A Breath Analysis Based on SERS Sensor to Distinguish Patients with Early and Advanced Stages of Gastric Cancer from Healthy People

  • Yunsheng ChenEmail author
  • Daxiang Cui
Part of the Translational Medicine Research book series (TRAMERE)


To screen gastric cancer breath biomarkers is very helpful to develop simple, fast diagnosis methods for early gastric cancer. This chapter summarizes 14 volatile organic compound biomarkers that were recognized from gastric cancer patients and healthy persons. Gold nanoparticles dispersed graphene nanofilms were used as enriching VOCs and SERS sensors, and 200 clinical specimens were used to confirm established methods could distinguish early gastric cancer and advanced gastric cancer patients. The established SERS sensor based Au nanoparticles dispersed graphene films have great potential in applications such as early diagnosis of gastric cancer.


Gastric cancer patient Volatile organic compound biomarker Graphene Gold nanoparticles Surface enhanced Raman scattering 


  1. 1.
    Hartgrink HH, Jansen EP, van Grieken NC, van de Velde CJ. Gastric cancer. Lancet. 2009;374(9688):477–90.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    (a) Washington K. 7th edition of the AJCC cancer staging manual: stomach. Ann Surg Oncol. 2010;17(12):3077–9; (b) Yamaoka Y, Kato M, Asaka M. Geographic differences in gastric cancer incidence can be explained by differences between Helicobacter pylori strains. Intern Med. 2008;47(12):1077–83.Google Scholar
  3. 3.
    (a) Saito Y, Suzuki H, Imaeda H, Matsuzaki J, Hirata K, Tsugawa H, Hibino S, Kanai Y, Saito H, Hibi T. The tumor suppressor microRNA-29c is downregulated and restored by celecoxib in human gastric cancer cells. Int J Cancer. Journal international du cancer. 2013;132(8):1751–60; (b) Ooki A, Yamashita K, Kikuchi S, Sakuramoto S, Katada N, Watanabe M. Phosphatase of regenerating liver-3 as a prognostic biomarker in histologically node-negative gastric cancer. Oncol Rep. 2009;21(6):1467–75.Google Scholar
  4. 4.
    Alberts SR, Cervantes A, van de Velde CJ. Gastric cancer: epidemiology, pathology and treatment. Ann Oncol Off J Eur Soc Med Oncol/ESMO. 2003;14(Suppl 2):ii31–6.Google Scholar
  5. 5.
    Liao SR, Dai Y, Huo L, Yan K, Zhang L, Zhang H, Gao W, Chen MH. Transabdominal ultrasonography in preoperative staging of gastric cancer. World J Gastroenterol. 2004;10(23):3399–404.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hundahl SA, Phillips JL, Menck HR. The national cancer data base report on poor survival of U.S. Gastric carcinoma patients treated with gastrectomy: fifth edition American joint committee on cancer staging, proximal disease, and the “different disease” hypothesis. Cancer. 2000;88(4):921–32.CrossRefPubMedGoogle Scholar
  7. 7.
    (a) Yasui W, Oue N, Aung PP, Matsumura S, Shutoh, M, Nakayama H, Molecular-pathological prognostic factors of gastric cancer: a review. Gastric Cancer Off J Int Gastric Cancer Assoc Jpn Gastric Cancer Assoc. 2005;8(2):86–94; (b) Zheng Z, Yu Y, Lu M, Sun W, Wang F, Li P, Zhang Y, Lin L, Huang P, Chen J, Zhang H, Xie Z, Dong Xda E. Double contrast-enhanced ultrasonography for the preoperative evaluation of gastric cancer: a comparison to endoscopic ultrasonography with respect to histopathology. Am J Surg. 2011;202(5):605–11.Google Scholar
  8. 8.
    (a) Dancey JE, Bedard PL, Onetto N, Hudson TJ. The genetic basis for cancer treatment decisions. Cell. 2012;148(3):409–20; (b) Ren H, Du N, Liu G, Hu HT, Tian W, Deng ZP, Shi JS. Analysis of variabilities of serum proteomic spectra in patients with gastric cancer before and after operation. World J Gastroentero. 2006;12(17):2789–92; (c) Wu C, Luo ZW, Chen XY, Wu CQ, Yao DK, Zhao P, Liu LJ, Shi B, Zhu L. Two-dimensional differential in-gel electrophoresis for identification of gastric cancer-specific protein markers. Oncol Rep. 2009;21(6):1429–37.Google Scholar
  9. 9.
    Kim KH, Jahan SA, Kabir E. A review of breath analysis for diagnosis of human health. Trac Trend Anal Chem. 2012;33:1–8.CrossRefGoogle Scholar
  10. 10.
    (a) Hakim M, Broza YY, Barash O, Peled N, Phillips M, Amann A, Haick H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem Rev. 2012;112(11):5949–66; (b) Amal H, Ding L, Liu BB, Tisch U, Xu ZQ, Shi DY, Zhao Y, Cheng J, Sun RX, Liu H, Ye SL, Tang ZY, Haick H. The scent fingerprint of hepatocarcinoma: in-vitro metastasis prediction with volatile Organic Compounds (VOCs). Tumor Biol. 2012;33:61; (c) Peng G, Hakim M, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Tisch U, Haick H. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Brit J Cancer. 2010;103(4):542–51.Google Scholar
  11. 11.
    Konvalina G, Haick H. Sensors for breath testing: from nanomaterials to comprehensive disease detection. Acc Chem Res. 2014;47(1):66–76.CrossRefPubMedGoogle Scholar
  12. 12.
    Xu ZQ, Broza YY, Ionsecu R, Tisch U, Ding L, Liu H, Song Q, Pan YY, Xiong FX, Gu KS, Sun GP, Chen ZD, Leja M, Haick H. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions. Br J Cancer. 2013;108(4):941–50.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Haick H. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol. 2009;4(10):669–73.CrossRefPubMedGoogle Scholar
  14. 14.
    Huang CY, Song M, Gu ZY, Wang HF, Yan XP. Probing the adsorption characteristic of metal-organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance. Environ Sci Technol. 2011;45(10):4490–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Mazzone PJ, Hammel J, Dweik R, Na J, Czich C, Laskowski D, Mekhail T. Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax. 2007;62(7):565–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    (a) Ligor T, Ligor M, Amann A, Ager C, Bachler M, Dzien A, Buszewski B. The analysis of healthy volunteers’ exhaled breath by the use of solid-phase microextraction and GC-MS. J Breath Res. 2008;2(4):046006; (b) Miekisch W, Fuchs P, Kamysek S, Neumann C, Schubert JK. Assessment of propofol concentrations in human breath and blood by means of HS-SPME-GC-MS. Clin Chim Acta. 2008;395(1–2):32–7.Google Scholar
  17. 17.
    Zhang YX, Gao G, Liu HJ, Fu HL, Fan J, Wang K, Chen YS, Li BJ, Zhang CL, Zhi X, He L, Cui DX. Identification of volatile biomarkers of gastric cancer cells and ultrasensitive electrochemical detection based on sensing interface of Au-Ag alloy coated MWCNTs. Theranostics. 2014;4(2):154–62.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gao WH, Chen YS, Xi J, Lin SY, Chen YW, Lin YJ, Chen ZG. A novel electrochemiluminescence ethanol biosensor based on tris(2,2 ’-bipyridine) ruthenium (II) and alcohol dehydrogenase immobilized in graphene/bovine serum albumin composite film. Biosens Bioelectron. 2013;41:776–82.CrossRefPubMedGoogle Scholar
  19. 19.
    (a) Blackie EJ, Le Ru EC, Etchegoin PG. Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules. J Am Chem Soc. 2009;131(40):14466–72; (b) Nie SM, Emery SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997;275(5303):1102–6.Google Scholar
  20. 20.
    Xu WG, Mao NN, Zhang J. Graphene: a platform for surface-enhanced Raman spectroscopy. Small. 2013;9(8):1206–24.CrossRefPubMedGoogle Scholar
  21. 21.
    (a) Williams G, Seger B, Kamat PV. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS nano. 2008;2(7):1487–91; (b) Balapanuru J, Yang JX, Xiao S, Bao QL, Jahan M, Polavarapu L, Wei J, Xu QH, Loh KP. A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew Chem Int Edit. 2010;49(37):6549–53.Google Scholar
  22. 22.
    Yang LB, Li P, Liu HL, Tang XH, Liu JH. A dynamic surface enhanced Raman spectroscopy method for ultra-sensitive detection: from the wet state to the dry state. Chem Soc Rev. 2015;44(10):2837–48.CrossRefPubMedGoogle Scholar
  23. 23.
    (a) Lee J, Novoselov KS, Shin HS. Interaction between metal and graphene: dependence on the layer number of graphene. Acs Nano. 2011;5(1):608–12; (b) Zhou HQ, Qiu CY, Liu Z, Yang HC, Hu LJ, Liu J, Yang HF, Gu CZ. Sun LF. Thickness-dependent morphologies of gold on N-Layer graphenes. J Am Chem Soc. 2010;132(3):944−6.Google Scholar
  24. 24.
    Fan Z, Kanchanapally R, Ray PC. Hybrid graphene oxide based ultrasensitive SERS probe for label-free biosensing. J Phys Chem Lett. 2013;4(21):3813–8.CrossRefGoogle Scholar
  25. 25.
    Haick H, Broza YY, Mochalski P, Ruzsanyi V, Amann A. Assessment, origin, and implementation of breath volatile cancer markers. Chem Soc Rev. 2014;43(5):1423–49.CrossRefPubMedGoogle Scholar
  26. 26.
    Bult JB, Crisp R, Perkins CL, Blackburn JL. Role of dopants in long-range charge carrier transport for p-type and n-type graphene transparent conducting thin films. ACS Nano. 2013;7(8):7251–61.CrossRefPubMedGoogle Scholar
  27. 27.
    (a) Haiss W, Thanh NTK, Aveyard J, Fernig DG. Determination of size and concentration of gold nanoparticles from UV–vis spectra. Anal Chem. 2007;79(11):4215–21; (b) Huang J, Zhang LM, Chen BA, Ji N, Chen FH, Zhang Y, Zhang ZJ. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: Formation and applications in SERS and catalysis. Nanoscale. 2010;2(12):2733–8.Google Scholar
  28. 28.
    Tong LM, Zhu T, Liu ZF. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles. Chem Soc Rev. 2011;40:1296–304.Google Scholar
  29. 29.
    Vinodgopal K, Neppolian B, Lightcap IV, Grieser F, Ashokkumar M, Kamat PV. Sonolytic design of graphene-Au nanocomposites. Simultaneous and sequential reduction of graphene oxide and Au(III). J Phys Chem Lett. 2010;1(13):1987–93.CrossRefGoogle Scholar
  30. 30.
    Guo YQ, Sun XY, Liu Y, Wang W, Qiu HX, Gao JP. One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation. Carbon. 2012;50(7):2513–23.CrossRefGoogle Scholar
  31. 31.
    Geng X, Niu L, Xing Z, Song R, Liu G, Sun M, Cheng G, Zhong H, Liu Z, Zhang Z, Sun L, Xu H, Lu L, Liu L. Aqueous-processable noncovalent chemically converted graphene-quantum dot composites for flexible and transparent optoelectronic films. Adv Mater. 2010;22(5):638–42.CrossRefPubMedGoogle Scholar
  32. 32.
    Yi Z, Chen SJ, Chen Y, Luo JS, Wu WD, Yi YG, Tang YJ. Preparation of dendritic Ag/Au bimetallic nanostructures and their application in surface-enhanced Raman scattering. Thin Solid Films. 2012;520(7):2701–7.CrossRefGoogle Scholar
  33. 33.
    Yang MX, Chen T, Lau WS, Wang Y, Tang QH, Yang YH, Chen HY. Development of polymer-encapsulated metal nanoparticles as surface-enhanced Raman scattering probes (vol 5, pg 198, 2009). Small. 2009;5:198–202.Google Scholar
  34. 34.
    Beier BD, Berger AJ. Method for automated background subtraction from Raman spectra containing known contaminants. Analyst. 2009;134(6):1198–202.CrossRefPubMedGoogle Scholar
  35. 35.
    Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339.Google Scholar
  36. 36.
    Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano. 2008;2(3):463–70.CrossRefPubMedGoogle Scholar
  37. 37.
    Czolkos I, Hannestad JK, Jesorka A, Kumar R, Brown T, Albinsson B, Orwar O. Platform for controlled supramolecular nanoassembly. Nano Lett. 2009;9(6):2482–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Chen YS, Zhang YX, Pan F, Liu J, Wang K, Zhang CL, et al. Breath analysis based on surface-enhanced raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons. ACS Nano. 2016;10:8169–79.Google Scholar

Copyright information

© Springer Science+Business Media B.V. and Shanghai Jiao Tong University Press, Shanghai 2017

Authors and Affiliations

  1. 1.Institute of Nano Biomedicine and EngineeringShanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations