Skip to main content

Application of Molluscan Analyses to the Reconstruction of Past Environmental Conditions in Estuaries

  • Chapter
  • First Online:

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 20))

Abstract

Molluscs possess a number of attributes that make them an excellent source of past environmental conditions in estuaries: they are common in estuarine environments; they typically have hard shells and are usually well preserved in sediments; they are relatively easy to detect in the environment; they have limited mobility as adults; they grow by incremental addition of layers to their shells; and they are found in all the major environments surrounding estuaries—terrestrial, freshwater, brackish, and marine waters. Analysis of molluscan assemblages can contribute information about past changes in sea level, climate, land use patterns, anthropogenic alterations, salinity, and other parameters of the benthic habitat and water chemistry within the estuary. High-resolution (from less than a day to annual) records of changes in environmental parameters can be obtained by analyzing the incremental growth layers in mollusc shells (sclerochronology). The shell layers retain information on changes in water temperature, salinity, seasonality, climate, river discharge, productivity, pollution and human activity. Isotopic analyses of mollusc shell growth layers can be problematic in estuaries where water temperatures and isotopic ratios can vary simultaneously; however, methods are being developed to overcome these problems. In addition to sclerochronology, molluscs are important to Holocene and Pleistocene estuarine palaeoenvironmental studies because of their use in the development of age models through radiocarbon dating, amino acid racemization, uranium-thorium series dating, and electron spin resonance (ESR) dating.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott RT (1948) Mollusks and medicine in World War II. Smithsonian report for 1947. Smithsonian Institution, Washington, pp 325–338

    Google Scholar 

  • Alcala-Herrera JA, Jacob JS, Castillo MLM et al (1994) Holocene palaeosalinity in a Maya wetland, Belize, inferred from the microfaunal assemblage. Quat Res 41:121–130

    Article  Google Scholar 

  • Allmon WD (1993) Environment and mode of deposition of the densely fossiliferous Pinecrest Sand (Pliocene of Florida): implications for the role of biological productivity in shell bed formation. Palaios 8:183–201

    Article  Google Scholar 

  • Andreasson FP, Schmitz B, Jönsson E (1999) Surface-water seasonality from stable isotope profiles Littorina littorea shells: implications for paleoenvironmental reconstructions of coastal areas. Palaios 14:273–281

    Article  Google Scholar 

  • Andrus CFT (2011) Shell midden sclerochronology. Quat Sci Rev 30:2892–2905

    Article  Google Scholar 

  • Andrus CFT, Thompson VD (2012) Determining the habitats of mollusk collection at the Sapelo Island shell ring complex, Georgia, USA using oxygen isotope sclerochronology. J Archaeol Sci 39:215–228

    Article  Google Scholar 

  • Ansell AD (1968) The rate of growth of the hard clam Mercenaria mercenaria (L.) throughout the geographical range. Conseil Permanent International pour l’Exploration de la Mer. J Conseil 31:364–409

    Article  Google Scholar 

  • Armenteros M, Díaz-Asencio M, Fernández-Garcés R et al (2012) Historical changes of sediments and mollusk assemblages in the Gulf of Batabanó (Caribbean Sea) in the twentieth century. Environ Monit Assess 184:4709–4723

    Article  CAS  Google Scholar 

  • Arnold WS, Bert TM, Quitmyer IR et al (1998) Contemporaneous deposition of annual growth bands in Mercenaria mercenaria (Linnaeus), Mercenaria campechiensis (Gmelin), and their natural hybrid forms. J Exp Mar Biol Ecol 223:93–109

    Article  Google Scholar 

  • Arthur MA, Williams DF, Jones DS (1983) Seasonal temperature-salinity changes and thermocline development in the mid-Atlantic Bight as recorded by the isotopic composition of bivalves. Geology 11:655–659

    Article  Google Scholar 

  • Bailey GN, Deith MR, Shackleton NJ (1983) Oxygen isotope analysis and seasonality determinations: limits and potential of a new technique. Am Antiq 48:390–398

    Article  Google Scholar 

  • Björck S (1995) A review of the history of the Baltic Sea, 13.0-8.0 ka BP. Quat Int 27:19–40

    Article  Google Scholar 

  • Blackwelder BW (1981) Late Cenozoic stages and molluscan zones of the U.S. middle Atlantic Coastal Plain. J Paleontol 55(Suppl 5):1–114

    Google Scholar 

  • Borrego J, Ruiz F, Gonzalez-Regalado ML et al (1999) The Holocene transgression into the estuarine central basin of the Odiel River mouth (Cadiz gulf, SW, Spain): lithology and faunal assemblages. Quat Sci Rev 18:769–788

    Article  Google Scholar 

  • Boski T, Moura D, Veiga-Pires C et al (2002) Postglacial sea-level rise and sedimentary response in the Guadiana Estuary, Portugal/Spain border. Sediment Geol 150:103–122

    Article  Google Scholar 

  • Boucot A (1953) Life and death assemblages among fossils. Am J Sci 251:25–40

    Article  Google Scholar 

  • Brett CE, Boucot AJ, Jones B (1993) Absolute depths of Silurian benthic assemblages. Lethaia 26:25–40

    Article  Google Scholar 

  • Brewster-Wingard GL, Stone JR, Holmes CW (2001) Molluscan faunal distribution in Florida Bay, past and present: an integration of down-core and modern data. In: Wardlaw BR (ed) Paleoecological studies of south Florida. Bull Am Paleo, vol 361. pp 199–232

    Google Scholar 

  • Brusca RC, Brusca GJ (2003) Chapter 20: Phylum Mollusca. Invertebrates, 2nd edn. Sinauer Associates Inc., Sunderland, pp 701–769

    Google Scholar 

  • Buddemeier RW, Maragos JE, Knutson DW (1974) Radiographic studies of reef coral exoskeletons: rates and patterns of coral growth. J Exp Mar Biol Ecol 14:179–199

    Article  Google Scholar 

  • Burke L, Kura Y, Kassem K et al (2001) Pilot analysis of global ecosystems: coastal ecosystems. World Resources Institute, Washington. http://www.wri.org/search/site/Pilot%20Analysis%20Coastal. Accessed 14 Mar 2014

  • Busschers FS, Weerts HJT, Wallinga J et al (2005) Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine-Meuse deposits—fluvial response to climate change, sea-level fluctuation and glaciations. Neth J Geosci 84:25–41

    Google Scholar 

  • Butler PG, Richardson CA, Scourse JD et al (2010) Marine climate in the Irish Sea: analysis of a 489-year marine master chronology derived from growth increments in the shell of the clam Arctica islandica. Quat Sci Rev 29:1614–1632

    Article  Google Scholar 

  • Butler PG, Wanamaker AD Jr, Scourse JD et al (2011) Long-term stability of δ13C with respect to biological age in the aragonite shell of mature specimens of the bivalve mollusk Arctica islandica. Palaeogeogr Palaeoclimatol Palaeoecol 302:21–30

    Article  Google Scholar 

  • Butler PG, Wanamaker AD Jr, Scourse JD et al (2013) Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica. Palaeogeogr Palaeoclimatol Palaeoecol 373:141–151

    Article  Google Scholar 

  • Carré M, Bentaleb I, Blamart D et al (2005) Stable isotopes and sclerochronology of the bivalve Mesodesma donacium: potential application to Peruvian paleoceanographic reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 228:4–25

    Article  Google Scholar 

  • Carré M, Klaric L, Lavallée D et al (2009) Insights into early Holocene hunter-gatherer mobility on the Peruvian Southern Coast from mollusk gathering seasonality. J Archaeol Sci 36:1173–1178

    Article  Google Scholar 

  • Cerrato RM, Locicero PV, Goodbred SL (2013) Response of mollusc assemblages to climate variability and anthropogenic activities: a 4000-year record from a shallow bar-built lagoon system. Glob Change Biol 19:3024–3036

    Article  Google Scholar 

  • Cohen AL, Tyson PD (1995) Sea-surface temperature fluctuations during the Holocene off the south coast of Africa: implications for terrestrial climate and rainfall. Holocene 5:304–312

    Article  Google Scholar 

  • Conrad TA (1838) Fossils of the medial Tertiary. Judah Dobson, Philadelphia

    Google Scholar 

  • Cronin TM (1999) Principles of paleoclimatology. Columbia University Press, New York

    Google Scholar 

  • Cronin T, Vogt PR, Willard DA et al (2007) Rapid sea level rise and ice sheet response to 8,200-year climate event. Geophys Res Lett 34:L20603. doi:10.1029/2007GL031318

    Article  Google Scholar 

  • Curtis JH, Hodell DA, Brenner M (1996) Climate variability on the Yucatan Peninsula (Mexico) during the past 3500 years, and implications for Maya cultural evolution. Quat Res 46:37–47

    Article  CAS  Google Scholar 

  • D’Costa DM, Grindrod J, Ogden R (1993) Preliminary environmental reconstructions from late Quaternary pollen and mollusc assemblages at Egg Lagoon, King Island, Bass Strait. Aust J Ecol 18:351–366

    Article  Google Scholar 

  • Dame RF (1996) Ecology of marine bivalves: an ecosystem approach. CRC, Boca Raton

    Book  Google Scholar 

  • De Geer G (1890) Om Skandianviens nivåförändringar under qvartärtiden. Geol Fören Stock För 12:61–110

    Article  Google Scholar 

  • Dettman DL, Flessa KW, Roopnarine PD et al (2004) The use of oxygen isotope variation in shells of estuarine mollusks as a quantitative record of seasonal and annual Colorado River discharge. Geochim Cosmochim Acta 68:1253–1263

    Article  CAS  Google Scholar 

  • Dettman DL, Reische AK, Lohmann KC (1999) Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (Unionidae). Geochim Cosmochim Acta 63:1049–1057

    Article  CAS  Google Scholar 

  • Dominici S, Kowalke T (2007) Depositional dynamics and the record of ecosystem stability: early Eocene faunal gradients in the Pyrenean foreland, Spain. Palaios 22:268–284

    Article  Google Scholar 

  • Dunca E, Schöne BR, Mutvei H (2005) Freshwater bivalves tell of past climates: but how clearly do shells from polluted rivers speak. Palaeogeogr Palaeoclimatol Palaeoecol 228:43–45

    Article  Google Scholar 

  • Eagle RA, Eiler JM, Tripati AK et al (2013) The influence of temperature and seawater carbonate saturation state on 13C–18O bond ordering in bivalve mollusks. Biogeosciences 10:4591–4606

    Article  Google Scholar 

  • Edgar GJ, Samson CR (2004) Catastrophic decline in mollusc diversity in eastern Tasmania and its concurrence with shellfish fisheries. Conserv Biol 18:1579–1588

    Article  Google Scholar 

  • Elliot M, deMenocal PB, Linsley BK et al (2003) Environmental controls on the stable isotopic composition of Mercenaria mercenaria: potential application to paleoenvironmental studies. Geochem Geophys Geosyst 4:1–16. doi:10.5194/bg-10-4591-2013

    Article  CAS  Google Scholar 

  • Espinosa M, De Francesco C, Isla F (2003) Paleoenvironmental reconstruction of Holocene coastal deposits from the southeastern Buenos Aires Province, Argentina. J Paleolimnol 29:49–60

    Article  Google Scholar 

  • Fenger T, Surge D, Schone BR, et al (2007) Sclerochronology and geochemical variation in limpet shells (Patella vulgata): a new archive to reconstruct coastal sea surface temperature. Geochem Geophys Geosyst 8. doi: 10.1029/2006GC001488

  • Freitas P, Clarke LJ, Kennedy H, et al (2005) Mg/Ca, Sr/Ca, and stable-isotope (δ18O and δ13C) ratio profiles from the fan mussel Pinna nobilis: seasonal records and temperature relationships. Geochem Geophys Geosyst 6. doi:10.1029/2004GC000872

  • Fürsich FT, Kauffman EG (1983) Paleoecology of marginal marine sedimentary cycles in the Albian Bear River Formation of southwestern Wyoming. Palaeontology 27:501–536

    Google Scholar 

  • Gillikin DP, Lorrain A, Meng L et al (2007) A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells. Geochim Cosmochim Acta 71:2936–2946

    Article  CAS  Google Scholar 

  • Goldberg ED (1986) Uranium series disequilibrium techniques for dating Quaternary sediments. In: Hurford AJ, Jäger E, Ten Cate JAM (eds) Dating young sediments, proceedings of workshop, Beijing, China, 10–20 September 1985. CCOP Technical Publication 16. pp 47–58

    Google Scholar 

  • Goodfriend GA, Meyer VR (1991) A comparative study of kinetics of amino acid racemization/epimerization in fossil and modern mollusk shells. Geochim Cosmochim Acta 55:3355–3367

    Article  CAS  Google Scholar 

  • Goodwin DH, Cohen AN, Roopnarine PD (2010) Forensics on the half shell: a sclerochronological investigation of a modern biological invasion in San Francisco Bay, United States. Palaios 25:742–753

    Article  Google Scholar 

  • Gruet Y, Sauriau P-G (1994) Paleoenvironments Holocenes du Marais Poitevin (littoral Atlantique, France): reconstitution d’apres les peuplements malacologiques. Quaternaire 5:85–94

    Article  Google Scholar 

  • Gutiérrez JL, Jones CG, Strayer DL et al (2003) Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101:79–90

    Article  Google Scholar 

  • Gutiérrez-Zugasti I (2011) Coastal resource intensification across the Pleistocene–Holocene transition in Northern Spain: evidence from shell size and age distributions of marine gastropods. Quat Int 244:54–66

    Article  Google Scholar 

  • Hallmann N, Burchell M, Schöne BR et al (2009) High-resolution sclerochronological analysis of the bivalve mollusk Saxidomus gigantea from Alaska and British Columbia: techniques for revealing environmental archives and archaeological seasonality. J Archaeol Sci 36:2353–2364

    Article  Google Scholar 

  • Hallmann N, Schöne BR, Strom A et al (2008) An intractable climate archive—sclerochronological and shell oxygen isotope analyses of the Pacific geoduck, Panopea abrupta (bivalve mollusk) from Protection Island (Washington State, USA). Palaeogeogr Palaeoclimatol Palaeoecol 269:115–126

    Article  Google Scholar 

  • Harding JM, Spero HJ, Mann R et al (2010) Reconstructing early 17th century estuarine drought conditions from Jamestown oysters. Proc Natl Acad Sci U S A 107:10549–10554

    Article  CAS  Google Scholar 

  • Heier-Nielsen S, Heinemeier J, Nielsen HL et al (1995) Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37:875–882

    Article  CAS  Google Scholar 

  • Henry KM, Cerrato RM (2007) The annual macroscopic growth pattern of the northern quahog [=hard clam, Mercenaria mercenaria (L.)], in Narragansett Bay, Rhode Island. J Shellfish Res 26:985–993

    Article  Google Scholar 

  • Hillaire-Marcel C, Gariépy C, Ghaleb B et al (1996) U-series measurements in Tyrrhenian deposits from Mallorca—further evidence for two last-interglacial high sea level in the Balearic Islands. Quat Sci Rev 15:53–62

    Article  Google Scholar 

  • Hudson JD (1963) The recognition of salinity-controlled mollusk assemblages in the Great Estuarine Series (Middle Jurassic) of the Inner Hebrides. Palaeontology 6:318–326

    Google Scholar 

  • Hudson JD (1990) Salinity from faunal analysis and geochemistry. In: Briggs DEG, Crowther PR (eds) Palaeobiology: a synthesis. Blackwell Scientific, Oxford, pp 406–408

    Google Scholar 

  • Huspeni TC, Hechinger RF, Lafferty KD (2005) Trematode parasites as estuarine indicators: opportunities, applications, and comparisons with conventional community approaches. In: Bortone SA (ed) Estuarine indicators. CRC, Boca Raton, pp 297–314

    Google Scholar 

  • Hutton J (1788) Theory of the Earth; or an investigation of the laws observable in the composition, dissolution, and restoration of land upon the globe. Trans R Soc Edinb Earth Sci 1(2):209–304

    Article  Google Scholar 

  • Ingram BL, Ingle JC, Conrad ME (1996) A 2000 yr record of Sacramento-San Joaquin river inflow to San Francisco Bay estuary, California. Geology 24:331–334

    Article  CAS  Google Scholar 

  • ITIS (Integrated Taxonomic Information System). Phylum Mollusca. http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=69458 Accessed 20 Dec 2013

  • Ivanova EV, Murdmaa IO, Chepalyga AL et al (2007) Holocene sea-level oscillations and environmental changes on the Eastern Black Sea shelf. Palaeogeogr Palaeoclimatol Palaeoecol 246:228–259

    Article  Google Scholar 

  • Ivany LC, Lohmann KC, Hasiuk F et al (2008) Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. Bull Geol Soc Am 120:659–678

    Article  CAS  Google Scholar 

  • Ivany LC, Wilkinson BH, Lohmann KC et al (2004) Intra-annual isotopic variation in Venericardia bivalves: implications for early Eocene temperature, seasonality, and salinity on the U.S. Gulf Coast. J Sediment Res 74:7–19

    Article  CAS  Google Scholar 

  • Jones DS, Allmon WD (1995) Records of upwelling, seasonality and growth in stable-isotope profiles from Pliocene mollusk shells from Florida. Lethaia 28:61–74

    Article  Google Scholar 

  • Jones DS, Arthur MA, Allard DJ (1989) Sclerochronological records of temperature and growth from shells of Mercenaria mercenaria from Narragansett Bay, Rhode Island. Mar Biol 102:225–234

    Article  Google Scholar 

  • Jones DS, Quitmyer IR, Arnold WS et al (1990) Annual shell banding, age, and growth rate of hard clams (Mercenaria spp.) from Florida. J Shellfish Res 9:215–225

    Google Scholar 

  • Jones DS, Quitmyer IR (1996) Marking time with bivalve shells: oxygen isotopes and season of annual increment formation. Palaios 11:340–346

    Article  Google Scholar 

  • Kauffman EG (1969) Cretaceous marine cycles of the Western Interior. Mt Geol 6:227–245

    Google Scholar 

  • Kaufman DS, Ager TA, Anderson NJ et al (2004) Holocene thermal maximum in the western Arctic (0-180°W). Quat Sci Rev 23:529–560

    Article  Google Scholar 

  • Kennedy WJ, Cobban WA (1977) The role of ammonites in biostratigraphy. In: Kauffman EG, Hazel JE (eds) Concepts and methods in biostratigraphy. Dowden, Hutchinson, and Ross, Stroudsburg, pp 309–320

    Google Scholar 

  • Kennish MJ (1992) Ecology of estuaries: anthropogenic effects. CRC, Boca Raton

    Google Scholar 

  • Kidwell SM (2001) Abundance in marine death assemblages. Science 294:1091–1094

    Article  CAS  Google Scholar 

  • Kidwell SM (2002) Mesh-size effects on the ecological fidelity of death assemblages: a meta-analysis of molluscan live-dead studies. Geobios Mem Spec 24:107–119

    Article  Google Scholar 

  • Kidwell SM, Bosence DWJ (1991) Taphonomy and time-averaging of marine shelly faunas. In: Allison PA, Briggs DEG (eds) Taphonomy: releasing the data locked in the fossil record. Plenum, New York, pp 211–290

    Chapter  Google Scholar 

  • Kirby MX, Soniat TM, Spero HJ (1998) Stable isotope sclerochronology of Pleistocene and recent oyster shells (Crassostrea virginica). Palaios 13:560–569

    Article  Google Scholar 

  • Kowalewski M (2001) Applied marine paleoecology: an oxymoron or reality? Palaios 16:309–310

    Article  Google Scholar 

  • Kowalewski M, Avila Serrano GE, Flessa KW et al (2000) Dead delta’s former productivity: two trillion shells at the mouth of the Colorado River. Geology 28(12):1059–1062

    Article  Google Scholar 

  • Kowalewski M, Goodfriend GA, Flessa KW (1998) High-resolution estimates of temporal mixing within shell beds: the evils and virtues of time-averaging. Paleobiology 24:287–304

    Google Scholar 

  • Kowalewski M, Gurs K, Nebelsick JH et al (2002) Multivariate hierarchial analyses of Miocene mollusk assemblages of Europe: paleogeographic, paleoecological, and biostratigraphic implications. Geol Soc Am Bull 114(2):239–256

    Article  Google Scholar 

  • Krantz D (1990) Mollusk-isotope records of Plio-Pleistocene marine paleoclimate, U.S. Middle Atlantic Coastal Plain. Palaios 5:317–335

    Article  Google Scholar 

  • Lamarck JB (1802) Memoires sur les fossils des environs de Paris, comprenant la détermination des espèces qui appartiennent aux animaux marins sans vertèbres, et dont la plupart sont figures dans la collection des vélins du Muséum. Ann Mus Natl Hist Nat 1:299–312

    Google Scholar 

  • Lazareth CE, Le Cornec F, Candaudap F et al (2013) Trace element heterogeneity along isochronous growth layers in bivalve shell: consequences for environmental reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 373:39–49

    Article  Google Scholar 

  • Lloyd RM (1964) Variations in the oxygen and carbon isotope ratios of Florida Bay mollusks and their environmental significance. J Geol 72:84–111

    Article  CAS  Google Scholar 

  • Lockwood R, Chastant LR (2006) Quantifying taphonomic bias of compositional fidelity, species richness, and rank abundance in molluscan death assemblages from the upper Chesapeake Bay. Palaios 21:376–383

    Article  Google Scholar 

  • Lohmann G, Schöne BR (2013) Climate signatures on decadal to interdecadal time scales as obtained from mollusk shells (Arctica islandica) from Iceland. Palaeogeogr Palaeoclimatol Palaeoecol 373:152–162

    Article  Google Scholar 

  • Lowe JJ, Walker MJC (1997) Reconstructing Quaternary environments. Longman Group, Essex

    Google Scholar 

  • Lyell C (1830–1833) Principles of geology, vols 1–3. John Murray, London

    Google Scholar 

  • Lyons WG (1996) An assessment of mollusks as indicators of environmental change in Florida Bay. In: Programs and abstracts Florida Bay science conference, Key Largo, FL, 10–12 Dec 1996. pp 52–54

    Google Scholar 

  • Lyons WG (1998) Florida Bay molluscan community dynamics: shifting zones in a changing world. In: Programs and abstracts Florida Bay science conference, University of Miami, Miami, FL, 12–14 May 1998

    Google Scholar 

  • Marchitto TA, Jones GA, Goodfriend GA et al (2000) Precise temporal correlation of Holocene mollusk shells using sclerochronology. Quat Res 53:236–246

    Article  CAS  Google Scholar 

  • Marquardt WH, Walker KJ (2013) The Pineland site complex: an environmental and cultural history. In: Marquardt WH and Walker KJ (eds) The archaeology of Pineland: a coastal southwest Florida site complex, A.D. 50-1700. Institute of Archaeology and Paleoenvironmental Studies, Monograph 4. University of Florida, Gainesville, pp 793–920

    Google Scholar 

  • Marshall FE, Wingard GL (2012) Florida Bay salinity and Everglades wetland hydrology circa 1900 CE: a compilation of paleoecology-based statistical modeling analyses. US Geological Survey Open-File Report 2012-1054

    Google Scholar 

  • Marshall FE, Wingard GL, Pitts PA (2009) A simulation of historic hydrology and salinity in Everglades National Park: coupling paleoecologic assemblage data with regression models. Estuar Coast 32:37–53

    Article  Google Scholar 

  • Marshall FE, Wingard GL, Pitts PA (2014) Estimates of natural salinity and hydrology in a subtropical estuarine ecosystem: implications for greater Everglades restoration. Estuar Coast 37:1449–1466

    Article  CAS  Google Scholar 

  • Martínez S, Mahiques MM, Burone L (2013) Mollusks as indicators of historical changes in estuarine-lagoonal system (Cananéia-Iguape, SE Brazil). Holocene 23(6):888–897

    Article  Google Scholar 

  • McConnaughey T, Gillikin D (2008) Carbon isotopes in mollusk shell carbonates. Geo-Mar Lett 28:287–299

    Article  CAS  Google Scholar 

  • Milner N (2001) At the cutting edge: using thin sectioning to determine season of death of the European oyster, Ostrea edulis. J Archaeol Sci 28:861–873

    Article  Google Scholar 

  • Milner N, Barrett J, Welsh J (2007) Marine resource intensification in Viking Age Europe: the molluscan evidence from Quoygrew, Orkney. J Archaeol Sci 34:1461–1472

    Article  Google Scholar 

  • Mook WG, Vogel JC (1968) Isotopic equilibrium between shells and their environment. Science 159:874–875

    Article  CAS  Google Scholar 

  • Mutvei H, Westermark T (2001) How environmental information can be obtained from Naiad shells. In: Bauer G, Wächtler K (eds) Ecology and evolution of the fresehwater mussels Unionoida. Ecological studies. Springer, Berlin, pp 367–379

    Chapter  Google Scholar 

  • Nielsen J, Helama S, Schöne B (2008) Shell growth history of geoduck clam (Panopea abrupta) in Parry Passage, British Columbia, Canada: temporal variation in annuli and the Pacific Decadal Oscillation. J Oceanogr 64:951–960

    Article  Google Scholar 

  • NOAA (National Oceanic and Atmospheric Administration). NOAA’s state of the coast: economy: commercial fishing 1950-2010. http://stateofthecoast.noaa.gov/com_fishing/welcome.html. Accessed 2 Jan 2014

  • Noakes DJ, Campbell A (1992) Use of geoduck clams to indicate changes in the marine environment of Ladysmith Harbor, British Columbia. Environmetrics 3:81–97

    Article  Google Scholar 

  • Olsen J, Rasmussen P, Heinemeier J (2009) Holocene temporal and spatial variation in the radiocarbon reservoir age of three Danish fjords. Boreas 38:458–470

    Article  Google Scholar 

  • Owen EF, Wanamaker AD Jr, Feindel SC et al (2008) Stable carbon and oxygen isotope fractionation in bivalve (Placopecten magellanicus) larval aragonite. Geochim Cosmochim Acta 72:4687–4698

    Article  CAS  Google Scholar 

  • Owen R, Kennedy H, Richardson C (2002) Isotopic partitioning between scallop shell calcite and seawater: effect of shell growth rate. Geochim Cosmochim Acta 66:1727–1737

    Article  CAS  Google Scholar 

  • Philippsen B, Olsen J, Lewis JP et al (2013) Mid- to late-Holocene reservoir-age variability and isotope-based palaeoenvironmental reconstruction in the Limfjord, Denmark. Holocene 23:1017–1027

    Article  Google Scholar 

  • Pilcher JR (1991a) Radiocarbon dating for the Quaternary scientist. Quat Proc 1:27–33

    Google Scholar 

  • Pilcher JR (1991b) Radiocarbon dating. In: Smart PL, and Frances PD (eds) Quaternary dating methods—a user’s guide. Quaternary Research Association Technical Guide 4, pp 16–36

    Google Scholar 

  • Poirier C, Sauriau P-G, Chaumillon E et al (2009) Can molluscan assemblages give insights into Holocene environmental changes other than sea level rise? A case study from a macrotidal bay (Marennes-Oléron, France). Palaeogeogr Palaeoclimatol Palaeoecol 280:105–118

    Article  Google Scholar 

  • Quitmyer IR (2013) Precolumbian site seasonality and harvest of estuarine resources at the Pineland Site Complex, Charlotte Harbor, Florida. In: Marquardt WH, Walker KJ (eds) The archaeology of Pineland: a coastal southwest Florida site complex, A.D. 50-1700. Institute of Archaeology and Paleoenvironmental Studies, Monograph 4. University of Florida, Gainesville, pp 349–372

    Google Scholar 

  • Quitmyer IR, Jones DS (1992) Calendars of the coast: seasonal growth increment patterns in shells of modern and archaeological southern quahogs, Mercenaria campechiensis, from Charlotte Harbor, Florida. In: Marquardt WH (ed) Culture and environment in the domain of the Calusa. Institute of Archaeology and Paleoenvironmental Studies, Monograph 1. University of Florida, Gainesville, pp 247–264

    Google Scholar 

  • Quitmyer IR, Jones DS (2012) Annual incremental shell growth patterns in hard clams (Mercenaria spp) from St. Catherines Island, Georgia: a record of seasonal and anthropogenic impact on zooarchaeological resources. In: Reitz EJ, Quitmyer IR, Thomas DH (eds) Seasonality and human mobility along the Georgia Bight. Anthropological Papers of the American Museum of Natural History, New York, pp 135–148

    Google Scholar 

  • Quitmyer IR, Jones DS, Arnold WS (1997) The sclerochronology of hard clams, Mercenaria spp., from the South-Eastern U.S.A.: a method of elucidating the zooarchaeological records of seasonal resource procurement and seasonality in prehistoric shell middens. J Archaeol Sci 24:825–840

    Article  Google Scholar 

  • Raup DM, Stanley SM (1978) Principles of paleontology. Freeman and Company, San Francisco

    Google Scholar 

  • Reitz EJ, Quitmyer IR, Thomas DH (2012) Seasonality and human mobility along the Georgia Bight. Anthropological Papers of the American Museum of Natural History. American Museum of Natural History, New York, p 236

    Google Scholar 

  • Rhoads DC, Lutz RA (1980) Skeletal growth of aquatic organisms: biological records of environmental change. Plenum, New York, p 750

    Book  Google Scholar 

  • Rousseau DD (1991) Climatic transfer function from Quaternary mollusks in European loess deposits. Quat Res 36:195–209

    Article  Google Scholar 

  • Ruiz F, Rodríquez-Ramírez A, Cáceres LM et al (2004) Late Holocene evolution of the southwestern Doñana National Park (Guadalquivir Estuary, SW Spain): a multivariate approach. Palaeogeogr Palaeoclimatol Palaeoecol 204:47–64

    Article  Google Scholar 

  • Sadler J, Carré M, Azzoug M et al (2012) Reconstructing past upwelling intensity and the seasonal dynamics of primary productivity along the Peruvian coastline from mollusk shell stable isotopes. Geochem Geophys Geosyst 13:Q01015. doi:10.1029/2011gc003595

    Article  Google Scholar 

  • Salvigsen O, Forman SL, Miller GH (2007) Thermophilous mollusks on Svalbard during the Holocene and their paleoclimatic implications. Polar Res 11:1–10

    Article  Google Scholar 

  • Sandweiss DH, Maasch KA, Burger RL et al (2001) Variation in Holocene El Niño frequencies: climate records and cultural consequences in ancient Peru. Geology 29:603–606

    Article  Google Scholar 

  • Schöne BR, Fiebig J, Pfeiffer M et al (2005a) Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland). Palaeogeogr Palaeoclimatol Palaeoecol 228:130–148

    Article  Google Scholar 

  • Schöne BR, Gillikin DP (2013) Unraveling environmental histories from skeletal diaries—advances in sclerochronology. Palaeogeogr Palaeoclimatol Palaeoecol 373:1–5

    Article  Google Scholar 

  • Schöne BR, Houk SD, Castro ADF et al (2005b) Daily growth rates in shells of Arctica islandica: assessing sub-seasonal environmental controls on a long-lived bivalve mollusk. Palaios 20:78–92

    Article  Google Scholar 

  • Schöne BR, Oschmann W, Rössler J et al (2003) North Atlantic Oscillation dynamics recorded in shells of a long-lived bivalve mollusk. Geology 31:1037–1040

    Article  Google Scholar 

  • Schöne BR, Oschmann W, Tanabe K et al (2004) Holocene seasonal environmental trends at Tokyo Bay, Japan, reconstructed from bivalve mollusk shells—implications for changes in the East Asian monsoon and latitudinal shifts of the Polar Front. Quat Sci Rev 23:1137–1150

    Article  Google Scholar 

  • Schöne BR, Surge D (2012) Chapter 14: Bivalve sclerochronology and geochemistry. In: Seldon P, Hardesty J (eds), Carter JG (coordinator) Part N, Bivalvia, Revised, vol 1. University of Kansas, Paleontological Institute, Lawrence, Treatise Online 46, pp 1–24

    Google Scholar 

  • Schöne BR, Wanamaker AD Jr, Fiebig J et al (2011) Annually resolved δ13Cshell chronologies of long-lived bivalve mollusks (Arctica islandica) reveal oceanic carbon dynamics in the temperate North Atlantic during recent centuries. Palaeogeogr Palaeoclimatol Palaeoecol 302:31–42

    Article  Google Scholar 

  • Shackleton NJ (1973) Oxygen isotope analysis as a means of determining season of occupation of prehistoric midden sites. Archaeometry 15:133–141

    Article  CAS  Google Scholar 

  • Shaul W, Goodwin L (1982) Geoduck (Panope generosa: Bivalvia) age as determined by internal growth lines in the shell. Can J Fish Aquat Sci 39:632–636

    Article  Google Scholar 

  • Sherwood J, Barbetti M, Ditchburn R et al (1994) A comparative study of Quaternary dating techniques applied to sedimentary deposits in southwest Victoria, Australia. Quat Geochronol Quat Sci Rev 13(2):95–110

    Article  Google Scholar 

  • Sloss CR, Jones BG, McClennen CE et al (2006) The geomorphological evolution of a wave-dominated barrier estuary: Burrill Lake, New South Wales, Australia. Sediment Geol 187:229–249

    Article  Google Scholar 

  • Sloss CR, Jones BG, Murray-Wallace CV (2004) Litho- and chronostratigraphy of Holocene sedimentary successions preserved in Lake Illawarra, NSW, Australia. Wetlands (Australia) 21:61–72

    Google Scholar 

  • Sloss CR, Jones BG, Murray-Wallace CV (2005) Holocene sea level fluctuations and the sedimentary evolution of a barrier estuary: Lake Illawarra, New South Wales, Australia. J Coast Res 21:943–959+974–975

    Google Scholar 

  • Smart PL (1991) Uranium series dating. In: Smart PL, Frances PD (eds) Quaternary dating methods—a user’s guide. Quaternary Research Association Technical Guide 4, pp 45–83

    Google Scholar 

  • Smith SA, Wilson NG, Goetz FE et al (2011) Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 480:364–367

    Article  CAS  Google Scholar 

  • Sohl NF (1977) Utility of gastropods in biostratigraphy. In: Kauffman EG, Hazel JE (eds) Concepts and methods in biostratigraphy. Dowden, Hutchinson, and Ross, Stroudsburg, pp 519–539

    Google Scholar 

  • Strom A, Francis RC, Mantua NJ et al (2004) North Pacific climate recorded in growth rings of geoduck clams: a new tool for paleoenvironmental reconstruction. Geophys Res Lett 31:L06206

    Article  Google Scholar 

  • Strom A, Francis RC, Mantua NJ et al (2005) Preserving low-frequency climate signals in growth records of geoduck clams (Panopea abrupta). Palaeogeogr Palaeoclimatol Palaeoecol 228:167–178

    Article  Google Scholar 

  • Stuiver, M (1986) 14C dating, timescale calibration and application to geological problems. In: Hurford AJ, Jäger E, Ten Cate JAM (eds) Dating young sediments, proceedings of workshop, Beijing, China, 10–20 September 1985. CCOP Technical Publication 16, pp 97–109

    Google Scholar 

  • Stuiver M, Reimer PJ, Bard E et al (1998) INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40:1041–1083

    Article  CAS  Google Scholar 

  • Surge D, Barrett JH (2012) Marine climatic seasonality during medieval times (10th to 12th centuries) based on isotopic records in Viking Age shells from Orkney, Scotland. Palaeogeogr Palaeoclimatol Palaeoecol 350–352:236–246

    Article  Google Scholar 

  • Surge D, Lohmann KC (2008) Evaluating Mg/Ca ratios as a temperature proxy in the estuarine oyster, Crassostrea virginica. J Geophys Res Biogeosci 113:G02001. doi:10.1029/2007jg000623

    Article  CAS  Google Scholar 

  • Surge D, Schöne BR (2015) Bivalve sclerochronology. In: Rink WJ, Thompson J (eds) Encyclopedia of scientific dating methods. Springer, Dordrecht, pp 108–115. doi:10.1007/978-94-007-6326-5_165-1

    Chapter  Google Scholar 

  • Surge D, Walker KJ (2006) Geochemical variation in microstructural shell layers of the southern quahog (Mercenaria campechiensis): implications for reconstructing seasonality. Palaeogeogr Palaeoclimatol Palaeoecol 237:182–190

    Article  Google Scholar 

  • Surge DM, Lohmann KC, Dettman DL (2001) Controls on isotopic chemistry of the American oyster, Crassostrea virginica: implications for growth patterns. Palaeogeogr Palaeoclimatol Palaeoecol 172:283–296

    Article  Google Scholar 

  • Surge DM, Lohmann KC, Goodfriend GA (2003) Reconstructing estuarine conditions: oyster shells as a recorders of environmental change, southwest Florida. Estuar Coast Shelf Sci 57:737–756

    Article  CAS  Google Scholar 

  • Surge D, Wang T, Gutiérrez-Zugasti I et al (2013) Isotope sclerochronology and season of annual growth line formation in limpet shells (Patella vulgata) from warm- and cold-temperate zones in the eastern North Atlantic. Palaios 28:386–393

    Article  Google Scholar 

  • Sykes G (1991) Amino acid dating. In: Smart PL, Frances PD (eds) Quaternary dating methods—a user’s guide. Quaternary Research Association Technical Guide 4, pp 161–176

    Google Scholar 

  • Ta TKO, Nguyen VL, Tateishi M et al (2001) Sedimentary facies, diatom and foraminifer assemblages in a late Pleistocene–Holocene incised-valley sequence from the Mekong River Delta, Bentre Province, Southern Vietnam: the BT2 core. J Asian Earth Sci 20:83–94

    Article  Google Scholar 

  • Tanabe K, Oba T (1988) Latitudinal variation in shell growth patterns of Phacosoma japonicum (Bivalvia: Veneridae) from the Japanese coast. Mar Ecol Prog Ser 47:75–82

    Article  Google Scholar 

  • Thompson I, Jones DS, Dreibelbis D (1980) Annual internal growth banding and life history of the ocean quahog Arctica islandica (Mollusca: Bivalvia). Mar Biol 57:25–34

    Article  Google Scholar 

  • Tunnell JW, Andrews J, Barrera NC et al (2010) Encyclopedia of Texas seashells. Texas A&M University Press, College Station

    Google Scholar 

  • Umitsu M, Buman M, Kawase K et al (2001) Holocene palaeoecology and formation of the Shoalhaven River deltaic-estuarine plains, southeast Australia. Holocene 11:407–418

    Article  Google Scholar 

  • USDA (2012) New pest response guidelines: temperate terrestrial gastropods. US Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine. http://www.aphis.usda.gov

  • Walker M (2005) Quaternary dating methods. Wiley, Sussex

    Google Scholar 

  • Walker KJ, Surge D (2006) Developing oxygen isotope proxies from archaeological sources for the study of Late Holocene human-climate interactions in coastal southwest Florida. Quat Int 150:3–11, Special Issue: Impact of rapid environmental changes on humans and ecosystems

    Article  Google Scholar 

  • Walther BD, Rowley JL (2013) Drought and flood signals in subtropical estuaries recorded by stable isotope ratios in bivalve shells. Estuar Coast Shelf Sci 133:235–243

    Article  CAS  Google Scholar 

  • Wanamaker AD Jr, Kreutz KJ, Borns HW et al (2006) An aquaculture-based method for calibrated bivalve isotope paleothermometry. Geochem Geophys Geosyst 7:Q09011

    Article  CAS  Google Scholar 

  • Wanamaker AD Jr, Heinemeier J, Scourse JD et al (2008) Very long-lived mollusks confirm 17th century AD tephra-based radiocarbon reservoir ages for North Icelandic shelf waters. Radiocarbon 50:399–412

    Article  Google Scholar 

  • Wanamaker AD Jr, Butler PG, Scourse JD et al (2012) Surface changes in the North Atlantic meridional overturning circulation during the last millennium. Nat Commun 3:899. doi:10.1038/ncomms1901

    Article  CAS  Google Scholar 

  • Wang T, Surge D, Walker KJ (2011) Isotopic evidence for climate change during the Vandal Minimum from Ariopsis felis otoliths and Mercenaria campechiensis shells, southwest Florida, USA. Holocene 21(7):1081–1091. doi:10.1177/0959683611400458

    Article  Google Scholar 

  • Wang T, Surge D, Mithen S (2012) Seasonal temperature variability of the Neoglacial (3300-2500 BP) and Roman Warm Period (2500-1600 BP) reconstructed from oxygen isotope ratios of limpet shells (Patella vulgata), Northwest Scotland. Palaeogeogr Palaeoclimatol Palaeoecol 317–318:104–113

    Article  Google Scholar 

  • Wang T, Surge D, Walker KJ (2013) Seasonal climate change across the Roman Warm Period/Vandal Minimum transition using isotope sclerochronology in archaeological shells and otoliths, southwest Florida, USA. Quat Int 308–309:230–241

    Article  Google Scholar 

  • Wefer G, Berger WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar Geol 100:207–248

    Article  CAS  Google Scholar 

  • Wehmiller JF (1984) Relative and absolute dating of Quaternary mollusks with amino acid racemization: evaluation, applications and questions. In: Mahaney WC (ed) Quaternary dating methods. Elsevier, Amsterdam, pp 171–209

    Chapter  Google Scholar 

  • Wehmiller JF (1986) Amino acid racemization geochronology. In: Hurford AJ, Jäger E, Ten Cate JAM (eds) Dating young sediments, proceedings of workshop, Beijing, China, 10–20 September 1985. CCOP Technical Publication 16, pp 139–158

    Google Scholar 

  • Weidman CR, Jones GA (1994) The long-lived mollusc Arctica islandica: a new paleoceanographic tool for the reconstruction of bottom temperatures for the continental shelves of the northern North Atlantic Ocean. J Geophys Res 99:18305–18314

    Article  Google Scholar 

  • Welsh K, Elliot M, Tudhope A et al (2011) Giant bivalves (Tridacna gigas) as recorders of ENSO variability. Earth Planet Sci Lett 307:266–270. doi:10.1016/j.epsl.2011.05.032

    Article  CAS  Google Scholar 

  • Whitfield AK, Elliott M, Basset A et al (2012) Paradigms in estuarine ecology—a review of the Remane diagram with suggested revised model for estuaries. Estuar Coast Shelf Sci 97:78–90

    Article  Google Scholar 

  • Wingard GL, Hudley JW (2012) Application of a weighted-averaging method for determining paleosalinity: a tool for restoration of south Florida’s estuaries. Estuar Coast 35:262–280

    Article  CAS  Google Scholar 

  • Wisshak M, López Correa M, Gofas S et al (2009) Shell architecture, element composition, and stable isotope signature of the giant deep-sea oyster Neopycnodonte zibrowii sp. n. from the NE Atlantic. Deep Sea Res Part I 56:374–407

    Article  CAS  Google Scholar 

  • Yan L, Schöne BR, Arkhipkin A (2012) Eurhomalea exalbida (Bivalvia): a reliable recorder of climate in southern South America? Palaeogeogr Palaeoclimatol Palaeoecol 350–352:91–100

    Article  Google Scholar 

  • Zinke J, Reijmer JJG, Taviani M et al (2005) Facies and faunal assemblage changes in response to the Holocene transgression in the Lagoon of Mayotte (Comoro Archipelago, SW Indian Ocean). Facies 50:391–408

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Bruce Wardlaw (USGS), Thomas Cronin (USGS), and an anonymous reviewer, for their thoughtful comments on our manuscript. Funding for δ18Owater data in Fig. 15.5 was provided to Donna Surge by the National Science Foundation (award #0455974). Lynn Wingard’s research is funded by the USGS Greater Everglades Priority Ecosystem Science program. Bethany Stackhouse (USGS) prepared Figs. 15.1 and 15.2 and assisted with background research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lynn Wingard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wingard, G.L., Surge, D. (2017). Application of Molluscan Analyses to the Reconstruction of Past Environmental Conditions in Estuaries. In: Weckström, K., Saunders, K., Gell, P., Skilbeck, C. (eds) Applications of Paleoenvironmental Techniques in Estuarine Studies. Developments in Paleoenvironmental Research, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0990-1_15

Download citation

Publish with us

Policies and ethics