Advertisement

The Application of Immunochromatographic Analysis in Early Detection of Gastric Cancer

  • Kan Wang
  • Daxiang Cui
Chapter
Part of the Translational Medicine Research book series (TRAMERE)

Abstract

To develop a simple and fast detection method of gastric cancer biomarkers is very important for clinical diagnosis of gastric cancer patients. This chapter summarizes that nanoparticles such as gold nanoparticles, magnetic nanoparticles, and quantum dots labeled immune chromatography analysis methods were developed, matched quantification devices were also developed, integrated system markedly enhanced the sensitivity and specificity of biomarker detection, and have great potential in early diagnosis of gastric cancer.

Keywords

Gastric cancer Sera biomarker Magnetic nanoparticles Quantum dots Immune test strip 

References

  1. 1.
    Newman DJ, Thakkar H, Edwards RG, et al. Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine. Kidney Int. 1995;47(1):312–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Van Weeman B, Schuurs A. Immunoassay using antigen-enzyme conjugates. FEBS Lett. 1971;15:232–5.CrossRefGoogle Scholar
  3. 3.
    Hales C, Randle P. Immunoassay of insulin with insulin-antibody precipitate. Biochem J. 1963;88(1):137–46.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ahene AB, Morrow C, Rusnak D, et al. Ligand binding assays in the 21st century laboratory: automation. AAPS J. 2012;14(1):1–12.CrossRefGoogle Scholar
  5. 5.
    Tung NH, Chikae M, Ukita Y, et al. Sensing technique of silver nanoparticles as labels for immunoassay using liquid electrode plasma atomic emission spectrometry. Anal Chem. 2012;84(3):1210–3.PubMedCrossRefGoogle Scholar
  6. 6.
    Guitard J, Sendid B, Thorez S, et al. Evaluation of a recombinant antigen-based enzyme immunoassay for the diagnosis of noninvasive aspergillosis. J Clin Microbiol. 2012;50(3):762–5.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Verch T, Bakhtiar R. Miniaturized immunoassays: moving beyond the microplate. Bioanalysis. 2012;4(2):177–88.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang BY, Song HX, Chen T, et al. A microfluidic platform for multi-antigen immunofluorescence assays. Appl Mech Mater. 2012;108:200–5.CrossRefGoogle Scholar
  9. 9.
    Strathmann FG, Borlee G, Born DE, et al. Multiplex immunoassays of peptide hormones extracted from formalin-fixed, paraffin-embedded tissue accurately subclassify pituitary adenomas. Clin Chem. 2012;58(2):366–74.PubMedCrossRefGoogle Scholar
  10. 10.
    Flatley JE, Garner CM, Al-Turki M, et al. Determinants of urinary methylmalonic acid concentration in an elderly population in the United Kingdom. Am J Clin Nutr. 2012;95(3):686–93.PubMedCrossRefGoogle Scholar
  11. 11.
    Arai M, Togo S, Kanda T, et al. Quantification of hepatitis B surface antigen can help predict spontaneous hepatitis B surface antigen seroclearance. Eur J Gastroenterol Hepatol. 2012;24(4):414–8.PubMedGoogle Scholar
  12. 12.
    Sloan JH, Ackermann BL, Carpenter JW, et al. A novel, high-sensitivity and drug-tolerant sandwich immunoassay for the quantitative measurement of circulating proteins. Bioanalysis. 2012;4(3):241–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Bayes-Genis A, de Antonio M, Galán A, et al. Combined use of high-sensitivity ST2 and NTproBNP to improve the prediction of death in heart failure. Eur J Heart Fail. 2012;14(1):32–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Mehta PK, Kalra M, Khuller GK, et al. Development of an ultrasensitive polymerase chain reaction–amplified immunoassay based on mycobacterial RD antigens: implications for the serodiagnosis of tuberculosis. Diagn Microbiol Infect Dis. 2012;72(2):166–74.PubMedCrossRefGoogle Scholar
  15. 15.
    Maple P, Breuer J, Quinlivan M, et al. Comparison of a commercial Varicella Zoster glycoprotein IgG enzyme immunoassay with a reference time resolved fluorescence immunoassay (VZV TRFIA) for measuring VZV IgG in sera from pregnant women, sera sent for confirmatory testing and pre and post vOka vaccination sera from healthcare workers. J Clin Virol. 2012;23(3):201–7.CrossRefGoogle Scholar
  16. 16.
    Smits GP, van Gageldonk PG, Schouls LM, et al. Development of a bead-based multiplex immunoassay for the simultaneously quantitative detection of IgG serum antibodies against Measles, Mumps, Rubella and Varicella Zoster. Clin Vaccine Immunol. 2012;19(3):369–400.CrossRefGoogle Scholar
  17. 17.
    Deutschbein T, Broecker-Preuss M, Flitsch J, et al. Salivary cortisol as a diagnostic tool for Cushing’s syndrome and adrenal insufficiency: improved screening by an automatic immunoassay. Eur J Endocrinol. 2012;166(4):613–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang Z, Zong S, Li W, et al. SERS-fluorescence joint spectral encoding using organic-metal-QDs hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice. J Am Chem Soc. 2012;134(6):2993–3000.PubMedCrossRefGoogle Scholar
  19. 19.
    Connolly P, Hage CA, Bariola JR, et al. Blastomyces dermatitidis antigen detection by quantitative enzyme immunoassay. Clin Vaccine Immunol. 2012;19(1):53–6.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lattanzio VMT, Nivarlet N, Lippolis V, et al. Multiplex dipstick immunoassay for semi-quantitative determination of Fusarium mycotoxins in cereals. Anal Chim Acta. 2012;718(3):99–108.PubMedCrossRefGoogle Scholar
  21. 21.
    Warsinke A. Point-of-care testing of proteins. Anal Bioanal Chem. 2009;393(5):1393–405.PubMedCrossRefGoogle Scholar
  22. 22.
    Brooks DE, Devine DV, Harris PC, et al. RAMPTM: a rapid, quantitative whole blood immunochromatographic platform for point-of-care testing. Clin Chem. 1999;45(9):1676.PubMedGoogle Scholar
  23. 23.
    Shim WB, Yang ZY, Kim JS, et al. Development of immunochromatography strip-test using nanocolloidal gold-antibody probe for the rapid detection of aflatoxin B1 in grain and feed samples. J Microbiol Biotechnol. 2007;17(10):1629–37.PubMedGoogle Scholar
  24. 24.
    Zuk R, Ginsberg V, Houts T, et al. Enzyme immunochromatography—aquantitative immunoassay requiring no instrumentation. Clin Chem. 1985;31(7):1144–50.PubMedGoogle Scholar
  25. 25.
    Lingerfelt BM, Mattoussi H, Goldman ER, et al. Preparation of quantum dot-biotin conjugates and their use in immunochromatography assays. Anal Chem. 2003;75(16):4043–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Ngom B, Guo Y, Wang X, et al. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal Bioanal Chem. 2010;397(3):1113–35.PubMedCrossRefGoogle Scholar
  27. 27.
    Shim WB, Yang ZY, Kim JY, et al. Immunochromatography using colloidal gold-antibody probe for the detection of atrazine in water samples. J Agric Food Chem. 2006;54(26):9728–34.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang G, Guo J, Wang X. Immunochromatographic lateral flow strip tests. Methods Mol Biol. 2009;504(3):169–83.PubMedCrossRefGoogle Scholar
  29. 29.
    Kolosova AY, De Saeger S, Sibanda L, et al. Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of zearalenone and deoxynivalenol. Anal Bioanal Chem. 2007;389(7):2103–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Zong C, Wu J, Wang C, et al. Chemiluminescence imaging immunoassay of multiple tumor markers for cancer screening. Anal Chem. 2012;84(5):2410–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Guirgis BSS, Sá e Cunha C, Gomes I, et al. Gold nanoparticle-based fluorescence immunoassay for malaria antigen detection. Anal Bioanal Chem. 2012;402(3):1019–27.PubMedCrossRefGoogle Scholar
  32. 32.
    Ren G, Yu Z, Ma S, et al. Determination of polybrominated diphenyl ethers and their methoxylated and hydroxylated metabolites in human serum from electronic waste dismantling workers. Anal Methods. 2011;3(2):408–13.CrossRefGoogle Scholar
  33. 33.
    Wu D, Li R, Wang H, et al. Hollow mesoporous silica microspheres as sensitive labels for immunoassay of prostate-specific antigen. Analyst. 2012;137(3):608–13.PubMedCrossRefGoogle Scholar
  34. 34.
    Schreier S, Doungchawee G, Triampo D, et al. Development of a magnetic bead fluorescence microscopy immunoassay to detect and quantify Leptospira in environmental water samples. Acta Trop. 2012;122(1):119–25.PubMedCrossRefGoogle Scholar
  35. 35.
    Mandappa IM, Ranjini A, Haware DJ, et al. Immunoassay for the detection of lead ions in environmental water samples. Int J Environ Anal Chem. 2012;92(3):334–43.CrossRefGoogle Scholar
  36. 36.
    Rossi CN, Takabayashi CR, Ono MA, et al. Immunoassay based on monoclonal antibody for aflatoxin detection in poultry feed. Food Chem. 2012;132(4):2211–6.CrossRefGoogle Scholar
  37. 37.
    Martínez MA, Ballesteros S. Two Suicidal fatalities due to the ingestion of chlorfenvinphos formulations: simultaneous determination of the pesticide and the petroleum distillates in tissues by gas chromatography–flame-ionization detection and gas chromatography–mass spectrometry. J Anal Toxicol. 2012;36(1):44–51.PubMedCrossRefGoogle Scholar
  38. 38.
    Reither K, Saathoff E, Jung J, et al. Evaluation of Diagnos TB AG, a flow-through immunoassay for rapid detection of pulmonary tuberculosis [technical note]. Int J Tuberc Lung Dis. 2010;14(2):238–40.PubMedGoogle Scholar
  39. 39.
    Qi YH, Shan WC, Liu YZ, et al. Production of the polyclonal antibody against sudan 3 and immunoassay of sudan dyes in food samples. J Agric Food Chem. 2012;60(9):2116–22.PubMedCrossRefGoogle Scholar
  40. 40.
    Li X, Zhang G, Deng R, et al. Development of rapid immunoassays for the detection of ractopamine in swine urine. Food Addit Contam. 2010;27(8):1096–103.CrossRefGoogle Scholar
  41. 41.
    Ecollan P, Collet JP, Boon G, et al. Pre-hospital detection of acute myocardial infarction with ultra-rapid human fatty acid-binding protein (H-FABP) immunoassay. Int J Cardiol. 2007;119(3):349–54.PubMedCrossRefGoogle Scholar
  42. 42.
    Hampl J, Hall M, Mufti NA, et al. Upconverting phosphor reporters in immunochromatographic assays. Anal Biochem. 2001;288(2):176–87.PubMedCrossRefGoogle Scholar
  43. 43.
    Xu QF, Xu H, Gu H, et al. Development of lateral flow immunoassay system based on superparamagnetic nanobeads as labels for rapid quantitative detection of cardiac troponin I. Mater Sci Eng C. 2009;29(3):702–7.CrossRefGoogle Scholar
  44. 44.
    Kurihara T, Yanagida A, Yokoi H, et al. Evaluation of cardiac assays on a benchtop chemiluminescent enzyme immunoassay analyzer, PATHFAST. Anal Biochem. 2008;375(1):144–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Jun L, Wenquan Y, Nanhua W, et al. Analysis result of faecal occult blood test based on colloidal immunization method. Lab Med Clin. 2008;2:111–2. (in Chinese).Google Scholar
  46. 46.
    Clavijo E, Díaz R, Anguita A, et al. Comparison of a dipstick assay for detection of Brucella-specific immunoglobulin M antibodies with other tests for serodiagnosis of human brucellosis. Clin Vaccine Immunol. 2003;10(4):612–5.CrossRefGoogle Scholar
  47. 47.
    Ruiming Z, Dandan T, Jie C, et al. Detection of mycoplasma and chlamydia in 292 cases of female urogenital tract infections and the antibiotic susceptibility analysis. Chin Prac Med. 2008;3(28):15–6. (in Chinese).Google Scholar
  48. 48.
    Yueyue L, Hangwei C, Ping W, et al. Application of gold immunochromatographic assay for a rapid detection of influenza viruses. J Fourth Mil Med Univ. 2008;29(18):1652–4. (in Chinese).Google Scholar
  49. 49.
    Saijun L, Yongjun Z. Optimization of production process of diagnostic reagent of colloidal gold for HBsAb. Prog Mod Biomed. 2008;8(002):289–92. (in Chinese).Google Scholar
  50. 50.
    Jingfeng T, Xiaoyan L, Xinglong W, et al. Development of colloidal gold-immunochromatographic assay for brucellosis. Chin J Biol. 2007;20(2):119–21. (in Chinese).Google Scholar
  51. 51.
    Chen TS, Chang FY, Lee SD. Serodiagnosis of Helicobacter pylori infection: comparison and correlation between enzyme-linked immunosorbent assay and rapid serological test results. J Clin Microbiol. 1997;35(1):184.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Yonghong Y. Application of gold immunchromatographic assay in rapid diagnosis of tuberculosis. Gansu Sci Technol. 2009;24(22):173–4. (in Chinese).Google Scholar
  53. 53.
    Takeda T, Yamagata K, Youhida Y, et al. Evaluation of immunochromatography-based rapid detection kit for fecal Escherichia coli O 157. Kansenshogaku Zasshi. 1998;72(8):834–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Osikwicz G, Beggs M, Brookhart P, et al. One-step chromatographicimmunoassay for qualitative determination of choriogonadotropin in urine. Clin Chem. 1990;36(9):1586.Google Scholar
  55. 55.
    Hedstrom J, Korvuo A, Kenkimaki P, et al. Urinary trypsinogen-2 test strip for acute pancreatitis. Lancet. 1996;347:729–31.PubMedCrossRefGoogle Scholar
  56. 56.
    Wang J. Nanomaterial-based electrochemical biosensors. Analyst. 2005;130(4):421–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Wang J. Nanomaterial-based amplified transduction of biomolecular interactions. Small. 2005;1(11):1036–43.PubMedCrossRefGoogle Scholar
  58. 58.
    Ekimov A, Efros AL, Onushchenko A. Quantum size effect in semiconductor microcrystals. Solid State Commun. 1985;56(11):921–4.CrossRefGoogle Scholar
  59. 59.
    Jun Y, Huh YM, Choi J, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc. 2005;127(16):5732–3.PubMedCrossRefGoogle Scholar
  60. 60.
    Dingreville R, Qu J, Cherkaoui M. Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids. 2005;53(8):1827–54.CrossRefGoogle Scholar
  61. 61.
    Kawabata S, Kashiwaya S, Asano Y, et al. Effect of zero-energy bound states on macroscopic quantum tunneling in high-Tc superconductor junctions. Phys Rev B. 2005;72(5):052506–9.CrossRefGoogle Scholar
  62. 62.
    Yu I, Isobe T, Senna M. Optical properties and characteristics of ZnS nano-particles with homogeneous Mn distribution. J Phys Chem Solid. 1996;57(4):373–9.CrossRefGoogle Scholar
  63. 63.
    Hao E, Bailey RC, Schatz GC, et al. Synthesis and optical properties of “branched” gold nanocrystals. Nano Lett. 2004;4(2):327–30.CrossRefGoogle Scholar
  64. 64.
    Novak JP, Brousseau III LC, Vance FW, et al. Nonlinear optical properties of molecularly bridged gold nanoparticle arrays. J Am Chem Soc. 2000;122(48):12029–30.CrossRefGoogle Scholar
  65. 65.
    Caruso F, Rodda E, Furlong DN, et al. DNA binding and hybridization on gold and derivatized surfaces. Sens Actuators B. 1997;41(1–3):189–97.CrossRefGoogle Scholar
  66. 66.
    Zhao H, Lin L, Li J, et al. DNA biosensor with high sensitivity amplified by gold nanoparticles. J Nanopart Res. 2001;3(4):321–3.CrossRefGoogle Scholar
  67. 67.
    Liqiang L, Chifang P, Zhengyu J, et al. Review on development and application of nanogold in rapid detection for food safety. Food Sci. 2007;28(5):348–52. (in Chinese).Google Scholar
  68. 68.
    Mirkin CA. Programming the assembly of two-and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg Chem. 2000;39(11):2258–72.PubMedCrossRefGoogle Scholar
  69. 69.
    Glad C, Grubb AO. Immunocapillarymigration with enzyme-labeled antibodies: rapid quantification of C-reactive protein in human plasma. Anal Biochem. 1981;116(2):335–40.PubMedCrossRefGoogle Scholar
  70. 70.
    Beggs M, Novotny M, Sampedro S. A selfperforming chromatographic immunoassay for the qualitative determination of human chorionic gonadotrophin (HCG) in urine and serum. Clin Chem. 1990;36(11):1084–5.Google Scholar
  71. 71.
    Müller-Bardorff M, Freitag H, Scheffold T, et al. Development and characterization of a rapid assay for bedside determinations of cardiac troponin T. Circulation. 1995;92(10):2869–75.PubMedCrossRefGoogle Scholar
  72. 72.
    Zhang B, Tang D, Liu B, et al. Nanogold-functionalized magnetic beads with redox activity for sensitive electrochemical immunoassay of thyroid-stimulating hormone. Anal Chim Acta. 2011;711(20):17–23.PubMedGoogle Scholar
  73. 73.
    Perfézou M, Turner A, Merkoçi A. Cancer detection using nanoparticle-based sensors. Chem Soc Rev. 2012;41(7):2606–22.PubMedCrossRefGoogle Scholar
  74. 74.
    Huang L, Zhang Y, Xie C, et al. Research of reflectance photometer based on optical absorption. Opt Int J Light Electron Optics. 2010;121(19):1725–8.CrossRefGoogle Scholar
  75. 75.
    Wang S, Zhang C, Wang J, et al. Development of colloidal gold-based flow-through and lateral-flow immunoassays for the rapid detection of the insecticide carbaryl. Anal Chim Acta. 2005;546(2):161–6.CrossRefGoogle Scholar
  76. 76.
    Lihua H. The application and evaluation of HBVM test card for rapid detection of serum hepatitis B marks. J Qiqihar Med Coll. 2001;22(12):1433–4. (in Chinese).Google Scholar
  77. 77.
    Meng Q, Shengli B, ZhingHeng D. The study of colloidal gold immunochromatography assay for the synchronous detection of hepatitis A and E virus-specific IgM antibody. Chin J Lab Diagn. 2003;7(2):90–2. (in Chinese).Google Scholar
  78. 78.
    Yuqin Q, Zhiying Z. Investigation and analysis on the positive rate of helicobacter pylori antibody in healthy people Journal of Chinese Modern Medicine. 2009;6(2):155. (in Chinese).Google Scholar
  79. 79.
    Yan J, Changlong L, Fengpign D. Preparation of colloid gold kit for one-step chromatography immunoassay to monitor the dopes of morphine and met-amphetamine simultaneously. Chin J Immunol. 2007;23(7):637–40. (in Chinese).Google Scholar
  80. 80.
    Kim GM, Wutzler A, Radusch HJ, et al. One-dimensional arrangement of goldnanoparticles by electrospinning. Chem Mater. 2005;17(20):4949–57.CrossRefGoogle Scholar
  81. 81.
    Tyndall SJ, Walikonis RS. Report the receptor tyrosine kinase Met and its ligand hepatocyte growth factor are clustered at excitatory synapses and can enhance clustering of synaptic proteins. Cell Cycle. 2006;5(14):1560–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Kim HS, Pyun JC. Hyper sensitive strip test with chemi-luminescence signal band. Procedia Chem. 2009;1(1):1043–6.CrossRefGoogle Scholar
  83. 83.
    Jianing L, Yibing L, Juanjuan J. Chemiluminescence immunoassay for luteinizing hormone. J Isot. 2010;23(1):28–33. (in Chinese).Google Scholar
  84. 84.
    Shengchu L. Early abortion and the detection of pathogens in preterm pregnant women. Guangxi Med J. 2007;29(4):496–7. (in Chinese).Google Scholar
  85. 85.
    Laderman EI, Whitworth E, Dumaual E, et al. Rapid, sensitive, and specific lateral-flow immunochromatographic point-of-care device for detection of herpes simplex virus type 2-specific immunoglobulin G antibodies in serum and whole blood. Clin Vaccine Immunol. 2008;15(1):159–63.PubMedCrossRefGoogle Scholar
  86. 86.
    Fang Z, Ge C, Zhang W, et al. A lateral flow biosensor for rapid detection of DNA-binding protein c-jun. Biosens Bioelectron. 2011;21(1):192–6.CrossRefGoogle Scholar
  87. 87.
    Glynou K, Ioannou PC, Christopoulos TK, et al. Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal Chem. 2003;75(16):4155–60.PubMedCrossRefGoogle Scholar
  88. 88.
    AziziM D. Comparison study of semiquantitative test strips for detecting human serum albumin (HSA) in urine specimens. J Diabetes Metab Disord (Formerly Iran J Diabetes Lipid Disord). 2011;10(1):1–5.Google Scholar
  89. 89.
    Dineva MA, Mahilum-Tapay L, Lee H. Sample preparation: a challenge in the development of point-of-care nucleic acid-based assays for resource-limited settings. Analyst. 2007;132(12):1193–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Omidfar K, Kia S, Larijani B. Development of a colloidal gold-based immunochromatographic test strip for screening of microalbuminuria. Hybridoma. 2011;30(2):117–24.PubMedCrossRefGoogle Scholar
  91. 91.
    Holgate CS, Jackson P, Cowen PN, et al. Immunogold-silver staining: new method of immunostaining with enhanced sensitivity. J Histochem Cytochem. 1983;31(7):938–44.PubMedCrossRefGoogle Scholar
  92. 92.
    Löning T, Henke RP, Reichart P, et al. In situ hybridization to detect Epstein-Barr virus DNA in oral tissues of HIV-infected patients. Virchows Arch. 1987;412(2):127–33.CrossRefGoogle Scholar
  93. 93.
    Molday R, Yen S, Rembaum A. Application of magnetic microspheres in labelling and separation of cells. Nature. 1977;268(4):437–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Xinquan L, Meng J, Changyu L, et al. The current situation of studying SPIO and its application in the field of NSCs. J Clin Med Pract. 2003;7(3):232–5. (in Chinese).Google Scholar
  95. 95.
    Gangopadhyay S, Hadjipanayis G, Dale B, et al. Magnetic properties of ultrafine iron particles. Phys Rev B. 1992;45(17):9778–87.CrossRefGoogle Scholar
  96. 96.
    Puertas S, Moros M, Fernández-Pacheco R, et al. Designing novel nano-immunoassays: antibody orientation versus sensitivity. J Phys D Appl Phys. 2010;43:474012–9.CrossRefGoogle Scholar
  97. 97.
    Patel D, Huang SM, Baglia LA, et al. The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J. 1999;18(18):5061–72.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Hamm CW, Goldmann BU, Heeschen C, et al. Emergency room triage of patients with acute chest pain by means of rapid testing for cardiac troponin T or troponin I. N Engl J Med. 1997;337(23):1648–53.PubMedCrossRefGoogle Scholar
  99. 99.
    Liu T, Khanna KM, Carriere BN, et al. Gamma interferon can prevent herpes simplex virus type 1 reactivation from latency in sensory neurons. J Virol. 2001;75(22):11178–84.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Seo K, Brackett R, Frank J. Rapid detection of Escherichia coli O157: H7 using immuno-magnetic flow cytometry in ground beef, apple juice, and milk. Int J Food Microbiol. 1998;44(1–2):115–23.PubMedCrossRefGoogle Scholar
  101. 101.
    Carbonari M, Cibati M, Cherchi M, et al. Detection and characterization of apoptotic peripheral blood lymphocytes in human immunodeficiency virus infection and cancer chemotherapy by a novel flow immunocytometric method. Blood. 1994;83(5):1268–77.PubMedGoogle Scholar
  102. 102.
    Drummen GP. Quantum dots—from synthesis to applications in biomedicine and life sciences. Int J Mol Sci. 2010;11(1):154–63.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271(5251):933–7.CrossRefGoogle Scholar
  104. 104.
    Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281(5385):2013–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281(5385):2016–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Watson A, Wu X, Bruchez M. Lighting up cells with quantum dots. Biotechniques. 2003;34(2):296–300.PubMedGoogle Scholar
  107. 107.
    Xing Y, Xia Z, Rao J. Semiconductor quantum dots for biosensing and in vivo imaging. IEEE Trans Nanobioscience. 2009;8(1):4–12.PubMedCrossRefGoogle Scholar
  108. 108.
    Leatherdale C, Woo WK, Mikulec F, et al. On the absorption cross section of CdSe nanocrystal quantum dots. J Phys Chem B. 2002;106(31):7619–22.CrossRefGoogle Scholar
  109. 109.
    Alivisatos AP. Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem. 1996;100(31):13226–39.CrossRefGoogle Scholar
  110. 110.
    Rousserie G, Sukhanova A, Even-Desrumeaux K, et al. Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays. Crit Rev Oncol Hematol. 2010;74(1):1–15.PubMedCrossRefGoogle Scholar
  111. 111.
    Smith AM, Gao X, Nie S. Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol. 2004;80(3):377–85.PubMedCrossRefGoogle Scholar
  112. 112.
    Mansur HS. Quantum dots and nanocomposites. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(2):113–29.PubMedCrossRefGoogle Scholar
  113. 113.
    Wehrenberg BL, Wang C, Guyot-Sionnest P. Interband and intraband optical studies of PbSe colloidal quantum dots. J Phys Chem B. 2002;106(41):10634–40.CrossRefGoogle Scholar
  114. 114.
    Bailey RE, Nie S. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc. 2003;125(23):7100–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Nanosphere Inc. (Commercial Ave Northbrook, Illinois, USA). www.nanosphere.us.
  116. 116.
    Genicon Science Corp (San Diego, Calif, US). http://www.geniconsciences.com/.
  117. 117.
    Quantum Dots Corp(San Marcos, Texas (Austin Metroplex), USA). www.qdots.com.
  118. 118.
    Ornberg RL, Harper TF, Liu H. Western blot analysis with quantum dot fluorescence technology: a sensitive and quantitative method for multiplexed proteomics. Nat Methods. 2005;2(1):79–81.CrossRefGoogle Scholar
  119. 119.
    Yang H, Guo Q, He R, et al. A quick and parallel analytical method based on quantum dots labeling for ToRCH-related antibodies. Nanoscale Res Lett. 2009;4(12):1469–74.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Ho JAA, Wauchope R. A strip liposome immunoassay for aflatoxin B1. Anal Chem. 2002;74(7):1493–6.PubMedCrossRefGoogle Scholar
  121. 121.
    Lin YY, Wang J, Liu G, et al. A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen. Biosens Bioelectron. 2008;23(11):1659–65.PubMedCrossRefGoogle Scholar
  122. 122.
    Hao Y, Ding L, Rong H, et al. A novel quantum dots-based point of care test for syphilis. Nanoscale Res Lett. 2010;5(5):875–81.CrossRefGoogle Scholar
  123. 123.
    Edwards KA, Baeumner AJ. Optimization of DNA-tagged dye-encapsulating liposomes for lateral-flow assays based on sandwich hybridization. Anal Bioanal Chem. 2006;386(5):1335–43.PubMedCrossRefGoogle Scholar
  124. 124.
    Sharma SK, Eblen BS, Bull RL, et al. Evaluation of lateral-flow Clostridium botulinum neurotoxin detection kits for food analysis. Appl Environ Microbiol. 2005;71(7):3935–41.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Horton J, Swinburne S, O’Sullivan M. A novel, rapid, single-step immunochromatographic procedure for the detection of mouse immunoglobulin. J Immunol Methods. 1991;140(1):131–4.PubMedCrossRefGoogle Scholar
  126. 126.
    Buechler KF, Moi S, Noar B, et al. Simultaneous detection of seven drugs of abuse by the TriageTM panel for drugs of abuse. Clin Chem. 1992;38(9):1678–84.PubMedGoogle Scholar
  127. 127.
    Tippkötter N, Stückmann H, Kroll S, et al. A semi-quantitative dipstick assay for microcystin. Anal Bioanal Chem. 2009;394(3):863–9.PubMedCrossRefGoogle Scholar
  128. 128.
    Faulstich K, Haberstroh K, Gruler R, et al. Handheld and portable test systems for immunodiagnostics, nucleic acid detection and more. Soc Photo Opt Instrum Eng. 2008;6945(1):69450H1–10.Google Scholar
  129. 129.
    Ming D. Study of nano-gold immunochromatographic quantitative assay based on photoelectric detection and processing. J Fuzhou Univ. 2005;4–5. (in Chinese).Google Scholar
  130. 130.
    Chandler J, Gurmin T, Robinson N. The place of gold in rapid tests. IVD Technol. 2000;6(2):37–49.Google Scholar
  131. 131.
    Kim S, Park JK. Development of a test strip reader for a lateral flow membrane-based immunochromatographic assay. Biotechnol Bioproc Eng. 2004;9(2):127–31.CrossRefGoogle Scholar
  132. 132.
    Li Z, Wang Y, Wang J, et al. Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal Chem. 2010;82(16):7008–14.PubMedCrossRefGoogle Scholar
  133. 133.
    Zou Z, Du D, Wang J, et al. Quantum dot-based immunochromatographic fluorescent biosensor for biomonitoring trichloropyridinol, a biomarker of exposure to chlorpyrifos. Anal Chem. 2010;82(12):5125–33.PubMedCrossRefGoogle Scholar
  134. 134.
  135. 135.
    Wang Y, Xu H, Wei M, et al. Study of superparamagnetic nanoparticles as labels in the quantitative lateral flow immunoassay. Mater Sci Eng C. 2009;29(3):714–8.CrossRefGoogle Scholar
  136. 136.
    Granade TC, Workman S, Wells SK, et al. Rapid detection and differentiation of antibodies to HIV-1 and HIV-2 using multivalent antigens and magnetic immunochromatography testing. Clin Vaccine Immunol. 2010;17(6):1034–9.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Peck RB, Schweizer J, Weigl BH, et al. A magnetic immunochromatographic strip test for detection of human papillomavirus 16 E6. Clin Chem. 2006;52(11):2170–2.PubMedCrossRefGoogle Scholar
  138. 138.
    Workman S, Wells SK, Pau CP, et al. Rapid detection of HIV-1 p24 antigen using magnetic immuno-chromatography (MICT). J Virol Methods. 2009;160(1):14–21.PubMedCrossRefGoogle Scholar
  139. 139.
    Handali S, Klarman M, Gaspard AN, et al. Development and evaluation of a magnetic immunochromatographic test to detect Taenia solium, which causes taeniasis and neurocysticercosis in humans. Clin Vaccine Immunol. 2010;17(4):631–7.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Jianchun M, Qing Y, Wenyuan Z, et al. Development and study of lateral flow test strip reader based on embedded system. IEEE Electron Meas Instrum. 2011;1:201–4.Google Scholar
  141. 141.
    Liu C, Jia Q, Yang C, et al. Lateral Flow Immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents. Anal Chem. 2011;83(17):6748–84.Google Scholar
  142. 142.
    Yurong L, Nianyin Z, Min D. Study on the methodology of quantitative goldimmunochromatographic strip assay. IEEE Intell Syst Appl (ISA). 2010;2:1–4.Google Scholar
  143. 143.
    Muler-Barderff M, Freitag H, Scheffold T, et al. Development and characterization of a rapid assay for bedside determinations of Cardiac CardiacTroponin T. Circulation. 1995;92(10):2869–75.CrossRefGoogle Scholar
  144. 144.
    Rundstrom G, Ann J, Martensson O, et al. Lateral flow immunoassay using europium chelate microparticles and time-resolved fluorescence for eosinophils and neutrophic in whole blood. Clin Chem. 2007;53:342–8.PubMedCrossRefGoogle Scholar
  145. 145.
    Tjitra E, Suprianto S, Dyer M, et al. Field evaluation of the ICT Malaria P.f/P.v immunochromatographic test for detection of Plasmodium falciparum and Plasmodium vivax in patients with a presumptive clinical diagnosis of malaria in eastern Indonesia. J Clin Microbiol. 1999;37(8):2412–7.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Sterling B, Kiang T, Subramanian K, et al. Simultaneous patient-side measurement of hemoglobin, glucose, and cholesterol in finger stick blood. Clin Chem. 1993;38(9):1658–64.Google Scholar
  147. 147.
    Yueming G, Min D, Zhenhua G, et al. Discussion of a method for quickly quantitative testing of drug. Shanghai J Biomed Eng. 2006;27(2):81–3. (in Chinese).Google Scholar

Copyright information

© Springer Science+Business Media B.V. and Shanghai Jiao Tong University Press, Shanghai 2017

Authors and Affiliations

  1. 1.Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong UniversityShanghaiP. R. China

Personalised recommendations