Skip to main content

Physical and Chemical Factors to Consider when Studying Historical Contamination and Pollution in Estuaries

  • Chapter
  • First Online:
Applications of Paleoenvironmental Techniques in Estuarine Studies

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 20))

Abstract

Understanding the history of contamination at a site may provide useful information to interpret past conditions. While organic compounds, such as pesticides, may behave quite differently in the environment compared to inorganic substances, such as metals, one common feature is that for different reasons, sediments often act as a common sink. In this sense sites with a history of deposition and little reworking are of interest to both the palaeo-environmental scientists and pollution scientists. Estuaries are often areas of significant deposition and are attractive to the historical study of anthropogenic inputs, however, sediments are also subject to a wide range of physicochemical conditions (from fresh to marine water) that fluctuate both in space and time. Changing water and sediment geochemistry influences metal binding capacity and flocculation of fine particles and for these reasons estuaries are challenging for the pollution scientist. However, methods of sediment characterization, sample preparation, and analysis have been developed over time to help understand the geochemistry that influences sources and sinks of contaminants, and their pathways through the environment. This chapter provides an extensive review of sediment contaminant characterization, including the sources, pathways and fate of contaminants in estuaries. It details analytical procedures and explores considerations when interpreting results. It has a focus on Australian estuaries but is relevant to estuaries around the world. The main aims of this review were to provide multidisciplinary researchers with a tool to further their inquiry and to encourage further studies of pollution/contamination in estuaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136:227–238

    Article  CAS  Google Scholar 

  • Ackermann F (1980) A procedure for correcting the grain size effect in heavy metal analysis of estuarine and coastal sediments. Environ Tech Lett 1:518–527

    Article  CAS  Google Scholar 

  • Agemian H, Chau ASY (1976) Evaluation of extraction techniques for the determination of metals in aquatic sediments. Analyst 101:761–767

    Article  CAS  Google Scholar 

  • Ajayi SO, Vanloon GW (1989) Studies on redistribution during the analytical fractionation of metals in sediments. Trace Metals in Lakes—Proceedings of the First International Conference. Hamilton, Ontario, Canada, 14–18 August 1989

    Google Scholar 

  • Akhurst DJ, Clark MW, Reichelt-Brushett AJ et al (2011) Grain Size Normalization: a case study for post extraction normalization and inclusion of selective extraction procedures. Liminol Oceanogr Methods 9:215–231

    Article  Google Scholar 

  • Akhurst D, Clark MW, Reichelt-Brushett AJ et al (2012) Elemental speciation and distribution in sediments of a eutrophied subtropical freshwater reservoir using postextraction normalization. Wat Air Soil Pollut 223(7):4589–4604

    Article  CAS  Google Scholar 

  • Allen JRL (1994) Fundamental properties of fluids and their relation to sediment transport processes. In: Pye K (ed) Sediment transport and depositional processes. Cambridge University Press, Cambridge, pp 25–60

    Google Scholar 

  • Allen RJ (1971) Lake sediment a medium for regional geochemical exploration of the Canadian shield. Can Inst Min Met Bull 64:43–59

    Google Scholar 

  • Allen RJ, Brunskill GJ (1977) Relative atomic variation (RAV) of elements in lake sediments: Lake Winnipeg and other Canadian Lakes. In: Golterman H (ed) Proceedings of the international symposium: interactions between sediments and freshwater. Junk, The Hague, pp 108–118

    Google Scholar 

  • Aller RC (1978) The effects of animal-sediment interactions on geochemical processes near the sediment water interface. In: Wiley ML (ed) Estuarine interactions. Academic, New York, pp 157–172

    Chapter  Google Scholar 

  • Alloway BJ (1990) Soil processes and the behaviour of metals. In: Alloway BJ (ed) Heavy metals in soils. Blackie, Glasgow, pp 7–28

    Google Scholar 

  • Alloway B, Ayres DC (1997) Chemical principles of environmental pollution, 2nd edn. CRC, Great Britain, p 416

    Google Scholar 

  • Aloupi M, Angelidis MO (2001) Normalization to lithium for the assessment of metal contamination in coastal sediment cores from the Aegean Sea Greece. Mar Environ Res 52:1–12

    Article  CAS  Google Scholar 

  • Ankley GT, Mattson VR, Leonard EN et al (1993) Predicting the acute toxicity of copper in freshwater sediments: evaluation of the role of acid-volatile sulfide. Environ Toxicol Chem 12:315–320

    Article  CAS  Google Scholar 

  • ANZECC/ARMCANZ (2000) Australian and New Zealand guidelines for fresh and marine water quality. National Water Quality Management Strategy No 4

    Google Scholar 

  • Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 1, Basin analysis coring and chronological techniques. Kluwer Academic, Dordrecht, pp 171–203

    Chapter  Google Scholar 

  • Apte SC, Benko WL, Day GM (1995) Partitioning and complexation of copper in the Fly River Papua New Guinea. J Geochem Explor 52(1-2):7–79

    Article  Google Scholar 

  • Asa SC, Rath P, Panda UC et al (2013) Application of sequential leaching, risk indicies and multivariate statistics to evaluate heavy metal contamination of estuarine sediments: Dhamara Estuary, East Coast of India. Env Monit Assess 185:6719–6737

    Article  CAS  Google Scholar 

  • Ashley PM, Napier ME (2005) Heavy-metal loadings related to urban contamination in the Kooloonbung Creek catchment Port Macquarie New South Wales. Aust J Earth Sciences 52(6):843–862

    Article  CAS  Google Scholar 

  • Ashley PM, Craw D, Tighe MK et al (2006) Magnitudes spacial scales and processes of environmental antimony mobility from orogenic gold-antimony mineral deposits. Australia Environ Geol 51(4):499–507

    Article  CAS  Google Scholar 

  • Ashley PM, Graham BP, Tighe MK et al (2007) Antimony and arsenic dispersion in the Macleay River Catchment NSW: a study of the environmental geochemical consequences. Aust J Earth Sciences 54:83–103

    Article  CAS  Google Scholar 

  • Ashworth PJ, Smith GHS, Best JL et al (2011) Evolution and sedimentology of a channel fill in the sandy braided South Saskatchewan River and its comparison to the deposits of an adjacent compound bar. Sedimentology 58(7):1860–1883

    Article  Google Scholar 

  • Bainbridge ZT, Wolanski E, Álvarez-Romero JG et al (2012) Fine sediment and nutrient dynamics related to particle size and floc formation in a Burdekin River flood plume, Australia. Mar Poll Bull 65:236–248

    Article  CAS  Google Scholar 

  • Baird C, Cann M (2012) Environmental chemistry, 5th edn. W.H. Freeman, New York, p 776

    Google Scholar 

  • Banat K, Förstner U, Müller G (1972) Schwermetalle in sedimenten von Donau Rhein Ems Weser und Elbe im Bereich der Bundesrepublik Deutschland. Naturwissenschaften 12:525–528

    Article  Google Scholar 

  • Barbanti A, Bothner MH (1993) A procedure for partitioning bulk sediments into distinct grain-size fractions for geochemical analysis. Environ Geol 21:3–13

    Article  CAS  Google Scholar 

  • Bates RL, Jackson JA (1987) Glossary of geology. American Geological Institute, Alexandria, p 788

    Google Scholar 

  • Beder S (1989) Toxic fish and sewer surfing—How deceit and collusion are destroying our beaches. Allen & Unwin, Sydney, p 176

    Google Scholar 

  • Birch GF (2000) Marine pollution in Australia, with special emphasis on central New South Wales estuaries and adjacent continental margin. International J Environ Poll 13(1-6):411–423

    Google Scholar 

  • Birch GF (2003) A test of normalisation methods for marine sediments including a new post extraction normalisation (PEN) technique. Hydrobiologia 492:5–13

    Article  CAS  Google Scholar 

  • Birch GF, McCready S (2009) Catchment sources of heavy metal contamination and influence on the quality of receiving basin sediments in Port Jackson Australia. Sci Total Environ 407:2820–2835

    Article  CAS  Google Scholar 

  • Birch GF, Taylor SE (2000a) The use of size-normalisation procedures in the analysis of organic contaminants in estuarine environments. Hydrobiologia 431:129–133

    Article  CAS  Google Scholar 

  • Birch GF, Taylor SE (2000b) Distribution and possible sources of organochlorine residues in sediments of a large urban estuary Port Jackson Sydney. Australian J Earth Sci 47:749–756

    Article  CAS  Google Scholar 

  • Birch G, Shotter N, Steetsel P (1998) The environmental status of Hawkesbury River Sediments. Australian Geographical Studies 36(1):37–57

    Article  Google Scholar 

  • Birch GF, Taylor SE, Matthai C (2001) Role of geology in environmental science: an example of pollution assessment of the estuarine and marine environment in central New South Wales. In: Gostin VA (ed) Gondwana to greenhouse—Australian environmental geosciences, vol 21. Geological Society of Australia, Sydney, pp 243–254, Special Publication

    Google Scholar 

  • Birch GF, Harrington C, Symons RK et al (2007) The source and distribution of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofurans in sediments of Port Jackson Australia. Mar Poll Bull 54:295–308

    Article  CAS  Google Scholar 

  • Birch GF, Russell AT, Mudge SM (2009) Normalisation techniques in forensic assessment of contaminated environments. In: Ball AS, Mudge SM (eds) Methods in environmental forensics. CRC, Boca Raton, pp 251–276

    Google Scholar 

  • Bird ECF (1984) Coasts—An introduction to coastal geomorphology, 3rd edn. Australian University Press, Canberra, p 320

    Google Scholar 

  • Blais JM, Muir DCG (2001) Paleolimnological methods and applications for persistent organic pollutants. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, Volume 2: Physical and geochemical methods. Kluwer Academic, Dordrecht, pp 271–298

    Google Scholar 

  • Bogle EW, Nichol I (1981) Metal transfer partition and fixation in drainage waters and sediments in carbonate terrain in southeastern Ontario. J Geochem Explor 15:405–422

    Article  CAS  Google Scholar 

  • Brodie J, Mitchell A (2005) Nutrients in Australian tropical rivers: changes with agricultural development and implications for receiving environments. Mar Freshwater Res 56(3):279–302

    Article  CAS  Google Scholar 

  • Bro-Rasnussen F (1996) Contamination by persistent chemicals in food chain and human health. Sci Tot Env 188(Suppl 1):S45–S60

    Article  Google Scholar 

  • Bruland KW, Bertine K, Koide M et al (1974) History of metal pollution in Southern California coastal zone. Environ Sci Technol 8:425–432

    Article  CAS  Google Scholar 

  • Brush G (2009) Historical land use, nitrogen, and coastal eutrophication: a paleoecological perspective. Estuaries and Coasts 32:18–28

    Article  CAS  Google Scholar 

  • Buckley DE, Smith JN, Winters GV (1995) Accumulation of contaminant metals in marine sediments of Halifax Harbor, Nova Scotia: environmental factors and historical trends. App Geochem 10:175–195

    Article  CAS  Google Scholar 

  • Burton GA Jr (ed) (1992) Sediment toxicity assessment. Lewis, Boca Raton, p 480

    Google Scholar 

  • Burton E, Phillips IR, Hawker DW (2005) Trace metal distribution and enrichment in benthic estuarine sediments: Southport Broadwater Australia. Env Geochem Health 27:369–383

    Article  CAS  Google Scholar 

  • Calmano W, Hong J, Förstner U (1993) Binding and mobilization of heavy metals in contaminated sediments affects by pH and redox potential. Wat Sci Tech 28(8-9):223–235

    CAS  Google Scholar 

  • Cardoso Fonseca E, Martin H (1986) The selective extraction of Pb and Zn in selected mineral and soil samples application in geochemical exploration (Portugal). J Geochem Explor 26:231–248

    Article  Google Scholar 

  • Cardoso R, Araujo MF, Freitas MC et al (2008) Geochemical characterisation of sediments from marginal environments of Lima Estuary (NW Portugal). Revista Electronica de Ciencias da Terra Geosciences, On-line Journal 5:1–11

    Google Scholar 

  • Carral E, Villares R, Puente X et al (1995) Influence of watershed lithology on heavy metal levels in estuarine sediments and organisms in Galicia (north-west Spain). Mar Poll Bull 30:604–608

    Article  CAS  Google Scholar 

  • Cavanagh JE, Burns KA, Brunskill GJ et al (1999) Organochlorine pesticide residues in soils and sediments of the Herbert and Burdekin River regions—implications for the contamination of the Great Barrier Reef. Mar Poll Bull 39:367–375

    Article  CAS  Google Scholar 

  • Chao TT, Theobald PKJ (1976) The significance of secondary iron and manganese oxides in geochemical exploration. Econ Geol 71:1560–1569

    Article  CAS  Google Scholar 

  • Clark MW (1996) The nature of Quaternary sediments at Wynnum, Brisbane. Quaternary Australasia 14:21–28

    Google Scholar 

  • Clark MW, McConchie D, Saenger P et al (1997) Hydrological controls on copper, cadmium, lead and zinc concentrations in an anthropogenically polluted mangrove ecosystem, Wynnum, Brisbane. J Coastal Res 13:1050–1058

    Google Scholar 

  • Clark MW, McConchie D, Lewis DW et al (1998) Redox stratification and heavy metal partitioning in Avicennia dominated mangrove sediments: a geochemical model. Chem Geol 149(3-4):147–171

    Article  CAS  Google Scholar 

  • Clark MW, Davies-McConchie FG, McConchie D et al (2000) Integrated selective extraction and grain size normalisation method for environmental analysis and assessment of diagenetic partitioning in modern anoxic sediments. Sci Tot Environ 258:149–170

    Article  CAS  Google Scholar 

  • Clark MW, Walsh SR, Smith J (2001) The distribution of trace-heavy metals in an abandoned mining area; A case study of Strauss Pit Drake, Australia: Implications for the environmental management of mine sites. Environ Geol 40(6):655–663

    Article  CAS  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Conner SE, Thomas I (2003) Sediments as archives of industrialisations: Evidence of atmospheric pollution in coastal wetlands of southern Sydney Australia. Water Air Soil Poll 149:189–210

    Article  Google Scholar 

  • Covelli S, Fontolan G (1997) Application of a normalisation procedure in determining regional geochemical baselines. Environ Geol 30(1-2):34–45

    Article  CAS  Google Scholar 

  • Crawford DW, Bonnevie NL, Gillis CA et al (1994) Historical changes in the ecological health of the Newark Bay estuary New Jersey. Ecotox Environ Safety 29:276–303

    Article  CAS  Google Scholar 

  • Cundy AB, Croudace IW, Thomson J et al (1997) Reliability of salt marshes as “geochemical recorders” of pollution input: A case study from contrasting estuaries in Southern England. Environ Sci Technol 31:1039–1101

    Article  Google Scholar 

  • Daskalakis KD, O’Connor TP (1995) Normalisation and elemental sediment contamination in the coastal United States. Environ Sci Technol 29(2):470–478

    Article  CAS  Google Scholar 

  • De Groot AJ, Goeijj JJM, Zegers C (1971) Contents and behaviour of mercury as compared with other heavy metals in sediments from the rivers Rhine and Ems. Geol Mijnbouw 50:393–398

    Google Scholar 

  • Dowson PH, Bubb JM, Lester JN (1996) Persistence and degradation pathways of tributyltin in freshwater and estuarine sediments. Est Coast Shelf Sci 42(5):551–562

    Article  CAS  Google Scholar 

  • Duquesne S, Janquin MA, Hogstrand C (1995) Quantification of fish hepatic metallothioneins, naturally or artificially induced, by ELISA: A comparison with radioimmunoassay and different pulse polarography. Fresenius J Anal Chem 352:589–595

    Article  CAS  Google Scholar 

  • Eyre B (1998) Transport retention and transformation of material in. Australian estuaries Est Coasts 21(4):540–551

    Article  CAS  Google Scholar 

  • Filepek LH, Theobald PK (1981) Sequential extraction techniques applied to porphyry copper deposits in the basin and range province. J Geochem Explor 14:155–174

    Article  Google Scholar 

  • Förstner U (1987) Metal special in solid wastes –factors affecting mobility. In: Landner L (ed) Lecture notes in Earth sciences –Speciation of metals in water, sediment and soil systems. Springer, Berlin, pp 13–41

    Google Scholar 

  • Förstner U (1989) Lecture notes in earth sciences—contaminated sediments. Springer, Berlin, p 157

    Google Scholar 

  • Förstner U, Wittmam GTW (1981) Metal pollution in the aquatic environment. Springer, Berlin, p 486

    Book  Google Scholar 

  • Gagnon C, Mucci A, Pelletier E (1995) Anomalous accumulation of acid-volatile sulphides (AVS) in a coastal marine sediment Saguenay Fjord Canada. Geochim Cosmochim Acta 59(13):2663–2675

    Article  CAS  Google Scholar 

  • Gambrell RP, Khalid RA, Verloo MG et al (1977) Transformations of heavy metals and plant nutrients in dredged sediments as affected by oxidation reduction potential and pH; II Materials and methods/results and discussion. US Army Corps Engineering and Dredge Material Research Program, Washington, DC, p 309

    Google Scholar 

  • García-Alix A, Jimenez-Espejo FJ, Lozano JA et al (2013) Anthropogenic impact and lead pollution throughout the Holocene in Southern Iberia. Sci Tot Environ 449:451–460

    Article  CAS  Google Scholar 

  • Gatehouse S, Russell DW, Van Moort JC (1977) Sequential soil analysis in exploration geochemistry. J Geochem Explor 8:483–494

    Article  CAS  Google Scholar 

  • Gillis AC, Birch GF (2006) Investigations of anthropogenic trace metals in sediment of Lake Illawarra New South Wales. Australian J Earth Sci 53:523–539

    Article  CAS  Google Scholar 

  • Gillman GP, Sumpter EA (1986) Modification to the compulsive exchange method for measuring exchange characteristics in soils. Aust J Soil Res 24:61–66

    Article  CAS  Google Scholar 

  • Goman M, Malamud-Roam F, Ingram BL (2008) Holocene environmental history and evolution of a tidal saltmarsh in San Francisco Bay, California. J Coastal Res 24(5):1126–1137

    Article  CAS  Google Scholar 

  • Green J, Reichelt-Brushett A, Brushett D et al (2010) An investigation of soil algal abundance using chlorophyll a in a subtropical saltmarsh after surface restoration. Wetlands 30:87–98

    Article  Google Scholar 

  • George SG, Pirie BJS (1980) Metabolism of zinc in the mussel, Mytilus edulis (L.): A combined ultrastructural biochemical study. J Mar Biological Assoc UK 60:575–590

    Article  CAS  Google Scholar 

  • Grim RE (1968) Clay Mineralogy. McGraw-Hill, New York, p 596

    Google Scholar 

  • Gross MG, Black JA, Kalin RJ et al (1971) Survey of marine waste deposits New York metropolitan region. State University of New York, Marine Science Research Centre, Stony Brook, p 78

    Google Scholar 

  • Grousset FE, Quetel CR, Thomas B et al (1995) Anthropogenic vs lithogenic origins of trace elements (As Cd Pb Rb Sb Sc Sn Zn) in water column particles: northwestern Mediterranean Sea. Mar Chem 48:291–310

    Article  CAS  Google Scholar 

  • Guillén MT, Delgado J, Albanese S et al (2012) Heavy metal fractionation and multivariate statistical techniques to evaluate the environmental risk in soils of Huelva Township (SW Iberian Peninsula). J Geochem Explor 119–120:32–43

    Article  CAS  Google Scholar 

  • Hall GEM (1992) Inductively-coupled plasma mass spectrometry in geoanalysis. J Geochem Explor 44:201–249

    Article  CAS  Google Scholar 

  • Hall GEM, Vaive RB, Beer R et al (1996) Selective leaches revisited with emphasis on the amorphous Fe oxyhydroxide phase extraction. J Geochem Explor 56(1):59–78

    Article  CAS  Google Scholar 

  • Hatje V, Birch GF, Hill DM (2001) Spatial and temporal variability of particulate trace metals in Port Jackson Estuary, Australia. Estuarine Coastal and Shelf Sci 53:63–77

    Article  CAS  Google Scholar 

  • Hatje V, Payne TE, Hill DM et al (2003) Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading. Environ Int 29:619–629

    Article  CAS  Google Scholar 

  • Haynes D, Kwan D (2002) Trace metals in sediments from Torres Strait and the Gulf of Papua: concentrations, distribution and water circulation patterns. Mar Pollut Bull 44(11):1309–1313

    Article  CAS  Google Scholar 

  • Hettler J, Irion G, Lehmann B (1997) Environmental impact of mining waste on a tropical lowland river system: a case study on the Ok Tedi Mine, Papua New Guinea. Mineralium Deposita 32:280–291

    Article  CAS  Google Scholar 

  • Hilton J, Davison W, Oschsenbein U (1985) A mathematical model for analysis of sediment core data: Implications for enrichment factor calculations and trace-metal transport mechanisms. Chem Geol 48(1-4):281–291

    Article  CAS  Google Scholar 

  • Hoffman SJ, Fletcher WK (1979) Selective sequential extraction of Cu Zn Fe Mn and Mo from soils and sediments. In: Watterson JR, Theobald PK (eds) Geochemical exploration 1978. Association of Exploration Geochemists, Toronto, pp 289–299

    Google Scholar 

  • Holdgate MW (1979) A perspective of environmental pollution. Cambridge University Press, Cambridge, p 278

    Google Scholar 

  • Huerta-Diaz MA, Morse JW (1992) Pyritization of trace metals in anoxic marine sediments. Geochim Cosmochim Acta 56:2681–2702

    Article  CAS  Google Scholar 

  • Hürkamp K, Raab T, Völkel J (2009) Lead pollution of floodplain soils in a historic mining area –Age, distribution and binding forms. Water Air Soil Pollut 201:331–345

    Article  CAS  Google Scholar 

  • Hu B, Li G, Bi J et al (2013) Spatial distribution and ecotoxicological risk assessment of heavy metals in surface sediments in the southern Bohai Bay, China. Environ Sci Pollut Res 20:4099–4110

    Article  CAS  Google Scholar 

  • Huston R, Chan YC, Gardner T et al (2009) Characteristics of atmospheric deposition as a source of contaminants in urban rainwater tanks. Water Res 43(6):1630–1640

    Article  CAS  Google Scholar 

  • Jenne EA (1977) Trace element sorption: sediments and soils. In: Chappell WKG, Peterson G (eds) Molybdenum in the environment, vol 2, Marcel Dekker Inc, New York, Vol., pp 425–553

    Google Scholar 

  • Jenne EA, Kennedy VC, Burchard JM et al (1980) Sediment collection and processing for selective extraction for total trace element analysis. In: Baker A (ed) Contaminants and Sediments. Ann Arbor Scientific Publishing, Ann Arbor. Vol 2:169–191

    CAS  Google Scholar 

  • Kilby GW, Batley GE (1993) Chemical indicators of sediment chronology. Australian J Mar Freshwater Res 44:635–647

    Article  CAS  Google Scholar 

  • Kemp ALW, Thomas RL, Dell CI et al (1976) Cultural impact on the geochemistry of sediments in Lake Erie. J Fish Res Board Can 33:440–462

    Article  CAS  Google Scholar 

  • Kersten M, Förstner U (1986) Chemical fractionation of heavy metals in anoxic estuarine and coastal sediments. Water Sci Tech 18:121–130

    CAS  Google Scholar 

  • Kitano Y, Fujiyoshi R (1980) Partitioning of cadmium copper manganese and iron into mineral and organic fractions in core sediments from Osaka Bay. Geochemical J 14:289–301

    Article  CAS  Google Scholar 

  • Koop K, Booth D, Broadbent A et al (2001) ENCORE: The effects of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Mar Poll Bull 42(2):91–120

    Article  CAS  Google Scholar 

  • Korn MA, Andrade JB, Jesus DS et al (2006) Separation and preconcentration procedures for the determination of lead using spectrometric techniques: a review. Talanta 69:16–24

    Article  CAS  Google Scholar 

  • Kot-Wasik A, Dabrowska D, Namieśnik J (2004) The importance of degradation in the fate of selected organic compounds in the environment. Part 1. General considerations. Polish J Envrion Stud 13(6):60–616

    Google Scholar 

  • Krachler M, Zheng J, Koerner R et al (2005) Increasing atmospheric antimony contamination in the northern hemisphere snow and ice evidence from Devon Island. Arctic Canada J Environ Monit 7:1169–1176

    Article  CAS  Google Scholar 

  • Krishnamurti GSR, Huang PM, Van Rees KCJ et al (1995) Speciation of particulate-bound cadmium of soils and its bioavailability. Analyst 120:659–665

    Article  CAS  Google Scholar 

  • Lawrence M (2006) Modelling atmospheric deposition of vehicular emissions in an Australian urban environment. BSc(Hons) Thesis. The University of Sydney Australia, unpublished

    Google Scholar 

  • Leventhal JS (1995) Carbon-sulfur plots to show diagenetic and epigenetic sulphidation in sediments. Geochim Cosmochim Acta 59(6):1207–1211

    Article  CAS  Google Scholar 

  • Lewis DW, McConchie D (1994a) Practical Sedimentology. Chapman & Hall, New York, p 123

    Book  Google Scholar 

  • Lewis DW, McConchie D (1994b) Analytical Sedimentology. Chapman & Hall, New York, p 197

    Book  Google Scholar 

  • Li H, Sun B, Lydy M et al (2013) Sediment-associated pesticides in an urban stream in Guangzhou, China: Implications of a shift in pesticide use patterns. Environ Toxicol Chem 32(5):1040–1047

    Article  CAS  Google Scholar 

  • Li YH (1981) Geochemical cycles of elements and human perturbation. Geochim Cosmochim Acta 45:2073–2084

    Article  CAS  Google Scholar 

  • Lichtfuß R, Brümmer G (1977) Schwermetallbelastung von Elbe-Sedimenten Naturwissenschaften 64:122–125

    Article  Google Scholar 

  • Lion LW, Altmann RS, Leckie JO (1982) Trace-metal adsorption characteristics of estuarine particulate matter: Evaluation of the contribution of Fe/Mn oxide and organic surface coatings. Environ Sci Technol 16(10):660–666

    Article  CAS  Google Scholar 

  • Lishawa SC, Treering DJ, Vail LM et al (2013) Reconstructing plant invasions using historical aerial imagery and pollen core analysis: Typha in the Laurentian Great Lakes. Diversity and Distrib 19:14–28

    Article  Google Scholar 

  • Liu WX, Li XD, Shen ZG et al (2003) Multivariate statistical study of heavy metal enrichment in sediment of the Pearl River Estuary. Env Poll 121:377–388

    Article  CAS  Google Scholar 

  • Loring DH (1990) Lithium – a new approach for the granulometric normalization of trace metal data. Mar Chem 29:155–168

    Article  CAS  Google Scholar 

  • Loring DH (1991) Normalisation of heavy-metal data from estuarine and coastal sediments. ICES J Mar Sci 48(1):101–115

    Article  Google Scholar 

  • Loring DH, Rantala RTT (1992) Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Science Reviews 32:235–283

    Article  CAS  Google Scholar 

  • Lottermoser BG (1998) Heavy metal pollution of coastal river sediments north-eastern New South Wales Australia: lead isotope and chemical evidence. Env Geol 36(1-2):118–126

    Article  CAS  Google Scholar 

  • Lottermoser BG (2003) Mine wastes: characterization, treatment, and environmental impacts. Springer, New York, p 277

    Book  Google Scholar 

  • Male Y, Reichelt-Brushett AJ, Pocock M et al (2013) Recent mercury contamination from artisanal gold mining on Buru Island, Indonesia—potential future risks to environmental health and food safety. Mar Pollut Bull 77(1-2):428–33

    Article  CAS  Google Scholar 

  • Malo BA (1977) Partial extraction of metals from aquatic sediments. Environ Sci Technol 11:277–282

    Article  CAS  Google Scholar 

  • Mar S, Okazaki M (2012) Investigation of Cd contents in several phosphate rocks used for the production of fertilizer. Microchem J 104:17–21

    Article  CAS  Google Scholar 

  • Marx SK, Kamber BS, McGowan HA (2005) Estimates of Australian dust plume pathway using trace element calibrates 210Pb as a monitor. Earth and Planetary Science Letters 239:336–351

    Article  CAS  Google Scholar 

  • Marx SK, Kamber BS, McGowan HA (2008) Scavenging of atmospheric trace metal pollutants by mineral dusts: Inter-regional transport of Australian trace metal pollution to New Zealand. Atmospheric Environment 42(10):2460–2478

    Article  CAS  Google Scholar 

  • Marx SK, Kamber BS, McGowan HA et al (2010) Atmospheric pollutants in alpine peat bogs record a detailed chronology of industrial and agricultural development on the Australian continent. Environ Poll 158(5):1615–1628

    Article  CAS  Google Scholar 

  • Matthai C, Birch G (2001) Detection of anthropogenic Cu, Pb and Zn in continental shelf sediments off Sydney, Australia—a new approach using normalisation with cobalt. Mar Poll Bull 42(11):1055–1063

    Article  CAS  Google Scholar 

  • McConchie DM, Lawrence IM (1991) The origin of high cadmium loads to some bivalve molluscs from Shark Bay, Western Australia: A new mechanisms for cadmium uptake by filter feeding organisms. Arch Environ Contam Toxicol 21:1–8

    Article  Google Scholar 

  • McCready S, Slee DJ, Birch G et al (2000) The distribution of polycyclic aromatic hydrocarbons in surficial sediments of Sydney Harbor Australia. Mar Poll Bull 40(11):999–1006

    Article  CAS  Google Scholar 

  • Mecray E, Buchholtz ten Brink M (2000) Contaminant distribution and accumulation in the surface sediments of Long Island Sound. J Coastal Res 16(3):575–590

    Google Scholar 

  • Mil-Holmes M, Stevens RL, Boer W et al (2006) Pollution history of heavy metals on the Portuguese shelf using 210Pb-geochronology. Sci Tot Environ 367:466–480

    Article  CAS  Google Scholar 

  • Monbet P (2004) Dissolved and particulate fluxes of copper though the Morlaix River estuary (Brittany, France): Mass balance in a small estuary with strong agricultural catchment. Mar Poll Bull 48(1-2):78–86

    Article  CAS  Google Scholar 

  • Morrison GMP, Batley GE, Florence TM (1989) Metal speciation and toxicity. Chem Brit Aug 25:791–796

    CAS  Google Scholar 

  • Morse JW, Presley BJ, Taylor RJ et al (1993) Trace metal chemistry of Galvaston Bay: Water sediments and biota. Mar Environ Res 36:1–37

    Article  CAS  Google Scholar 

  • Mudge SM, Birch GF (2003) Matthai C. The effect of grain size and element concentration in identifying contaminant sources Environmental Forensics 4:305–312

    CAS  Google Scholar 

  • Mudroch A, Azcue JM (1995) Manual of aquatic sediment sampling. Lewis, Boca Raton, p 219

    Google Scholar 

  • Müller G (1979) Schwermetalle in den sedimenten des Rheins-Veraenderungen seit 1971. Umschau 79:778–783

    Google Scholar 

  • Munksgaard NC, Parry DL (2002) Metals, arsenic and lead isotopes in near-pristine estuarine and marine coastal sediments from northern Australia. Mar Freshwater Res 53:719–729

    Article  CAS  Google Scholar 

  • Neal C, Robson AJ, Jeffery HA et al (1997) Trace element inter-relationships for the Humber rivers: Inferences for hydrology and chemicals controls. Sci Tot Environ 194–195:321–343

    Article  Google Scholar 

  • Niencheski LFH, Baraj B, Franca RG et al (2002) Lithium as a normaliser for the assessment of anthropogenic metal contamination of sediments of the southern area of Patos Lagoon. Aq Ecos Health Man 5(4):473–483

    Article  CAS  Google Scholar 

  • Njue CN, Cundy AB, Smith M et al (2012) Assessing the impact of historical coastal landfill sites on sensitive ecosystems: A case study from Dorset, Southern England. Estuarine Coastal Shelf Sci 114:166–174

    Article  CAS  Google Scholar 

  • Oliver BG (1973) Heavy metal levels of Ottawa and Rideau River sediments. Environ Sci Technol 7:135–137

    Article  CAS  Google Scholar 

  • Olmos MA, Birch GF (2008) Application of sediment-bound heavy metals in studies of estuarine health: a case study of Brisbane Water estuary New South Wales. Aust J Earth Sciences 55:641–654

    Article  CAS  Google Scholar 

  • Olmos MA, Birch GF (2010) A novel method using sedimentary metals and GIS for measuring change in coastal lake environments. Environ Sci Pollut Res 17(2):270–287

    Article  CAS  Google Scholar 

  • Orr KK (2008) Spatial and temporal variations in metals in the sediments and waters of selected Eastern Cape estuaries South Africa. Masters Thesis Rhodes University, p 164

    Google Scholar 

  • Padmanabhan E, Mermut AR (1996) Submicroscopic structure of Fe-coatings on quartz grains in tropical environments. Clays Clay Minerals 44(6):801–810

    Article  CAS  Google Scholar 

  • Parks GA (1975) Adsorption in the marine environment. In: Riley JP, Skirrow G (eds) Chemical Oceanography, vol 1, 2nd edn. Academic, New York, pp 241–306

    Google Scholar 

  • Potts PJ (1987) A handbook of silicate rock analysis. Blackie, Glasgow, p 622

    Book  Google Scholar 

  • Rainbow PS, White SL (1989) Comparative strategies of heavy metal accumulation by crustaceans: zinc, copper and cadmium in a decapod, an amphipod and a barnacle. Hydrobiologia 174:245–262

    Article  CAS  Google Scholar 

  • Rainbow PS, Phillips DJH, Depledge MH (1990) The significance of trace metal concentrations in marine invertebrates – The need for laboratory studies in accumulation strategies. Mar Poll Bull 21(7):321–324

    Article  CAS  Google Scholar 

  • Raiswell R, Buckley F, Berner RA et al (1988) Degree of pyritization of iron as a paleo-environmentalpaleo-environmental indicator of bottom-water oxygenation. J Sed Petrol 58(5):812–819

    CAS  Google Scholar 

  • Rapin F, Tessier A, Campbell PGC et al (1986) Potential artifacts in the determination of metal partitioning in sediments by a sequential extraction procedure. Env Sci Technol 20(8):836–840

    Article  CAS  Google Scholar 

  • Raspor B (1989) Adsorption of humic substances at differentially charged surfaces. Sci Tot Environ 81(82):213–223

    Google Scholar 

  • Reichelt AJ, Jones GB (1994) Trace metals as tracers of dredging activities in Cleveland Bayfield and laboratory study. Aust J Mar Freshwater Res 45:1237–1257

    Article  CAS  Google Scholar 

  • Reichelt-Brushett AJ, McOrist G (2003) Trace metals in the living and nonliving components of scleractinian corals. Mar Poll Bull 46(12):1573–1582

    Article  CAS  Google Scholar 

  • Reichelt-Brushett AJ, Harrison PL (2004) Development of a sub-lethal test to determine the effects of copper and lead on scleractinian coral larvae. Arch Environ Contam Toxicol 47(1):40–55

    Article  CAS  Google Scholar 

  • Reichelt-Brushett AJ, Harrison PL (2005) The effect of selected trace metals on the fertilization success of several scleractinian corals species. Coral Reefs 24:524–534

    Article  Google Scholar 

  • Reichelt-Brushett AJ (2012) Risk assessment and ecotoxicology–limitations and recommendations in the case of ocean disposal of mine waste. Oceanogr 25(4):40–51

    Google Scholar 

  • Ribeiro S, Amorim A, Andersen TJ et al (2012) Reconstructing the history of an invasion: the toxic phytoplankton species Gymnodinium catenatum in the Northeast Atlantic. Biol Invasions 14:969–985

    Article  Google Scholar 

  • Ridgway J, Shimmield G (2002) Estuaries as repositories for historical contamination and their impact on shelf seas. Estuarine Coastal Shelf Sci 55:903–928

    Article  CAS  Google Scholar 

  • Ringwood AH, Brouwer M (1995) Patterns of metallothionein expression in oyster embryos. Mar Environ Res 39:101–105

    Article  CAS  Google Scholar 

  • Rose AW, Suhr NH (1971) Major element content as a means of allowing background variation in stream-sediment geochemical exploration. In: Boyle RW (ed) Geochemical Exploration Canadian Institute of Mining and Metallurgy, vol 11, Special Vol., pp 587–593

    Google Scholar 

  • Roy PS, Crawford EA (1984) Heavy metals in a contaminated Australian estuary-dispersion and accumulation trend. Estuarine Coastal Shelf Sci 19:341–358

    Article  CAS  Google Scholar 

  • Sadiq M (1992) Toxic metal chemistry in marine environments. Marcel Dekker, New York, p 389

    Google Scholar 

  • Salomons W, Förstner U (1984) Metals in the hydrocycle. Springer, Berlin, p 349

    Book  Google Scholar 

  • Salomons W, Mook WG (1977) Trace metal concentrations in estuarine sediments: mobilization mixing or precipitation. Neth J Sea Res 11:199–209

    Article  Google Scholar 

  • Schiff K, Weisberg SB (1999) Iron as a reference element for determining trace metal enrichment in California coastal shelf sediments. Mar Environ Res 48:161–176

    Article  CAS  Google Scholar 

  • Schoer J, Nagel U, Eggergluess D et al (1982) Metal contents in sediments from the Elbe Weser and Ems Estuaries from the German Bight (southeastern North Sea): Grainsize effects. SCOPE/UNEP Mitt Geol-Paläont Inst Univ Hamburg Special Vol 52, pp 687–702

    Google Scholar 

  • Schropp SJ, Lewis FG, Windom HL et al (1990) Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference element. Estuaries 13(3):227–235

    Article  CAS  Google Scholar 

  • Seen A, Townsend A, Atkinson B et al (2004) Determining the history and sources of contamination in sediments in the Tamar Estuary, Tasmania, using 210Pb dating and stable Pb isotope analyses. Environmental Chemistry 1(1):49–54

    Article  CAS  Google Scholar 

  • Selinger B (1989) Chemistry in the marketplace, 4th edn. Harcourt Brace Jovanovich, Sydney, p 674

    Google Scholar 

  • Shaw TJ, Gieskes JM, Jahnke RA (1990) Early diagenesis in differing depositional environments: the response of transition metals in pore water. Geochimica et Cosmochimica Acta 54(5):1233–1246

    Article  CAS  Google Scholar 

  • Simpson SL, Rochford L, Birch GF (2002) Geochemical influences on metal partitioning in contaminated estuarine sediments. Mar Freshwater Res 53:9–17

    Article  CAS  Google Scholar 

  • Smith JD, Nicholson RA, Moore PJ (1973) Mercury from sediments in the Thames Estuary. Environ Poll 4:153–157

    Article  CAS  Google Scholar 

  • Smith REW, Ahsanullah M, Batley G (1990) Investigations of the impact of effluent from the Ok Tedi copper mine on the fisheries resources in the Fly River Papua New Guinea. Environ Monitor Assess 14(2-3):315–331

    Article  CAS  Google Scholar 

  • Smol JP (2008) Pollution of lakes and rivers—A paleo-environmental perspective, 2nd edn. Blackwell, Singapore, p 383

    Google Scholar 

  • Somerfield PJ, Gee JM, Warwick RM (1994) Soft sediment meiofaunal community structure in relation to a long-term heavy metal gradient in the Fal estuary system. Mar Ecol Prog Ser 105:79–88

    Article  CAS  Google Scholar 

  • Sondag F (1981) Selective extraction procedures applied to geochemical prospecting in an area of old mine workings. J Geochem Explor 15:645–652

    Article  CAS  Google Scholar 

  • Stebbing ARD (1999) Integrated riverine, estuarine and coastal research in the UK land-ocean interaction study. Mar Poll Bull 37(3-7):115–121

    Article  Google Scholar 

  • Stichnothe H, Calmano W, Arevalo E et al (2005) TBT-contaminated sediments treatment in a pilot scale. J Soils Sediments 5(1):21–29

    Article  CAS  Google Scholar 

  • Stover BK (1996) Characterization of heavy metals pollution sources associated with the inactive Wellington-Oro mine complex, Summit County Colorado. In: Bell RS, Cramer MH (eds) Proceedings of the symposium on the application of geophysics to engineering and environmental problems, pp 269–283

    Google Scholar 

  • Summers JK, Wade TL, Engle VD et al (1996) Normalisation of metal concentrations in estuarine sediments from the Gulf of Mexico. Estuaries 19(3):581–594

    Article  CAS  Google Scholar 

  • Swales A, Williamson RB, Van Dam LF et al (2002) Reconstruction of urban stormwater contamination of an estuary using catchment history and sediment profile dating. Estuaries 25(1):43–56

    Article  CAS  Google Scholar 

  • Taffs KH, Farago LJ, Heijnis H et al (2008) A diatom-based Holocene record of human impact from a coastal environment: Tuckean Swamp eastern Australia. J Paleolimnol 39:71–82

    Article  Google Scholar 

  • Taylor SE, Birch GF, Links F (2004) Historical catchment changes and temporal impact on sediment of the receiving basin Port Jackson New South Wales. Australian J Earth Sciences 51:233–246

    Article  CAS  Google Scholar 

  • Teasdale PR, Apte SC, Ford PW et al (2003) Geochemical cycling and speciation of copper in waters and sediments of Macquarie Harbour, Western Tasmania. Estuarine Coast Shelf Sci 57:475–487

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–850

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1982) Particulate trace metal speciation in stream sediments and relationships with grain size: Implications for geochemical exploration. J Geochem Explor 16:77–104

    Article  CAS  Google Scholar 

  • Thomas AJ, Martin JM (1982) Chemical composition of river suspended sediment: Yangtse Mackenzie Indus Orinoco Parana and French Rivers (Seine Loire Garonne Dordogne Rhone). SCOPE/UNEP, Mitt Geol-Paläont Inst. Univ Hamburg Special 52:555–564

    CAS  Google Scholar 

  • Thomas RL (1972) The distribution of mercury in the sediment of Lake Ontario. Can J Earth Sci 9:636–651

    Article  CAS  Google Scholar 

  • Thompson CJ, Croke JC, Purvis-Smith D (2011) Floodplain sediment disconnectivity at a tributary junction and valley constriction site in the Fitzroy River Basin, Queensland Australia. Geomorphology 125(2):293–304

    Article  Google Scholar 

  • Thomson EA, Luoma SN, Cain DJ et al (1980) The effect of sample storage on the extraction of Cu Zn Fe Mn and organic material from oxidised estuarine sediments. Wat Air Soil Poll 14:215–233

    Article  CAS  Google Scholar 

  • Thornton I, Watling H, Darracott A (1975) Geochemical studies in several rivers and estuaries for oyster rearing. Sci Tot Environ 4:325–345

    Article  Google Scholar 

  • Townsend AT, Seen AJ (2012) Historical lead isotope record of a sediment core from the Derwent River (Tasmania Australia): A multiple source environment. Sci Total Environ 424:153–161

    Article  CAS  Google Scholar 

  • Trueb L (1996) The. Salsigne Gold Mine: A world-class ore body in the south west of France Gold Bull 29(4):137–140

    Article  CAS  Google Scholar 

  • USEPA (1991) Methods for the determination of metals in environmental samples Environmental Monitoring Systems Laboratory. Office of Research and Development, EPA-600/4-91-010

    Google Scholar 

  • Vernet JP, Thomas RL (1972) Levels of mercury in some Swiss lakes including Lake Geneva and the Rhone River. Ecologae Geol Helv 6(2):293–306

    Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global treat to human water security and river biodiversity. Nature 467:555–561

    Article  CAS  Google Scholar 

  • Webster IT, Norquay SJ, Ross FC et al (1996) Solute exchange by convection within estuarine pore waters. Estuarine Coastal Shelf Sci 42:171–183

    Article  Google Scholar 

  • Weisberg S, Wilson H, Heimbuch D et al (2000) Comparison of sediment metal:aluminum relationships between the eastern and gulf coasts of the United States. Environ Mon Assess 61(3):373–385

    Article  CAS  Google Scholar 

  • Willett IR, Beech TA (1987) Determination of organic carbon in pyritic and acid sulphate soils. Comm Soil Sci Plant Anal 18(7):715–724

    Article  CAS  Google Scholar 

  • Windom HL, Schropp SJ, Calder FD et al (1989) Natural trace metal concentrations in estuarine and coastal marine sediments of the southeastern United States. Environ Sci Technol 23:314–320

    Article  CAS  Google Scholar 

  • Yariv S, Cross H (1979) Geochemistry of colloid systems for earth scientists. Springer, Berlin, p 450

    Book  Google Scholar 

  • Yu X, Yan Y, Wang W-X (2010) The distribution and speciation of trace metals in surface sediments from the Pearl River Estuary and the Daya Bay, Southern China. Mar Poll Bull 60:1364–1371

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. K. Michalek-Wagner for assistance in formatting the manuscript and her helpful contributions to its content. Thanks to colleagues who provided papers and additional sources of information. Finally thank you to the reviewers who provided useful feedback and as a result improved this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Reichelt-Brushett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Reichelt-Brushett, A., Clark, M., Birch, G. (2017). Physical and Chemical Factors to Consider when Studying Historical Contamination and Pollution in Estuaries. In: Weckström, K., Saunders, K., Gell, P., Skilbeck, C. (eds) Applications of Paleoenvironmental Techniques in Estuarine Studies. Developments in Paleoenvironmental Research, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0990-1_10

Download citation

Publish with us

Policies and ethics