978) Sclerochronology: a data source for reef systems models. Atoll Res Bull 220:25–31

    Article  Google Scholar 

  • Buddemeier RW, Maragos JE, Knutson DW (1974) Radiographic studies of reef coral exoskeletons: rates and patterns of coral growth. J Exp Mar Biol Ecol 14(2):179–199

    Article  Google Scholar 

  • Burgess SN, McCulloch MT, Mortimer GE et al (2009) Structure and growth rates of the high-latitude coral: Plesiastrea versipora. Coral Reefs 28(4):1005–1015

    Article  Google Scholar 

  • Cahyarini SY, Pfeiffer M, Timm O et al (2008) Reconstructing seawater δ18O from paired coral δ18O and Sr/Ca ratios: methods, error analysis and problems, with examples from Tahiti (French Polynesia) and Timor (Indonesia). Geochim Cosmochim Acta 72(12):2841–2853

    Article  CAS  Google Scholar 

  • Cantin NE, Cohen AL, Karnauskas KB et al (2010) Ocean warming slows coral growth in the central Red Sea. Science 329(5989):322–325

    Article  CAS  Google Scholar 

  • Carricart-Ganivet JP, Barnes DJ (2007) Densitometry from digitized images of X-radiographs: methodology for measurement of coral skeletal density. J Exp Mar Biol Ecol 344(1):67–72

    Article  Google Scholar 

  • Carricart-Ganivet JP, Beltrán-Torres AU, Merino M et al (2000) Skeletal extension, density and calcification rate of the reef building coral Montastraea annularis (Ellis and Solander) in the Mexican Caribbean. Bull Mar Sci 66(1):215–224

    Google Scholar 

  • Carriquiry JD (1994) 18O Fractionation in the coralline aragonite of Porites lobata: implications in oceanic paleothermometry studies. Cienc Mar 20(4):585–606

    CAS  Google Scholar 

  • Chalker BE, Barnes DJ (1990) Gamma densitometry for the measurement of skeletal density. Coral Reefs 9(1):11–23

    Article  Google Scholar 

  • Charles CD, Hunter DE, Fairbanks RG (1997) Interaction between the ENSO and the Asian monsoon in a coral record of tropical climate. Science 277(5328):925–928

    Article  CAS  Google Scholar 

  • Chornesky EA, Peters EC (1987) Sexual reproduction and colony growth in the scleractinian coral Porites astreoides. Biol Bull 172(2):161–177

    Article  Google Scholar 

  • Clausen CD, Roth AA (1975) Effect of temperature and temperature adaptation on calcification rate in the hermatypic coral Pocillopora damicornis. Mar Biol 33(2):93–100

    Article  Google Scholar 

  • Coffey M, Dehairs FA, Collette O et al (1997) The behaviour of dissolved barium in estuaries. Estuar Coast Shelf Sci 45(1):113–121

    Article  CAS  Google Scholar 

  • Cohen AL, Gaetani GA (2010) Ion partitioning and the geochemistry of coral skeletons: solving the mystery of the vital effect. EMU Notes Mineral 11:377–397

    Google Scholar 

  • Cohen AL, Hart SR (1997) The effect of colony topography on climate signals in coral skeleton. Geochim Cosmochim Acta 61(18):3905–3912

    Article  CAS  Google Scholar 

  • Cohen AL, Layne GD, Hart SR et al (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: implications for the paleotemperature proxy. Paleoceanography 16(1):20–26

    Article  Google Scholar 

  • Cole JE, Fairbanks RG (1990) The Southern Oscillation recorded in the δ18O of corals from Tarawa Atoll. Paleoceanography 5(5):669–683

    Article  Google Scholar 

  • Cole JE, Fairbanks RG, Shen GT (1993) Recent variability in the Southern Oscillation: isotopic results from a Tarawa Atoll coral. Science 260(5115):1790–1793

    Article  CAS  Google Scholar 

  • Coles SL (1992) Experimental comparison of salinity tolerances of reef corals from the Arabian Gulf and Hawaii: evidence for hyperhaline adaptation. In: Proceedings of the 7th International Coral Reef Symposium, vol 1. Guam

    Google Scholar 

  • Coles SL, Jokiel PL (1978) Synergistic effects of temperature, salinity and light on the hermatypic coral Montipora verrucosa. Mar Biol 49(3):187–195

    Article  Google Scholar 

  • Coles SL, Jokiel PL (1992) Effects of salinity on coral reefs. In: Connel DW, Hawker DW (eds) Pollution in tropical aquatic systems. CRC Press, Cleveland, pp 147–166

    Google Scholar 

  • Cooper TF, Ridd PV, Ulstrup KE et al (2008) Temporal dynamics in coral bioindicators for water quality on coastal coral reefs of the Great Barrier Reef. Mar Freshw Res 59(8):703–716

    Article  CAS  Google Scholar 

  • Cooper TF, Gilmour JP, Fabricius KE (2009) Bioindicators of changes in water quality on coral reefs: review and recommendations for monitoring programmes. Coral Reefs 28(3):589–606

    Article  Google Scholar 

  • Crabbe MJC (2009) Scleractinian coral population size structures and growth rates indicate coral resilience on the fringing reefs of North Jamaica. Mar Environ Res 67(4):189–198

    Article  CAS  Google Scholar 

  • Crabbe MJC, Martinez E, Garcia C et al (2008) Growth modelling indicates hurricanes and severe storms are linked to low coral recruitment in the Caribbean. Mar Environ Res 65(4):364–368

    Article  CAS  Google Scholar 

  • de Villiers S, Nelson BK, Chivas AR (1995) Biological controls on coral Sr/Ca and δ18O reconstructions of sea surface temperatures. Science 269(5228):1247

    Article  Google Scholar 

  • De'ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323(5910):116–119

    Article  CAS  Google Scholar 

  • D'elia CF, Wiebe WJ (1990) Biogeochemical nutrient cycles in coral-reef ecosystems. Ecosyst World 25:49–74

    Google Scholar 

  • Dodge RE, Lang JC (1983) Environmental correlates of hermatypic coral (Montastrea annularis) growth on the East Flower Gardens Bank, northwest Gulf of Mexico. Limnol Oceanogr 28(2):228–240

    Article  Google Scholar 

  • Dodge RE, Thomson J (1974) The natural radiochemical and growth records in contemporary hermatypic corals from the Atlantic and Caribbean. Earth Planet Sci Lett 23(3):313–322

    Article  CAS  Google Scholar 

  • Dodge RE, Jickells TD, Knap AH et al (1984) Reef-building coral skeletons as chemical pollution (phosphorus) indicators. Mar Pollut Bull 15(5):178–187

    Article  CAS  Google Scholar 

  • Douville E, Juillet-Leclerc A, Cabioch G et al. (2009) Boron isotopes in Fiji corals and precise ocean acidification reconstruction. In: Abstracts of the Fall Meeting of the American Geophysical Union, vol 1

    Google Scholar 

  • Druffel EM, Linick TW (1978) Radiocarbon in annual coral rings of Florida. Geophys Res Lett 5(11):913–916

    Article  CAS  Google Scholar 

  • Dubinsky ZVY, Stambler N (2006) Marine pollution and coral reefs. Glob Chang Biol 2(6):511–526

    Article  Google Scholar 

  • Edinger EN, Limmon GV, Jompa J et al (2000) Normal coral growth rates on dying reefs: are coral growth rates good indicators of reef health? Mar Pollut Bull 40(5):404–425

    Article  CAS  Google Scholar 

  • Edwards AJ, Gomez ED (2007) Reef restoration concepts and guidelines: making sensible management choices in the face of uncertainty. Coral Reef Targeted Research and Capacity Building for Management Programme. St Lucia, Australia, 38 pp. ISBN: 978-1-921317-00-2

    Google Scholar 

  • Edwards LR, Chen JH, Wasserburg GJ (1987) 238U/234U230Th/232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet Sci Lett 81(2):175–192

    Article  CAS  Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA et al (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64(11):1315–1326

    Article  CAS  Google Scholar 

  • Evans MN, Kaplan A, Cane MA (1998) Optimal sites for coral-based reconstruction of global. Paleoceanography 13(5):502–516

    Article  Google Scholar 

  • Evans MN, Kaplan A, Cane MA (2002) Pacific sea surface temperature field reconstruction from coral δ18O data using reduced space objective analysis. Paleoceanography 17(1):7-1–7-13

    Article  Google Scholar 

  • Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50(2):125–146

    Article  CAS  Google Scholar 

  • Fabricius KE, McCorry D (2006) Changes in octocoral communities and benthic cover along a water quality gradient in the reefs of Hong Kong. Mar Pollut Bull 52(1):22–33

    Article  CAS  Google Scholar 

  • Fairbanks RG, Dodge RE (1979) Annual periodicity of the 18O/16O and 13C/12C ratios in the coral Montastrea annularis. Geochim Cosmochim Acta 43(7):1009–1020

    Article  CAS  Google Scholar 

  • Fairbanks RG, Evans MN, Rubenstone JL et al (1997) Evaluating climate indices and their geochemical proxies measured in corals. Coral Reefs 16(5):93–100

    Article  Google Scholar 

  • Fairbanks RG, Mortlock RA, Chiu TC et al (2005) Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quat Sci Rev 24(16):1781–1796

    Article  Google Scholar 

  • Falkowski PG, Jokiel PL, Kinzie RA (1990) Irradiance and corals. Ecosyst World 25:89–107

    Google Scholar 

  • Fallon SJ, McCulloch MT (2002) Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea. Geochim Cosmochim Acta 66(1):45–62

    Article  CAS  Google Scholar 

  • Fallon SJ, McCulloch MT, Alibert C (2003) Examining water temperature proxies in Porites corals from the Great Barrier Reef: a cross-shelf comparison. Coral Reefs 22(4):389–404

    Article  Google Scholar 

  • Fang LS, Chou YC (1992) Concentration of fulvic acid in the growth bands of hermatypic corals in relation to local precipitation. Coral Reefs 11(4):187–191

    Article  Google Scholar 

  • Felis T, Pätzold J, Loya Y et al (1998) Vertical water mass mixing and plankton blooms recorded in skeletal stable carbon isotopes of a Red Sea coral. J Geophys Res 103(C13):30730–30731

    Article  Google Scholar 

  • Felis T, Pätzold J, Loya Y (2003) Mean oxygen-isotope signatures in Porites spp. corals: inter-colony variability and correction for extension-rate effects. Coral Reefs 22(4):328–336

    Article  Google Scholar 

  • Ferrier-Pages C, Boisson F, Allemand D et al (2003) Kinetics of strontium uptake in the scleractinian coral Stylophora pistillata. In: The Joint Assembly of the EGS-AGU-EUG, vol 1

    Google Scholar 

  • Fisher R (2004) Nocturnal vertical distribution of late-stage larval coral reef fishes off the leeward side of Lizard Island, Great Barrier Reef, Australia. Bull Mar Sci 75(3):439–451

    Google Scholar 

  • Fleitmann D, Dunbar RB, McCulloch M et al (2007) East African soil erosion recorded in a 300 year old coral colony from Kenya. Geophys Res Lett 34(4):L04401

    Article  Google Scholar 

  • Gaetani GA, Cohen AL, Wang Z et al (2011) Rayleigh-based, multi-element coral thermometry: a biomineralization approach to developing climate proxies. Geochim Cosmochim Acta 75(7):1920–1932

    Article  CAS  Google Scholar 

  • Gagan MK, Chivas AR, Isdale PJ (1994) High-resolution isotopic records from corals using ocean temperature and mass-spawning chronometers. Earth Planet Sci Lett 121(3):549–558

    Article  Google Scholar 

  • Gagan MK, Chivas AR, Isdale PJ (1996) Timing coral-based climatic histories using 13C enrichments driven by synchronized spawning. Geology 24(11):1009–1012

    Article  CAS  Google Scholar 

  • Gagan MK, Ayliffe LK, Hopley D et al (1998) Temperature and surface-ocean water balance of the mid-Holocene tropical western Pacific. Science 279(5353):1014–1018

    Article  CAS  Google Scholar 

  • Gagan MK, Ayliffe LK, Beck JW et al (2000) New views of tropical paleoclimates from corals. Quat Sci Rev 19(1):45–64

    Article  Google Scholar 

  • Gaillardet J, Allègre CJ (1995) Boron isotopic compositions of corals: seawater or diagenesis record? Earth Planet Sci Lett 136(3):665–676

    Article  CAS  Google Scholar 

  • Gerringa LJA, De Baar HJW, Nolting RF et al (2001) The influence of salinity on the solubility of Zn and Cd sulphides in the Scheldt estuary. J Sea Res 46(3):201–211

    Article  CAS  Google Scholar 

  • Goreau TJ (1977) Coral skeletal chemistry: physiological and environmental regulation of stable isotopes and trace metals in Montastrea annularis. Proc R Soc Lond B Biol Sci 196(1124):291–315

    Article  CAS  Google Scholar 

  • Gratwicke B, Speight MR (2005) The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. J Fish Biol 66(3):650–667

    Article  Google Scholar 

  • Grove CA, Nagtegaal R, Zinke J et al (2010) River runoff reconstructions from novel spectral luminescence scanning of massive coral skeletons. Coral Reefs 29(3):579–591

    Article  Google Scholar 

  • Guilderson TP, Schrag DP (1999) Reliability of coral isotope records from Pacific warm pool: a comparison using age-optimized records. Paleoceanography 14(4):457–464

    Article  Google Scholar 

  • Guinotte JM, Buddemeier RW, McLaughlin CJ (2004) Estuarine corals: paradox or paradigm? In: Presented the ASLO/TOS ocean research conference, Honolulu, Hawaii

    Google Scholar 

  • Guzman HM, Cortes J (1989) Growth rates of eight species of scleractinian corals in the eastern Pacific (Costa Rica). Bull Mar Sci 44(3):1186–1194

    Google Scholar 

  • Guzman HM, Tudhope AW (1998) Seasonal variation in skeletal extension rate and stable isotopic (13C/12C and 18O/16O) composition in response to several environmental variables in the Caribbean reef coral Siderastrea siderea. Mar Ecol Prog Ser 166:109–118

    Article  Google Scholar 

  • Harland AD, Brown BE (1989) Metal tolerance in the scleractinian coral Porites lutea. Mar Pollut Bull 20(7):353–357

    Article  CAS  Google Scholar 

  • Hart SR, Cohen AL (1996) An ion probe study of annual cycles of Sr/Ca and other trace elements in corals. Geochim Cosmochim Acta 60(16):3075–3084

    Article  CAS  Google Scholar 

  • Heikoop JM (1997) Environmental signals in coral tissue and skeleton: examples from the Caribbean and Indo-Pacific. Ph.D. Thesis, McMaster University, Canada

    Google Scholar 

  • Heikoop JM, Dunn JJ, Risk MJ et al (2000) Separation of kinetic and metabolic isotope effects in carbon-13 records preserved in reef coral skeletons. Geochim Cosmochim Acta 64(6):975–987

    Article  CAS  Google Scholar 

  • Hendy EJ, Gagan MK, Lough JM (2003) Chronological control of coral records using luminescent lines and evidence for non-stationary ENSO teleconnections in northeast Australia. Holocene 13(2):187–199

    Article  Google Scholar 

  • Highsmith RC (1979) Coral growth rates and environmental control of density banding. J Exp Mar Biol Ecol 37(2):105–125

    Article  Google Scholar 

  • Hoeke RK, Jokiel PL, Buddemeier RW et al (2011) Projected changes to growth and mortality of Hawaiian corals over the next 100 years. PLoS One 6(3):e18038

    Article  CAS  Google Scholar 

  • Hönisch B, Hemming NG, Grottoli AG et al (2004) Assessing scleractinian corals as recorders for paleo-pH: empirical calibration and vital effects. Geochim Cosmochim Acta 68(18):3675–3685

    Article  CAS  Google Scholar 

  • Hubbard DK, Scaturo D (1985) Growth rates of seven species of scleractinian corals from Cane Bay and Salt River, St. Croix, USVI. Bull Mar Sci 36(2):325–338

    Google Scholar 

  • Hudson JH (1981) Growth rates in Montastraea annularis: a record of environmental change in Key Largo Coral Reef Marine Sanctuary, Florida. Bull Mar Sci 31(2):444–459

    Google Scholar 

  • Hudson JH, Hanson KJ, Halley RB et al (1994) Environmental implications of growth rate changes in Montastrea annularis: Biscayne National Park, Florida. Bull Mar Sci 54(3):647–669

    Google Scholar 

  • Hughes T (2003) Biogeographic comparisons of coral faunas. Océanis 29(3/4):291

    Google Scholar 

  • Huston MA (1985a) Patterns of species diversity on coral reefs. Annu Rev Ecol Syst 16:149–177

    Article  Google Scholar 

  • Huston MA (1985b) Variation in coral growth rates with depth at Discovery Bay, Jamaica. Coral Reefs 4(1):19–25

    Article  Google Scholar 

  • Inoue M, Hata A, Suzuki A et al (2006) Distribution and temporal changes of lead in the surface seawater in the western Pacific and adjacent seas derived from coral skeletons. Environ Pollut 144(3):1045–1052

    Article  CAS  Google Scholar 

  • Inoue M, Suzuki A, Nohara M et al (2007) Empirical assessment of coral Sr/Ca and Mg/Ca ratios as climate proxies using colonies grown at different temperatures. Geophys Res Lett 34(12):L12611

    Article  CAS  Google Scholar 

  • Isdale P (1984) Fluorescent bands in massive corals record centuries of coastal rainfall. Nature 310(5978):578–579

    Article  CAS  Google Scholar 

  • Isdale PJ, Stewart BJ, Tickle KS et al (1998) Palaeohydrological variation in a tropical river catchment: a reconstruction using fluorescent bands in corals of the Great Barrier Reef, Australia. Holocene 8(1):1–8

    Article  Google Scholar 

  • Jokiel PL (2008) Biology and ecological functioning of coral reefs in the main Hawaiian Islands. In: Riegl BM, Dodge RE (eds) Coral reefs of the USA. Springer, Dordrecht, pp 489–517

    Chapter  Google Scholar 

  • Jokiel PL, Hunter CL, Taguchi S et al (1993) Ecological impact of a fresh-water “reef kill” in Kaneohe Bay, Oahu, Hawaii. Coral Reefs 12(3):177–184

    Article  Google Scholar 

  • Juillet-Leclerc A, Gattuso JP, Montaggioni LF et al (1997) Seasonal variation of primary productivity and skeletal δ13C and δ18O in the zooxanthellate scleractinian coral Acropora formosa. Mar Ecol Prog Ser 157:109–117

    Article  Google Scholar 

  • Keeling CD, Bacastow RB, Tans PP (1980) Predicted shift in the 13C/12C ratio of atmospheric carbon dioxide. Geophys Res Lett 7(7):505–508

    Article  CAS  Google Scholar 

  • Kim ST, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61(16):3461–3475

    Article  CAS  Google Scholar 

  • Kleypas JA, Langdon C (2006) Coral reefs and changing seawater carbonate chemistry. Coast Estuar Stud 61:73–110

    Article  CAS  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D et al (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284(5411):118–120

    Article  CAS  Google Scholar 

  • Knoll AH, Bambach RK, Payne JL et al (2007) Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett 256(3):295–313

    Article  CAS  Google Scholar 

  • Knutson DW, Buddemeier RW, Smith SV (1972) Coral chronometers: seasonal growth bands in reef corals. Science 177(4045):270

    Article  CAS  Google Scholar 

  • Konishi K, Tanaka T, Sakanoue M (1981) Secular variation of radiocarbon concentration in seawater: sclerochronological approach. In: Paper presented at 4th International Coral Reef Symposium, Manila, Philippines

    Google Scholar 

  • Land LS, Lang JC, Barnes DJ (1975) Extension rate: a primary control on the isotopic composition of West Indian (Jamaican) scleractinian reef coral skeletons. Mar Biol 33(3):221–233

    Article  CAS  Google Scholar 

  • Le Bec N, Juillet-Leclerc A, Corrège T et al (2000) A coral δ18O record of ENSO driven sea surface salinity variability in Fiji (south-western tropical Pacific). Geophys Res Lett 27(23):3897–3900

    Article  Google Scholar 

  • Lewis SE, Brodie JE, McCulloch MT et al (2011) An assessment of an environmental gradient using coral geochemical records, Whitsunday Islands, Great Barrier Reef, Australia. Mar Pollut Bull 65(4):306–319

    Google Scholar 

  • Linsley BK, Messier RG, Dunbar RB (1999) Assessing between-colony oxygen isotope variability in the coral Porites lobata at Clipperton Atoll. Coral Reefs 18(1):13–27

    Article  Google Scholar 

  • Liu Y, Liu W, Peng Z et al (2009) Instability of seawater pH in the South China Sea during the mid-late Holocene: evidence from boron isotopic composition of corals. Geochim Cosmochim Acta 73(5):1264–1272

    Article  CAS  Google Scholar 

  • Lough JM (2004) A strategy to improve the contribution of coral data to high-resolution paleoclimatology. Palaeogeogr Palaeoclimatol Palaeoecol 204(1):115–143

    Article  Google Scholar 

  • Lough JM (2007) Tropical river flow and rainfall reconstructions from coral luminescence: Great Barrier Reef, Australia. Paleoceanography 22(2):PA2218

    Article  Google Scholar 

  • Lough JM (2011) Measured coral luminescence as a freshwater proxy: comparison with visual indices and a potential age artefact. Coral Reefs 30(1):169–182

    Article  Google Scholar 

  • Lough JM, Barnes DJ (1997) Several centuries of variation in skeletal extension, density and calcification in massive Porites colonies from the Great Barrier Reef: a proxy for seawater temperature and a background of variability against which to identify unnatural change. J Exp Mar Biol Ecol 211(1):29–67

    Article  Google Scholar 

  • Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245(2):225–243

    Article  CAS  Google Scholar 

  • Lough J, Barnes D, McAllister F (2002) Luminescent lines in corals from the Great Barrier Reef provide spatial and temporal records of reefs affected by land runoff. Coral Reefs 21(4):333–343

    Google Scholar 

  • Macintyre IG, Smith SV (1974) X-radiographic studies of skeletal development in coral colonies. In: Proceedings of the 2nd International Coral Reef Symposium, vol 2

    Google Scholar 

  • Macreadie PI, Allen K, Kelaher BP et al (2012) Paleoreconstruction of estuarine sediments reveal human-induced weakening of coastal carbon sinks. Glob Chang Biol 18:891–901

    Article  Google Scholar 

  • Marion GS, Dunbar RB, Mucciarone DA et al (2005) Coral skeletal δ15N reveals isotopic traces of an agricultural revolution. Mar Pollut Bull 50(9):931–944

    Article  CAS  Google Scholar 

  • Marshall JF, McCulloch MT (2002) An assessment of the Sr/Ca ratio in shallow water hermatypic corals as a proxy for sea surface temperature. Geochim Cosmochim Acta 66(18):3263–3280

    Article  CAS  Google Scholar 

  • Marubini F, Barnett H, Langdon C et al (2001) Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Mar Ecol Prog Ser 220:153–162

    Article  CAS  Google Scholar 

  • Mayorga E, Aufdenkampe AK, Masiello CA et al (2005) Young organic matter as a source of carbon dioxide outassing from Amazonian rivers. Nature 436(7050):538–541

    Article  CAS  Google Scholar 

  • McConnaughey TA (1986) Oxygen and carbon isotope disequilibria in Galapagos corals: isotopic thermometry and calcification physiology. PhD Dissertation, Washington University, Seattle

    Google Scholar 

  • McConnaughey TA (1989) 13C and18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim Cosmochim Acta 53(1):151–162

    Article  CAS  Google Scholar 

  • McConnaughey TA, Burdett J, Whelan JF et al (1997) Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochim Cosmochim Acta 61(3):611–622

    Article  CAS  Google Scholar 

  • McCulloch M, Fallon S, Wyndham T et al (2003) Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421(6924):727–730

    Article  CAS  Google Scholar 

  • Min G R, Edwards RL, Taylor F W, Recy J, Gallup CD, Beck JW (1995) Annual cycles of UCa in coral skeletons and UCa thermometry. Geochim Cosmochim Ac 59(10):2025–2042

    Google Scholar 

  • Mitsuguchi T, Matsumoto E, Uchida T (2003) Mg/Ca and Sr/Ca ratios of Porites coral skeleton: evaluation of the effect of skeletal growth rate. Coral Reefs 22(4):381–388

    Article  Google Scholar 

  • Moberg F, Nyström M, Kautsky N et al (1997) Effects of reduced salinity on the rates of photosynthesis and respiration in the hermatypic corals Porites lutea and Pocillopora damicornis. Mar Ecol Prog Ser 157:53–59

    Article  Google Scholar 

  • Moore WS, Krishnaswami S (1974) Correlation of X-radiography revealed banding in corals with radiometric growth rates. In: Proceedings of the 2nd International Coral Reef Symposium, vol 2

    Google Scholar 

  • Morton B (1989) Pollution of the coastal waters of Hong Kong. Mar Pollut Bull 20(7):310–318

    Article  CAS  Google Scholar 

  • Moyer RP (2008) Carbon isotopes (δ13C and Δ14C) and trace elements (barium, manganese, yttrium) in small mountainous rivers and coastal coral skeletons in Puerto Rico. Diss Abstr Int 69(12):253

    Google Scholar 

  • Moyer RP, Grottoli AG (2011) Coral skeletal carbon isotopes ((δ13C and Δ14C) record the delivery of terrestrial carbon to the coastal waters of Puerto Rico. Coral Reefs 30(3):791–802

    Article  Google Scholar 

  • Muthiga NA, Szmant AM (1987) The effects of salinity stress on the rates of aerobic respiration and photosynthesis in the hermatypic coral Siderastrea siderea. Biol Bull 173(3):539–551

    Article  Google Scholar 

  • Nozaki Y, Rye DM, Turekian KK et al (1978) A 200 year record of 13C and 14C variations in a Bermuda coral. Geophys Res Lett 5(10):825–828

    Article  CAS  Google Scholar 

  • Nyberg J (2002) Luminescence intensity in coral skeletons from Mona Island in the Caribbean Sea and its link to precipitation and wind speed. Philos Trans R Soc Lond A 360(1793):749–766

    Article  Google Scholar 

  • Nyberg J, Malmgren BA, Winter A et al (2007) Low Atlantic hurricane activity in the 1970s and 1980s compared to the past 270 years. Nature 447(7145):698–701

    Article  CAS  Google Scholar 

  • Omata T, Suzuki A, Sato T et al (2008) Effect of photosynthetic light dosage on carbon isotope composition in the coral skeleton: long-term culture of Porites spp. J Geophys Res 113(G2):G02014

    Article  CAS  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059):681–686

    Article  CAS  Google Scholar 

  • Pelejero C, Calvo E, McCulloch MT et al (2005) Preindustrial to modern interdecadal variability in coral reef pH. Science 309(5744):2204–2207

    Article  CAS  Google Scholar 

  • Perry CT, Smithers SG, Palmer SE et al (2008) 1200 year paleoecologial record of coral community development from the terrigenous inner shelf of the Great Barrier Reef. Geology 36(9):691–694

    Article  Google Scholar 

  • Pfeiffer M, Dullo WC, Eisenhauer A (2004) Variability of the Intertropical Convergence Zone recorded in coral isotopic records from the central Indian Ocean (Chagos Archipelago). Quat Res 61(3):245–255

    Article  CAS  Google Scholar 

  • Pfeiffer M, Timm O, Dullo WC et al (2006) Paired coral Sr/Ca and δ18O records from the Chagos Archipelago: late twentieth century warming affects rainfall variability in the tropical Indian Ocean. Geology 34(12):1069–1072

    Article  CAS  Google Scholar 

  • Pfeiffer M, Dullo WC, Zinke J et al (2009) Three monthly coral Sr/Ca records from the Chagos Archipelago covering the period of 1950–1995 AD: reproducibility and implications for quantitative reconstructions of sea surface temperature variations. Int J Earth Sci 98(1):53–66

    Article  CAS  Google Scholar 

  • Porter JW, Fitt WK, Spero HJ et al (1989) Bleaching in reef corals: physiological and stable isotopic responses. Proc Natl Acad Sci U S A 86(23):9342–9346

    Article  CAS  Google Scholar 

  • Prouty NG, Field ME, Stock JD et al (2010) Coral Ba/Ca records of sediment input to the fringing reef of the southshore of Moloka’i, Hawai’i over the last several decades. Mar Pollut Bull 60(10):1822–1835

    Article  CAS  Google Scholar 

  • Quinn TM, Crowley TJ, Taylor FW et al (1998) A multicentury stable isotope record from a New Caledonia coral: interannual and decadal sea surface temperature variability in the southwest Pacific since 1657 AD. Paleoceanography 13(4):412

    Article  Google Scholar 

  • Ramos AA, Inoue Y, Ohde S (2004) Metal contents in Porites corals: anthropogenic input of river run-off into a coral reef from an urbanized area, Okinawa. Mar Pollut Bull 48(3):281–294

    Article  CAS  Google Scholar 

  • Rau GH, Takahashi T, Des Marais DJ et al (1992) The relationship between δ13C of organic matter and [CO2 (aq)] in ocean surface water: data from a JGOFS site in the northeast Atlantic Ocean and a model. Geochim Cosmochim Acta 56(3):1413–1419

    Article  CAS  Google Scholar 

  • Raymond PA, Bauer JE (2001) Use of 14C and13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis. Org Geochem 32(4):469–485

    Article  CAS  Google Scholar 

  • Rein B (2004) Marine paleoclimatology—motivation, tools, and results. In: Fischer H, Kumke T, Lohmann G et al (eds) The climate in historical times. Springer, Berlin, pp 77–90

    Chapter  Google Scholar 

  • Ren L, Linsley BK, Wellington GM et al (2003) Deconvolving the δ18O seawater component from subseasonal coral δ18O and Sr/Ca at Rarotonga in the southwestern subtropical Pacific for the period 1726 to 1997. Geochim Cosmochim Acta 67(9):1609–1621

    Article  CAS  Google Scholar 

  • Reynaud S, Ferrier-Pages C, Sambrotto R et al (2002) Effect of feeding on the carbon and oxygen isotopic composition in the tissues and skeleton of the zooxanthellate coral Stylophora pistillata. Mar Ecol Prog Ser 238:81–89

    Article  Google Scholar 

  • Reynaud S, Hemming G, Juillet-Leclerc A et al (2004) Effect of pCO2 and temperature on the boron isotopic composition of the zooxanthellate coral Acropora sp. Coral Reefs 23(4):539–546

    Google Scholar 

  • Reynaud S, Ferrier-Pags C, Meibom A et al (2007) Light and temperature effects on Sr/Ca and Mg/Ca ratios in the scleractinian coral Acropora sp. Geochim Cosmochim Acta 71(2):354–362

    Article  CAS  Google Scholar 

  • Reynaud-Vaganay S, Gattuso JP, Cuif JP et al (1999) A novel culture technique for scleractinian corals: application to investigate changes in skeletal δ18O as a function of temperature. Mar Ecol Prog Ser 180:121–130

    Article  CAS  Google Scholar 

  • Richmond RH, Wolanski E, Golbuu Y, et al. (2004) Factors affecting survival, resilience and recovery of coral reefs. In: Presented at the ASLO/TOS Ocean Research Conference, Honolulu, Hawaii

    Google Scholar 

  • Richmond RH, Rongo T, Golbuu Y et al (2007) Watersheds and coral reefs: conservation science, policy, and implementation. Bioscience 57(7):598–607

    Article  Google Scholar 

  • Rodgers KUS, Kido MH, Jokiel PL et al (2012) Use of integrated landscape indicators to evaluate the health of linked watersheds and coral reef environments in the Hawaiian Islands. Environ Manag 50(1):21–30

    Article  Google Scholar 

  • Roniewicz E, Stolarski J (1999) Evolutionary trends in the epithecate scleractinian corals. Acta Palaeontol Pol 44(2):131–166

    Google Scholar 

  • Rosenheim BE, Swart PK, Thorrold SR et al (2004) High-resolution Sr/Ca records in sclerosponges calibrated to temperature in situ. Geology 32(2):145–148

    Article  CAS  Google Scholar 

  • Saenger C, Affek HP, Felis T et al (2012) Carbonate clumped isotope variability in shallow water corals: temperature dependence and growth-related vital effects. Geochim Cosmochim Acta 99:224–242

    Article  CAS  Google Scholar 

  • Scoffin TP, Tudhope AW, Brown BE et al (1992) Patterns and possible environmental controls of skeletogenesis of Porites lutea, South Thailand. Coral Reefs 11(1):1–11

    Article  Google Scholar 

  • Scott PJB (1990) Chronic pollution recorded in coral skeletons in Hong Kong. J Exp Mar Biol Ecol 139(1):51–64

    Article  Google Scholar 

  • Shen GT, Boyle EA (1987) Lead in corals: reconstruction of historical industrial fluxes to the surface ocean. Earth Planet Sci Lett 82(3):289–304

    Article  CAS  Google Scholar 

  • Shen GT, Boyle EA (1988) Determination of lead, cadmium and other trace metals in annually-banded corals. Chem Geol 67(1):47–62

    Article  CAS  Google Scholar 

  • Shen GT, Boyle EA, Lea DW (1987) Cadmium in corals as a tracer of historical upwelling and industrial fallout. Nature 328:794–796

    Article  CAS  Google Scholar 

  • Sherwood OA, Lapointe BE, Risk MJ et al (2010) Nitrogen isotopic records of terrestrial pollution encoded in Floridian and Bahamian gorgonian corals. Environ Sci Technol 44(3):874–880

    Article  CAS  Google Scholar 

  • Shirai K, Sowa K, Watanabe T et al (2012) Visualization of sub-daily skeletal growth patterns in massive Porites corals grown in Sr-enriched seawater. J Struct Biol 180(1):47–56

    Article  Google Scholar 

  • Sholkovitz ER (1978) The flocculation of dissolved Fe, Mn, Al, Cu, Ni, Co and Cd during estuarine mixing. Earth Planet Sci Lett 41(1):77–86

    Article  CAS  Google Scholar 

  • Simkiss K (1964) Phosphates as crystal poisons of calcification. Biol Rev 39(4):487–504

    Article  CAS  Google Scholar 

  • Smith SV (1983) Coral reef calcification. In: Barnes DJ (ed) Perspectives in coral reefs. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Smith TJ III, Hudson HJ, Robblee MB et al (1989) Freshwater flow from the Everglades to Florida Bay: a historical reconstruction based on fluorescent banding in the coral Solenastrea bournoni. Bull Mar Sci 44(1):274–282

    Google Scholar 

  • Sorokin YI (1992) Phosphorus metabolism in coral reef communities: exchange between the water column and bottom biotopes. Hydrobiologia 242(2):105–114

    Article  CAS  Google Scholar 

  • Steimle FW, Zetlin C (2000) Reef habitats in the middle Atlantic bight: abundance, distribution, associated biological communities, and fishery resource use. Mar Fish Rev 62(2):24–42

    Google Scholar 

  • Sun Y, Sun M, Lee T et al (2005) Influence of seawater Sr content on coral Sr/Ca and Sr thermometry. Coral Reefs 24(1):23–29

    Article  Google Scholar 

  • Susic M, Isdale P (1989) A model for humic acid carbon export from a tropical river system using coral skeletal fluorescence. In: Hydraulic and environmental modeling of Coastal, Estuarine and River Waters. University of Bradford, UK

    Google Scholar 

  • Suzuki A, Hibino K, Iwase A et al (2005) Intercolony variability of skeletal oxygen and carbon isotope signatures of cultured Porites corals: temperature-controlled experiments. Geochim Cosmochim Acta 69(18):4453–4462

    Article  CAS  Google Scholar 

  • Swart PK, Leder JJ, Szmant AM et al (1996) The origin of variations in the isotopic record of scleractinian corals: II. Carbon. Geochim Cosmochim Acta 60(15):2871–2885

    Article  CAS  Google Scholar 

  • Swart PK, Greer L, Rosenheim BE et al (2010) The 13C Suess effect in scleractinian corals mirror changes in the anthropogenic CO2 inventory of the surface oceans. L05604 37(5)

    Google Scholar 

  • Tanzil JT, Brown BE, Tudhope AW et al (2009) Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984 and 2005. Coral Reefs 28(2):519–528

    Article  Google Scholar 

  • Tsuyoshi Watanabe Ã, Juillet-Leclerc A, Cuif JP et al (2006) Recent advances in coral biomineralization with implications for paleo-climatology: a brief overview. In: Global climate change and response of carbon cycle in the Equatorial Pacific and Indian Oceans and adjacent landmasses, vol 73. p 239

    Google Scholar 

  • Tudhope AW, Lea DW, Shimmield GB et al (1996) Monsoon climate and Arabian Sea coastal upwelling recorded in massive corals from southern Oman. Palaios 11(4):347–361

    Article  Google Scholar 

  • Urey HC, Lowenstam HA, Epstein S et al (1951) Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States. Geol Soc Am Bull 62(4):399–416

    Article  CAS  Google Scholar 

  • Vermeij MJA (2006) Early life-history dynamics of Caribbean coral species on artificial substratum: the importance of competition, growth and variation in life-history strategy. Coral Reefs 25(1):59–71

    Article  Google Scholar 

  • Veron JEN (2000) Corals of the world (vol. 1). In: Stafford-Smith M (ed) Corals of the world. Australian Institute of Marine Science, Townsville, Australia

    Google Scholar 

  • Veron JEN (2008) Mass extinctions and ocean acidification: biological constraints on geological dilemmas. Coral Reefs 27(3):459–472

    Article  Google Scholar 

  • Veron JEN, Minchin PR (1992) Correlations between sea surface temperature, circulation patterns and the distribution of hermatypic corals of Japan. Cont Shelf Res 12(7):835–857

    Article  Google Scholar 

  • Watanabe T, Winter A, Oba T et al (2002) Evaluation of the fidelity of isotope records as an environmental proxy in the coral Montastraea. Coral Reefs 21(2):169–178

    CAS  Google Scholar 

  • Weber JN, Woodhead PMJ (1970) Carbon and oxygen isotope fractionation in the skeletal carbonate of reef-building corals. Chem Geol 6:93–117

    Article  CAS  Google Scholar 

  • Weber JN, Woodhead PMJ (1972) Stable isotoperatio variations in non-scleractinian coelenterate carbonates as a function of temperature. Mar Biol 15(4):293–297

    Article  CAS  Google Scholar 

  • Weber JN, Deines P, White EW et al (1975) Seasonal high and low density bands in reef coral skeletons. Nature 255:697–698

    Article  CAS  Google Scholar 

  • Weber JN, Deines P, Weber P et al (1976) Depth related changes in the 13C/12C ratio of skeletal carbonate deposited by the Caribbean reef-frame building coral Montastrea annularis: further implications of a model for stable isotope fractionation by scleractinian corals. Geochim Cosmochim Acta 40(1):31–39

    Article  CAS  Google Scholar 

  • Wellington GM, Dunbar RB, Merlen G (1996) Calibration of stable oxygen isotope signatures in Galapagos corals. Paleoceanography 11(4):467–480

    Article  Google Scholar 

  • Wells JW (1957) Corals. Geol Soc Am Mem 67:773–782

    Article  Google Scholar 

  • Worum FP, Carricart-Ganivet JP, Benson L, Golicher D (2007) Simulation and observations of annual density banding in skeletons of Montastraea (Cnidaria: Scleractinia) growing under thermal stress associated with ocean warming. Limnol Oceanogr 52(5):2317–2323

    Google Scholar 

  • Zeebe RE (2005) Stable boron isotope fractionation between dissolved B(OH)3 and B(OH)4 . Geochim Cosmochim Acta 69(11):2753–2766

    Article  CAS  Google Scholar 

  • Zinke J, Dullo WC, Heiss GA et al (2004) ENSO and Indian Ocean subtropical dipole variability is recorded in a coral record off southwest Madagascar for the period 1659 to 1995. Earth Planet Sci Lett 228(1):177–194

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisca Staines-Urías .

Editor information

Editors and Affiliations

Appendix

Appendix

Geographical location of coral reefs discussed in the text.

figure a

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Staines-Urías, F. (2017). Corals in Estuarine Environments: Their Response to Environmental Changes and Application in Reconstructing Past Environmental Variability. In: Weckström, K., Saunders, K., Gell, P., Skilbeck, C. (eds) Applications of Paleoenvironmental Techniques in Estuarine Studies. Developments in Paleoenvironmental Research, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0990-1_16

Download citation

Publish with us

Policies and ethics