Skip to main content

SIRT5 Reveals Novel Enzymatic Activities of Sirtuins

  • Chapter
  • First Online:
Sirtuins

Part of the book series: Proteins and Cell Regulation ((PROR,volume 10))

  • 846 Accesses

Abstract

The human SIRT5 gene was first identified in 1999 using the sequence of yeast SIR2 protein (Frye RA, BiophysRes Commun 260:273–279, 1999). Sequence analysis suggests that it is more similar to prokaryotic sirtuins (Frye RA, BiophysRes Commun 260:273–279, 1999, Res Commun 273:793–798, 2000). Among the seven mammalian sirtuins, SIRT5 played a special role in our understanding of sirtuin enzymatic activity as it was the first sirtuin that was found to have a novel enzymatic activity other than the well-known NAD-dependent deacetylase activity (Imai S-I, Armstrong CM, Kaeberlein M, Guarente L, Nature 403:795–800, 2000; Tanner KG, Landry J, Sternglanz R, Denu JM, Proc Natl Acad Sci U S A 97:14178–14182, 2000), the hydrolysis of succinyl and malonyl lysine on proteins. This finding suggested that other sirtuins (e.g. SIRT4, SIRT6, and SIRT7) with weak deacetylase activity may also prefer other acyl lysine modifications, which was confirmed later with several sirtuins. In this chapter, we will summarize what is known about SIRT5, with a focus on the discovery of its new enzymatic activity and how the new activity finding influences the understanding of SIRT5 function, inhibitor development, and the study of other sirtuins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acker MG, Bowers AA, Walsh CT (2009) Generation of thiocillin variants by prepeptide gene replacement and in vivo processing by Bacillus cereus. J Am Chem Soc 131:17563–17565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen JL, Thompson JW, Lindblom KR, Johnson ES, Yang C-S, Lilley LR, Freel CD, Moseley MA, Kornbluth S (2011) A biotin switch-based proteomics approach identifies 14-3-3ζ as a target of Sirt1 in the metabolic regulation of Caspase-2. Mol Cell 43:834–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463:899–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Jiang H, Lin H (2009) Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogs and 32P-NAD. Biochemistry 48:2878–2890

    Article  CAS  PubMed  Google Scholar 

  • Du J, Zhou Y, Su X, Yu J, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH et al (2011) Sirt5 is an NAD-dependent protein lysine demalonylase and desuccinylase. Science 334:806–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finley LWS, Carracedo A, Lee J, Souza A, Egia A, Zhang J, Teruya-Feldstein J, Moreira PI, Cardoso SM, Clish CB et al (2011) SIRT3 opposes reprogramming of cancer cell metabolism through HIF1[alpha] destabilization. Cancer Cell 19:416–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frye RA (1999) Characterization of five human cDNAs with homology to the yeast Sir2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 260:273–279

    Article  CAS  PubMed  Google Scholar 

  • Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273:793–798

    Article  CAS  PubMed  Google Scholar 

  • Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G et al (2006) SIRT4 Inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β Cells. Cell 126:941–954

    Article  CAS  PubMed  Google Scholar 

  • He B, Du J, Lin H (2012) Thiosuccinyl peptides as Sirt5-ppecific inhibitors. J Am Chem Soc 134:1922–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imai S-I, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Khan S, Wang Y, Charron G, He B, Sebastian C, Du J, Kim R, Ge E, Mostoslavsky R et al (2013) Sirt6 regulates TNFα secretion via hydrolysis of long chain fatty acyl lysine. Nature 496(7443):110–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai Y, Fujii H, Okada M, Tsuchie Y, Uchida K, Osawa T (2006) Formation of Nε-(succinyl)lysine in vivo: a novel marker for docosahexaenoic acid-derived protein modification. J Lipid Res 47:1386–1398

    Article  CAS  PubMed  Google Scholar 

  • Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L et al (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23:607–618

    Article  CAS  PubMed  Google Scholar 

  • Liszt G, Ford E, Kurtev M, Guarente L (2005) Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 280:21313–21320

    Article  CAS  PubMed  Google Scholar 

  • Lombard DB, Alt FW, Cheng H-L, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A et al (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 27:8807–8814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen AS, Olsen CA (2012) Substrates for efficient fluorometric screening employing the NAD-dependent Sirtuin 5 lysine Deacylase (KDAC) enzyme. J Med Chem 55:5582–5590

    Article  CAS  PubMed  Google Scholar 

  • Maurer B, Rumpf T, Scharfe M, Stolfa DA, Schmitt ML, He W, Verdin E, Sippl W, Jung M (2012) Inhibitors of the NAD+-dependent protein desuccinylase and demalonylase Sirt5. ACS Med Chem Lett 3:1050–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16:4623–4635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris SM (2002) Regulation of enzymes of the urea cycle and arginine metabolism. Annu Rev Nutr 22:87–105

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Lomb DJ, Haigis MC, Guarente L (2009) SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137:560–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Ogura M, Ogura K, Tanaka D, Inagaki N (2012) SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice. FEBS Lett 586:4076–4081

    Article  CAS  PubMed  Google Scholar 

  • North BJ, Schwer B, Ahuja N, Marshall B, Verdin E (2005) Preparation of enzymatically active recombinant class III protein deacetylases. Methods 36:338–345

    Article  CAS  PubMed  Google Scholar 

  • Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, Luo H, Zhang Y, He W, Yang K et al (2011) The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics 10:M111.012658. doi:10.1074/mcp.M1111.012658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen R, Becher D, Büttner K, Biran D, Hecker M, Ron EZ (2004) Probing the active site of homoserine trans-succinylase. FEBS Lett 577:386–392

    Article  CAS  PubMed  Google Scholar 

  • Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CFW, Steegborn C (2008) Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol 382:790–801

    Article  CAS  PubMed  Google Scholar 

  • Schuetz A, Min J, Antoshenko T, Wang C-L, Allali-Hassani A, Dong A, Loppnau P, Vedadi M, Bochkarev A, Sternglanz R et al (2007) Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure 15:377–389

    Article  CAS  PubMed  Google Scholar 

  • Schwer B, North BJ, Frye RA, Ott M, Verdin E (2002) The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide–dependent deacetylase. J Cell Biol 158:647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwer B, Eckersdorff M, Li Y, Silva JC, Fermin D, Kurtev MV, Giallourakis C, Comb MJ, Alt FW, Lombard DB (2009) Calorie restriction alters mitochondrial protein acetylation. Aging Cell 8:604–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B, Lombard DB, Li Y, Bunkenborg J, Alt FW, Denu JM et al (2010) SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab 12:654–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, Tanokura M, Denu JM, Prolla TA (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143:802–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suenkel B, Fischer F, Steegborn C (2013) Inhibition of the human deacylase Sirtuin 5 by the indole GW5074. Bioorg Med Chem Lett 23:143–146

    Article  CAS  PubMed  Google Scholar 

  • Tanner KG, Landry J, Sternglanz R, Denu JM (2000) Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci U S A 97:14178–14182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y et al (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327:1004–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegener D, Wirsching F, Riester D, Schwienhorst A (2003) A fluorogenic histone deacetylase assay well suited for high-throughput activity screening. Chem Biol 10:61–68

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Dai J, Dai L, Tan M, Cheng Z, Wu Y, Boeke JD, Zhao Y (2012) Lysine succinylation and lysine malonylation in histones. Mol Cell Proteomics 11:100–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu W, Dittenhafer-Reed KE, Denu JM (2012) SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J Biol Chem 287:14078–14086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y (2011) Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 7:58–63

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H et al (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Zhang H, He B, Du J, Lin H, Cerione RA, Hao Q (2012) The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5). J Biol Chem 287:28307–28314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu AY, Zhou Y, Khan S, Deitsch KW, Hao Q, Lin H (2012) Plasmodium falciparum Sir2A preferentially hydrolyzes medium and long chain fatty acyl lysine. ACS Chem Biol 7:155–159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in our laboratory on Sirt5 has been supported by NIH R01GM086703, R01CA163255, and R21NS073049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hening Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

He, B., Lin, H. (2016). SIRT5 Reveals Novel Enzymatic Activities of Sirtuins. In: Houtkooper, R. (eds) Sirtuins. Proteins and Cell Regulation, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0962-8_6

Download citation

Publish with us

Policies and ethics