Skip to main content

Sirtuins as Metabolic Modulators of Muscle Plasticity

  • Chapter
  • First Online:
Sirtuins

Part of the book series: Proteins and Cell Regulation ((PROR,volume 10))

Abstract

In skeletal muscle, imbalances in energy homeostasis or chronic insults of cellular stress have dramatic effects on bioenergetics through the alteration of cellular substrate use and/or changes in mitochondrial content and function. For example, cellular stress induced by exercise or caloric restriction can increase mitochondrial biogenesis and function as an adaptation to low energetic levels. In addition, with an increase in mitochondrial biogenesis comes an increased demand for oxygen delivery through the activation of angiogenesis. Over the last decade researchers have examined the involvement of sirtuin proteins, as metabolic sensors, to regulate these adaptations. Our review will therefore summarize the recent findings related to sirtuin-mediated responses to metabolic stress in skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amaral SL, Papanek PE, Greene AS (2001) Angiotensin II and VEGF are involved in angiogenesis induced by short-term exercise training. Am J Physiol Heart Circ Physiol 281:1163–1169

    Google Scholar 

  • Amat R, Solanes G, Giralt M, Villarroya F (2007) SIRT1 is involved in glucocorticoid-mediated control of uncoupling protein-3 gene transcription. J Biol Chem 282:34066–34076

    Article  CAS  PubMed  Google Scholar 

  • Amat R, Planavila A, Chen SL, Iglesias R, Giralt M, Villarroya F (2009) SIRT1 controls the transcription of the peroxisome proliferator-activated receptor- Co-activator-1 (PGC-1) gene in skeletal muscle through the PGC-1 autoregulatory loop and interaction with MyoD. J Biol Chem 284:21872–21880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ameln H, Gustafsson T, Sundberg CJ, Okamoto K, Jansson E, Poellinger L, Makino Y (2005) Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. Faseb J 19:1009–1011

    CAS  PubMed  Google Scholar 

  • Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA (2003) Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423:181–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18:3004–3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, Ahmad F, Matsui T, Chin S, Wu P-H et al (2005) Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab 1:259–271

    Article  CAS  PubMed  Google Scholar 

  • Baldwin KM, Klinkerfuss GH, Terjung RL, Molé PA, Holloszy JO (1972) Respiratory capacity of white, red, and intermediate muscle: adaptative response to exercise. Am J Physiol 222:373–378

    Article  CAS  PubMed  Google Scholar 

  • Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, Young LH, Semenkovich CF, Shulman GI (2001) Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 281:E1340–E1346

    CAS  PubMed  Google Scholar 

  • Biason-Lauber A, Böni-Schnetzler M, Hubbard BP, Bouzakri K, Brunner A, Cavelti-Weder C, Keller C, Meyer-Böni M, Meier DT, Brorsson C et al (2013) Identification of a SIRT1 mutation in a family with type 1 diabetes. Cell Metab 17:448–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bitterman KJ (2002) Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1. J Biol Chem 277:45099–45107

    Article  CAS  PubMed  Google Scholar 

  • Bogan KL, Brenner C (2008) Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr 28:115–130

    Article  CAS  PubMed  Google Scholar 

  • Breen EC, Johnson EC, Wagner H, Tseng HM, Sung LA, Wagner PD (1996) Angiogenic growth factor mRNA responses in muscle to a single bout of exercise. J Appl Physiol 81:355–361

    CAS  PubMed  Google Scholar 

  • Breen E, Tang K, Olfert M, Knapp A, Wagner P (2008) Skeletal muscle capillarity during hypoxia: VEGF and its activation. High Alt Med Biol 9:158–166

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015

    Article  CAS  PubMed  Google Scholar 

  • Cantó C, Auwerx J (2012) Targeting sirtuin 1 to improve metabolism: all you need is NAD(+)? Pharmacol Rev 64:166–187

    Article  CAS  PubMed  Google Scholar 

  • Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantó C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, Zierath JR, Auwerx J (2010) Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11:213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantó C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, Fernandez-Marcos PJ, Yamamoto H, Andreux PA, Cettour-Rose P et al (2012) The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 15:838–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carling D (2004) The AMP-activated protein kinase cascade – a unifying system for energy control. Trends Biochem Sci 29:18–24

    Article  CAS  PubMed  Google Scholar 

  • Chabi B, Adhihetty PJ, O’Leary MFN, Menzies KJ, Hood DA (2009) Relationship between Sirt1 expression and mitochondrial proteins during conditions of chronic muscle use and disuse. J Appl Physiol 107:1730–1735

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Bruno J, Easlon E, Lin S-J, Cheng H-L, Alt FW, Guarente L (2008) Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev 22:1753–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coste A, Louet JF, Lagouge M, Lerin C, Antal MC, Meziane H, Schoonjans K, Puigserver P, O’Malley BW, Auwerx J (2008) The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1. Proc Natl Acad Sci 105:17187–17192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costford SR, Bajpeyi S, Pasarica M, Albarado DC, Thomas SC, Xie H, Church TS, Jubrias SA, Conley KE, Smith SR (2010) Skeletal muscle NAMPT is induced by exercise in humans. AJP Endocrinol Metabol 298:E117–E126

    Article  CAS  Google Scholar 

  • Csibi A, Fendt S-M, Li C, Poulogiannis G, Choo AY, Chapski DJ, Jeong SM, Dempsey JM, Parkhitko A, Morrison T et al (2013) The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153:840–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson JM, Hudlicka O (1989) The effect of long-term activity on the microvasculature of rat glycolytic skeletal muscle. Int J Microcirc Clin Exp 8:53–69

    CAS  PubMed  Google Scholar 

  • Dudley GA, Abraham WM, Terjung RL (1982) Influence of exercise intensity and duration on biochemical adaptations in skeletal muscle. J Appl Physiol 53:844–850

    CAS  PubMed  Google Scholar 

  • Feige JN, Lagouge M, Cantó C, Strehle A, Houten SM, Milne JC, Lambert PD, Mataki C, Elliott PJ, Auwerx J (2008) Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 8:347–358

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Marcos PJ, Jeninga EH, Cantó C, Harach T, de Boer VCJ, Andreux P, Moullan N, Pirinen E, Yamamoto H, Houten SM et al (2012) Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis. Sci Rep 2:425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford E (2006) Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 20:1075–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, Sartorelli V (2008) Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 14:661–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garten A, Petzold S, Körner A, Imai S-I, Kiess W (2009) Nampt: linking NAD biology, metabolism and cancer. Trends Endocrinol Metab 20:130–138

    Article  CAS  PubMed  Google Scholar 

  • Geng T, Li P, Okutsu M, Yin X, Kwek J, Zhang M, Yan Z (2010) PGC-1alpha plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. AJP Cell Physiol 298:C572–C579

    Article  CAS  Google Scholar 

  • Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim S-H, Mostoslavsky R, Alt FW, Wu Z, Puigserver P (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. Embo J 26:1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham TE, Saltin B (1989) Estimation of the mitochondrial redox state in human skeletal muscle during exercise. J Appl Physiol 66:561–566

    CAS  PubMed  Google Scholar 

  • Guarente L (2012) Sirtuins, aging, and metabolism. Cold Spring Harb Symp Quant Biol 76:81–90

    Article  CAS  Google Scholar 

  • Guerra B, Guadalupe-Grau A, Fuentes T, Ponce-González JG, Morales-Alamo D, Olmedillas H, Guillén-Salgado J, Santana A, Calbet JAL (2010) SIRT1, AMP-activated protein kinase phosphorylation and downstream kinases in response to a single bout of sprint exercise: influence of glucose ingestion. Eur J Appl Physiol 109:731–743

    Article  CAS  PubMed  Google Scholar 

  • Gurd BJ, Yoshida Y, McFarlan JT, Holloway GP, Moyes CD, Heigenhauser GJF, Spriet L, Bonen A (2011) Nuclear SIRT1 activity, but not protein content, regulates mitochondrial biogenesis in rat and human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 301:R67–R75

    Article  CAS  PubMed  Google Scholar 

  • Gurd BJ, Holloway GP, Yoshida Y, Bonen A (2012) In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase–independent manner. Metabolism 61:733–741

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson T, Puntschart A, Kaijser L, Jansson E, Sundberg CJ (1999) Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am J Physiol 276:H679–H685

    CAS  PubMed  Google Scholar 

  • Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G et al (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell 126:941–954

    Article  CAS  PubMed  Google Scholar 

  • Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, Yan Z, Spiegelman BM (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 282:30014–30021

    Article  CAS  PubMed  Google Scholar 

  • Hang J, Kong L, Gu JW, Adair TH (1995) VEGF gene expression is upregulated in electrically stimulated rat skeletal muscle. Am J Physiol 269:H1827–H1831

    CAS  PubMed  Google Scholar 

  • Hardie DG (2004) The AMP-activated protein kinase pathway--new players upstream and downstream. J Cell Sci 117:5479–5487

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262

    Article  CAS  PubMed  Google Scholar 

  • Hayashida S, Arimoto A, Kuramoto Y, Kozako T, Honda S-I, Shimeno H, Soeda S (2010) Fasting promotes the expression of SIRT1, an NAD+-dependent protein deacetylase, via activation of PPARalpha in mice. Mol Cell Biochem 339:285–292

    Article  CAS  PubMed  Google Scholar 

  • Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, Grueter CA, Harris C, Biddinger S, Ilkayeva OR et al (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464:121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hokari F, Kawasaki E, Sakai A, Koshinaka K, Sakuma K, Kawanaka K (2010) Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles. J Appl Physiol 109:332–340

    Article  CAS  PubMed  Google Scholar 

  • Houtkooper RH, Argmann C, Houten SM, Cantó C, Jeninga EH, Andreux PA, Thomas C, Doenlen R, Schoonjans K, Auwerx J (2011) The metabolic footprint of aging in mice. Sci Rep 1:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13:225–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howald H, Hoppeler H, Claassen H, Mathieu O, Straub R (1985) Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflugers Arch 403:369–376

    Article  CAS  PubMed  Google Scholar 

  • Hudlicka O, Price S (1990) The role of blood flow and/or muscle hypoxia in capillary growth in chronically stimulated fast muscles. Pflugers Arch 417:67–72

    Article  CAS  PubMed  Google Scholar 

  • Jager S, Handschin C, St Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1. Proc Natl Acad Sci 104:12017–12022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing E, Gesta S, Kahn CR (2007) SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab 6:105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, Verdin EM, Kahn CR (2011) Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci 108:14608–14613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph A-M, Joanisse DR, Baillot RG, Hood DA (2012) Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. Exp Diabetes Res 2012:642038

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein M, Powers RW, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:1193–1196

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Jitrapakdee S, Thompson M (2007) Differential regulation of the promoter activity of the mouse UCP2 and UCP3 genes by MyoD and myogenin. J Biochem Mol Biol 40:921–927

    CAS  PubMed  Google Scholar 

  • Kirkwood SP, Munn EA, Brooks GA (1986) Mitochondrial reticulum in limb skeletal muscle. Am J Physiol 251:C395–C402

    CAS  PubMed  Google Scholar 

  • Koltai E, Szabo Z, Atalay M, Boldogh I, Naito H, Goto S, Nyakas C, Radak Z (2010) Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mech Ageing Dev 131:21–28

    Article  CAS  PubMed  Google Scholar 

  • Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127:1109–1122

    Article  CAS  PubMed  Google Scholar 

  • Lefort N, Yi Z, Bowen B, Glancy B, De Filippis EA, Mapes R, Hwang H, Flynn CR, Willis WT, Civitarese A et al (2009) Proteome profile of functional mitochondria from human skeletal muscle using one-dimensional gel electrophoresis and HPLC-ESI-MS/MS. J Proteomics 72:1046–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerin C, Rodgers JT, Kalume DE, Kim S-H, Pandey A, Puigserver P (2006) GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α. Cell Metab 3:429–438

    Article  CAS  PubMed  Google Scholar 

  • Lim J-H, Lee Y-M, Chun Y-S, Chen J, Kim J-E, Park J-W (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell 38:864–878

    Article  CAS  PubMed  Google Scholar 

  • Lin S-J, Ford E, Haigis M, Liszt G, Guarente L (2004) Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 18:12–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ (2010) A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol 588:1011–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu TF, Vachharajani VT, Yoza BK, McCall CE (2012) NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J Biol Chem 287:25758–25769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–148

    Article  CAS  PubMed  Google Scholar 

  • MacLellan JD, Gerrits MF, Gowing A, Smith PJS, Wheeler MB, Harper M-E (2005) Physiological increases in uncoupling protein 3 augment fatty acid oxidation and decrease reactive oxygen species production without uncoupling respiration in muscle cells. Diabetes 54:2343–2350

    Article  CAS  PubMed  Google Scholar 

  • Menzies KJ, Singh K, Saleem A, Hood DA (2013) Sirtuin 1-mediated effects of exercise and resveratrol on mitochondrial biogenesis. J Biol Chem 288:6968–6979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris JN, Crawford MD (1958) Coronary heart disease and physical activity of work; evidence of a national necropsy survey. Br Med J 2:1485–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris JN, Heady JA, Raffle PA, Roberts CG, PARKS JW (1953) Coronary heart-disease and physical activity of work. Lancet 265:1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Cantó C, Mottis A, Jo Y-S, Viswanathan M, Schoonjans K et al (2013) The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154:430–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayan N, Lee IH, Borenstein R, Sun J, Wong R, Tong G, Fergusson MM, Liu J, Rovira II, Cheng H-L et al (2012) The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature 492:199–204

    Article  CAS  PubMed  Google Scholar 

  • Nasrin N, Wu X, Fortier E, Feng Y, Bare OC, Chen S, Ren X, Wu Z, Streeper RS, Bordone L (2010) SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J Biol Chem 285:31995–32002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemoto S (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1. J Biol Chem 280:16456–16460

    Article  CAS  PubMed  Google Scholar 

  • O’Hagan KA, Cocchiglia S, Zhdanov AV, Tambuwala MM, Tambawala MM, Cummins EP, Monfared M, Agbor TA, Garvey JF, Papkovsky DB et al (2009) PGC-1alpha is coupled to HIF-1alpha-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proc Natl Acad Sci 106:2188–2193

    Article  PubMed  PubMed Central  Google Scholar 

  • Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y, Ward JL, Goodyear LJ, Tong Q (2009) Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging (Albany NY) 1:771–783

    Article  CAS  Google Scholar 

  • Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 100:8466–8471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauli JR, Ropelle ER, Cintra DE, De Souza CT, da Silva ASR, Moraes JC, Prada PO, de Almeida Leme JAC, Luciano E, Velloso LA et al (2010) Acute exercise reverses aged-induced impairments in insulin signaling in rodent skeletal muscle. Mech Ageing Dev 131:323–329

    Article  CAS  PubMed  Google Scholar 

  • Pette D, Staron RS (1990) Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 116:1–76

    CAS  PubMed  Google Scholar 

  • Philp A, Chen A, Lan D, Meyer GA, Murphy AN, Knapp AE, Olfert IM, McCurdy CE, Marcotte GR, Hogan MC et al (2011) Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor- coactivator-1 (PGC-1) deacetylation following endurance exercise. J Biol Chem 286:30561–30570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philp A, Hargreaves M, Baar K (2012) More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. AJP Endocrinol Metabol 302:E1343–E1351

    Article  CAS  Google Scholar 

  • Pirinen E, Lo Sasso G, Auwerx J (2012) Mitochondrial sirtuins and metabolic homeostasis. Best Pract Res Clin Endocrinol Metab 26:759–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price NL, Gomes AP, Ling AJY, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS et al (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15:675–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puigserver P (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90

    Article  CAS  PubMed  Google Scholar 

  • Rasbach KA, Gupta RK, Ruas JL, Wu J, Naseri E, Estall JL, Spiegelman BM (2010) PGC-1alpha regulates a HIF2alpha-dependent switch in skeletal muscle fiber types. Proc Natl Acad Sci 107:21866–21871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathbone CR, Booth FW, Lees SJ (2009) Sirt1 increases skeletal muscle precursor cell proliferation. Eur J Cell Biol 88:35–44

    Article  CAS  PubMed  Google Scholar 

  • Revollo JR, Grimm AA, Imai S-I (2004) The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 279:50754–50763

    Article  CAS  PubMed  Google Scholar 

  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nat Cell Biol 434:113–118

    CAS  Google Scholar 

  • Sahlin K, Harris RC (2008) Control of lipid oxidation during exercise: role of energy state and mitochondrial factors. Acta Physiol (Oxf) 194:283–291

    Article  CAS  Google Scholar 

  • Sakamoto K, Göransson O, Hardie DG, Alessi DR (2004) Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Am J Physiol Endocrinol Metab 287:E310–E317

    Article  CAS  PubMed  Google Scholar 

  • Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk S, McCurdy CE, Philp A, Chen MZ, Holliday MJ, Bandyopadhyay GK, Osborn O, Baar K, Olefsky JM (2011) Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J Clin Invest 121:4281–4288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiaffino S, Serrano A (2002) Calcineurin signaling and neural control of skeletal muscle fiber type and size. Trends Pharmacol Sci 23:569–575

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7:345–350

    Article  CAS  PubMed  Google Scholar 

  • Senf SM, Sandesara PB, Reed SA, Judge AR (2011) p300 Acetyltransferase activity differentially regulates the localization and activity of the FOXO homologues in skeletal muscle. AJP Cell Physiol 300:C1490–C1501

    Article  CAS  Google Scholar 

  • Shah ZH, Ahmed SU, Ford JR, Allison SJ, Knight JRP, Milner J (2012) A deacetylase-deficient SIRT1 variant opposes full-length SIRT1 in regulating tumor suppressor p53 and governs expression of cancer-related genes. Mol Cell Biol 32:704–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JJ, Kenney R, Gagne DJ, Frushour BP, Ladd W, Galonek HL, Israelian K, Song J, Razvadauskaite G, Lynch AV et al (2009) Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo. BMC Syst Biol 3:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spangenburg EE, Booth FW (2003) Molecular regulation of individual skeletal muscle fibre types. Acta Physiol Scand 178:413–424

    Article  CAS  PubMed  Google Scholar 

  • Steinberg GR, O’Neill HM, Dzamko NL, Galic S, Naim T, Koopman R, Jørgensen SB, Honeyman J, Hewitt K, Chen Z-P et al (2010) Whole body deletion of AMP-activated protein kinase {beta}2 reduces muscle AMPK activity and exercise capacity. J Biol Chem 285:37198–37209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, Zhai Q (2007) SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 6:307–319

    Article  CAS  PubMed  Google Scholar 

  • Suwa M, Nakano H, Radak Z, Kumagai S (2008) Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1alpha protein expressions in rat skeletal muscle. Metab Clin Exp 57:986–998

    Article  CAS  PubMed  Google Scholar 

  • Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–230

    Article  CAS  PubMed  Google Scholar 

  • Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO (2000) Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl Physiol 88:2219–2226

    CAS  PubMed  Google Scholar 

  • Xiao B, Heath R, Saiu P, Leiper FC, Leone P, Jing C, Walker PA, Haire L, Eccleston JF, Davis CT et al (2007) Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449:496–500

    Article  CAS  PubMed  Google Scholar 

  • Xiao C, Kim H-S, Lahusen T, Wang R-H, Xu X, Gavrilova O, Jou W, Gius D, Deng C-X (2010) SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J Biol Chem 285:36776–36784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong S, Salazar G, Patrushev N, Alexander RW (2011) FoxO1 mediates an autofeedback loop regulating SIRT1 expression. J Biol Chem 286:5289–5299

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, Lamming DW, Souza-Pinto NC, Bohr VA, Rosenzweig A et al (2007) Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130:1095–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zechner C, Lai L, Zechner JF, Geng T, Yan Z, Rumsey JW, Collia D, Chen Z, Wozniak DF, Leone TC et al (2010) Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab 12:633–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, Wang D, Feng J, Yu L, Zhu W-G (2010) Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 12:665–675

    Article  CAS  PubMed  Google Scholar 

  • Zhong L, D’Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T et al (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, Shulman GI (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A 99:15983–15987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

JA is the Nestlé Chair in Energy Metabolism and work in his laboratory is supported by the EPFL, the EU Ideas program (ERC-2008-ADG-231138), the NIH (1R01HL 106511-01A1), the Velux Stiftung, the SNSF (31003A-124713, and CRSII3-136201). KM is the recipient of a Heart and Stroke Foundation of Canada research fellowship award and is supported by the University of Ottawa and the Interdisciplinary School of Health Sciences Accelerator Initiative award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Auwerx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Menzies, K., Zaldivar-Jolissaint, J.F., Auwerx, J. (2016). Sirtuins as Metabolic Modulators of Muscle Plasticity. In: Houtkooper, R. (eds) Sirtuins. Proteins and Cell Regulation, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0962-8_9

Download citation

Publish with us

Policies and ethics